Skip to main content

Hypertension in the Developing World

  • Chapter
  • First Online:
Pediatric Hypertension

Part of the book series: Clinical Hypertension and Vascular Diseases ((CHVD))

  • 808 Accesses

Abstract

In the past, the diseases that have occurred among people in developed and developing countries have largely been attributed to the socioeconomic status of each country (1). In developed countries, the health problems have largely been associated with increased wealth providing the opportunity to spend extra resources on poor health habits such as sedentary lifestyle and increased fat intake. In contrast, the diseases that have occurred among people in developing countries have been largely attributed to poverty, poor infrastructure, and limited access to care. These factors lead to famine, the spread of infectious disease, and reduced life spans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Omran A. The epidemiologic transition. A theory of the epidemiology of population change. Milbank Q. 1971;49:509–538.

    CAS  Google Scholar 

  2. World Health Organization. The World Heath Report 2002: reducing risks, promoting healthy life. World Health Organization, Geneva. Available at http://www.who.int/whr/2002/en/. [Last Accessed on February 28, 2009].

  3. World Health Organization. The World Heath Report 2003: shaping the future. Annex 2. World Health Organization, Geneva. Available at http://www.who.int/whr/2003/en/Annex2-en.pdf. [Last Accessed on February 23, 2009].

  4. Reid CM, Thrift AG. Hypertension 2020: confronting tomorrow’s problem today. Clin Exp Pharmacol Physiol. 2005;32:374–376.

    Article  PubMed  CAS  Google Scholar 

  5. Yach D. The global burden of chronic disease: overcoming impediments to prevention and control. JAMA. 2004;291:2616–2622.

    Article  PubMed  CAS  Google Scholar 

  6. Guidelines Subcommittee. WHO–ISH hypertension guidelines for the management of hypertension. J Hypertens. 1999;17:151–183.

    Google Scholar 

  7. Kearney PM, Whelton M, Reynolds K, Whelton PK, He J. Worldwide prevalence of hypertension: a systematic review. J Hypertens. 2004;22:11–19.

    Article  PubMed  CAS  Google Scholar 

  8. Murray CJL, Lopez AD. Global Comparative Assessments in the Health Sector. Geneva, Switzerland: World Health Organization; 1994.

    Google Scholar 

  9. Barker DJ, Osmond C. Infant mortality, childhood nutrition, and ischaemic heart disease in England and Wales. Lancet. 1986;1:1077–1081.

    Article  PubMed  CAS  Google Scholar 

  10. Reddy KS. Cardiovascular disease in India. World Health Stat Q. 1993;46:101–107.

    PubMed  CAS  Google Scholar 

  11. Barker DJ, Osmond C, Golding J, Kuh D, Wadsworth ME. Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. Bone Miner J. 1989;298:564–567.

    CAS  Google Scholar 

  12. Barker DJ, Osmond C, Law CM. The intrauterine and early postnatal origins of cardiovascular disease and chronic bronchitis. J Epidemiol Community Health. 1989;43:237–240.

    Article  PubMed  CAS  Google Scholar 

  13. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet. 1989;2:577–580.

    Article  PubMed  CAS  Google Scholar 

  14. Barker DJP, Osmond C, Winter PD, Margetts BM, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet 1989;2:577–580.

    Article  PubMed  CAS  Google Scholar 

  15. Barker DJ. The fetal and infant origins of adult disease. BMJ. 1990;301:1111.

    Article  PubMed  CAS  Google Scholar 

  16. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. Bone Miner J. 1990;301:259–262.

    CAS  Google Scholar 

  17. Barker DJP, Hales CN, Fall CHD, Osmond C, Phipps K, Clark PMS. Type 2 (non-insulin-dependent) diabetes mellitus, hypertension and hyperlipidemia (syndrome X): relation to reduced fetal growth. Diabetologia. 1993;36:62–67.

    Article  PubMed  CAS  Google Scholar 

  18. Barker DJP, Martyn CN, Osmond C, Haleb CN, Fall CHD. Growth in utero and serum cholesterol concentrations in adult life. BMJ. 1993;307:1524–1527.

    Article  PubMed  CAS  Google Scholar 

  19. Martyn CN, Barker DJP, Jespersen S, Greenwald S, Osmond C, Berry C. Growth in utero, adult blood pressure and arterial compliance. Br Heart J. 1995;73:116–121.

    Article  PubMed  CAS  Google Scholar 

  20. Barker DJP. Fetal origins of coronary heart disease. BMJ. 1995;311:171–174.

    PubMed  CAS  Google Scholar 

  21. Barker DJ, Eriksson JG, Forsen T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31:1235–1239.

    Article  PubMed  CAS  Google Scholar 

  22. Barker DJP. Developmental origins of adult health and disease. J Epidemiol Community Health. 2004;58:114–115.

    Article  PubMed  CAS  Google Scholar 

  23. Kermack WO, McKendrick AG, McKinlay PL. Death-rates in Great Britain and Sweden. Some general regularities and their significance. Lancet. 1934;i:698–703.

    Article  Google Scholar 

  24. Forsdahl A. Are poor living conditions in childhood and adolescence an important risk factor for arteriosclerotic heart disease? Br J Prev Soc Med. 1977;31:91–95.

    PubMed  CAS  Google Scholar 

  25. Wadsworth ME, Cripps HA, Midwinter RE, Colley JR. Blood pressure in a national birth cohort at the age of 36 related to social and familial factors, smoking, and body mass. Br Med J. 1985;291:1534–1538.

    Article  CAS  Google Scholar 

  26. Hales CN, Barker DJ. Type 2 (non-insulin-dependent) diabetes mellitus: the thrifty phenotype hypothesis. Diabetologia. 1992;35:595–601.

    Article  PubMed  CAS  Google Scholar 

  27. Neel JV. Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J Hum Genet. 1962;14:353–362.

    PubMed  CAS  Google Scholar 

  28. Hales CN, BarkerDJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    Article  PubMed  CAS  Google Scholar 

  29. Lucas A. Programming by early nutrition in man. Ciba Found Symp. 1991;156:38–50.

    PubMed  CAS  Google Scholar 

  30. Thoman EB, Levine S. Hormonal and behavioral changes in the rat mother as a function of early experience treatments of the offspring. Physiol Behav. 1970;5:1417–1421.

    Article  PubMed  CAS  Google Scholar 

  31. Wiesel TN, Hubel DH. Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol. 1965;28:1029–1040.

    PubMed  CAS  Google Scholar 

  32. Mcmillen C; Robinson JS. Developmental origins of the metabolic syndrome: prediction, plasticity, and programming. Physiol Rev. 2005;85:571–633.

    Article  Google Scholar 

  33. West-Eberhard MJ. Developmental Plasticity and Evolution. Oxford University Press, New York, NY; 2003.

    Google Scholar 

  34. Bateson P, Barker D, Clutton-Brock T, Deb D, Foley RA, Gluckman P, Godfrey K, Kirkwood T, Mirazón Lahr M, Macnamara J, Metcalfe NB, Monaghan P, Spencer HG, Sultan SE. Developmental plasticity and human health. Nature. 2004;430:419–421.

    Article  PubMed  CAS  Google Scholar 

  35. Gluckman PD, Hanson MA. Living with the past: evolution, development and patterns of disease. Science. 2004;305:1733–1736.

    Article  PubMed  CAS  Google Scholar 

  36. Gluckman PD, Hanson MA. Mismatch: How Our World No Longer Fits Our Bodies. Oxford University Press, Oxford; 2006.

    Google Scholar 

  37. Gluckman PD, Hanson MA, Beedle AS. Early life events and their consequences for later disease; a life history and evolutionary perspective. Am J Hum Biol. 2007;19:1–19.

    Article  PubMed  Google Scholar 

  38. Waddington CH. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. Macmillan, New York, NY; 1957.

    Google Scholar 

  39. Godfrey KM, Lillycrop KA, Burdge GC, Gluckman PD, Hanson MA. Epigenetic mechanisms and the mismatch concept of the developmental origins of health and disease. Pediatr Res. 2007;61(5 Part 2) Supplement:5R–10R.

    Article  PubMed  Google Scholar 

  40. Armitage JA, Khan IY, Taylor PD, Nathanielsz PW, Poston L. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561:355–377.

    Article  PubMed  CAS  Google Scholar 

  41. Bagby SP. Maternal nutrition, low nephron number, and hypertension in later life: pathways of nutritional programming. J Nutr. 2007;137:1066–1072.

    PubMed  CAS  Google Scholar 

  42. Gilbert T, Lelievre-Pegorier M, Merlet-Benichou C. Long-term effects of mild oligonephronia induced in utero by gentamicin in the rat. Pediatr Res. 1991;30(5):450–456.

    Article  PubMed  CAS  Google Scholar 

  43. Celsi G, Kistner A, Aizman R, Eklöf AC, Ceccatelli S, de Santiago A, Jacobson SH. Prenatal dexamethasone causes oligonephronia, sodium retention, and higher blood pressure in the offspring. Pediatr Res. 1998;44:317–322.

    Article  PubMed  CAS  Google Scholar 

  44. Lelièvre-Pégorier M, Vilar J, Ferrier ML, Moreau E, Freund N, Gilbert T, Merlet-Bénichou C. Mild vitamin A deficiency leads to inborn nephron deficit in the rat. Kidney Int. 1998;54:1455–1462.

    Article  PubMed  Google Scholar 

  45. Vehaskari VM, Aviles DH, Manning J. Prenatal programming of adult hypertension in the rat. Kidney Int. 2001;59:238–245.

    Article  PubMed  CAS  Google Scholar 

  46. Woods LL, Ingelfinger JR, Nyengaard JR, Rasch R. Maternal protein restriction suppresses the newborn renin-angiotensin system and programs adult hypertension in rats. Pediatr Res. 2001;49:460–467.

    Article  PubMed  CAS  Google Scholar 

  47. Pham TD, MacLennan NK, Chiu CT, Laksana GS, Hsu JL, Lane RH. Uteroplacental insufficiency increases apoptosis and alters p53 gene methylation in the full-term IUGR rat kidney. Am J Physiol Regul Integr Comp Physiol. 2003;285:R962–R970.

    PubMed  CAS  Google Scholar 

  48. Brook JS, Whiteman M, Brook DW. Transmission of risk factors across three generations. Psychol Rep. 1999;85:227–241.

    PubMed  CAS  Google Scholar 

  49. Lumey LH, Stein AD. Offspring birth weights after maternal intrauterine undernutrition: a comparison within sibships. Am J Epidemiol. 1997;146:810–819.

    PubMed  CAS  Google Scholar 

  50. Painter RC, Roseboom TJ, Bleker OP. Prenatal exposure to the Dutch famine and disease in later life: an overview. Reprod Toxicol. 2005;20:345–352.

    Article  PubMed  CAS  Google Scholar 

  51. Curhan GC, Willett WC, Rimm EB, Spiegelman D, Ascherio AL, Stampfer MJ. Birth weight and adult hypertension, diabetes mellitus, and obesity in US men. Circulation. 1996;94:3246–3250.

    PubMed  CAS  Google Scholar 

  52. Boyko EJ. Proportion of type 2 diabetes cases resulting from impaired fetal growth. Diabetes Care. 2000;23:1260–1264.

    Article  PubMed  CAS  Google Scholar 

  53. Eriksson JG, Osmond C, Barker DJ. Pathways of infant and childhood growth that lead to type 2 diabetes. Diabetes Care. 2003;26:3006–3010.

    Article  PubMed  Google Scholar 

  54. Law CM, de Swiet M, Osmond C, Fayers PM, Barker DJ, Cruddas AM, Fall CH. Initiation of hypertension in utero and its amplification throughout life. BMJ. 1993;306:24–27.

    Article  PubMed  CAS  Google Scholar 

  55. Whincup P, Cook D, Papacosta O, Walker M. Birth weight and blood pressure: cross sectional and longitudinal relations in childhood. BMJ. 1995;311(7008):773–776.

    PubMed  CAS  Google Scholar 

  56. Uiterwaal CS, Anthony S, Launer LJ, Witteman JC, Trouwborst AM, Hofman A, Grobbee DE. Birth weight, growth, and blood pressure: an annual follow-up study of children aged 5 through 21 years. Hypertension. 1997;(2 Pt 1):267–271.

    Google Scholar 

  57. Barker DJ, Osmond C, Forsén TJ, Kajantie E, Eriksson JG. Trajectories of growth among children who have coronary events as adults. N Engl J Med. 2005;353(17):1802–1809.

    Article  PubMed  CAS  Google Scholar 

  58. Kajantie E, Osmond C, Barker DJ, Forsén T, Phillips DI, Eriksson JG. Size at birth as a predictor of mortality in adulthood: a follow-up of 350 000 person-years. Int J Epidemiol. 2005;34:655–663.

    Article  PubMed  Google Scholar 

  59. Lackland DT, Bendall HE, Osmond C, Egan BM, Barker DJ. Low birth weights contribute to high rates of early-onset chronic renal failure in the Southeastern United States. Arch Intern Med. 2000;160(10):1472–1476.

    Article  PubMed  CAS  Google Scholar 

  60. Keijzer-Veen MG, Schrevel M, Finken MJ, Dekker FW, Nauta J, Hille ET, Frölich M, van der Heijden BJ. Dutch POPS-19 Collaborative Study Group. Microalbuminuria and lower glomerular filtration rate at young adult age in subjects born very premature and after intrauterine growth retardation. J Am Soc Nephrol. 2005;16:2762–2768.

    Article  PubMed  CAS  Google Scholar 

  61. Bergvall N, Iliadou A, Johansson S, de Faire U, Kramer MS, Pawitan Y, Pedersen NL, Lichtenstein P, Cnattingius S. Genetic and shared environmental factors do not confound the association between birth weight and hypertension: a study among Swedish twins. Circulation. 2007;115:2931–2938.

    Article  PubMed  Google Scholar 

  62. Cutfield WS, Hofman PL, Mitchell M, Morison IM. Could epigenetics play a role in the developmental origins of health and disease. Pediatr Res. 2007;61(5 Part 2) Supplement:68R–75R.

    Article  PubMed  Google Scholar 

  63. Lurbe E, Torro I, Rodríguez C, Alvarez V, Redón J. Birth weight influences blood pressure values and variability in children and adolescents. Hypertension. 2001;38(3):389–393.

    PubMed  CAS  Google Scholar 

  64. Levitt NS, Steyn K, De Wet T, Morrell C, Edwards R, Ellison GT, Cameron N. An inverse relation between blood pressure and birth weight among 5 year old children from Soweto, South Africa. J Epidemiol Community Health. 1999;53(5):264–268.

    Article  PubMed  CAS  Google Scholar 

  65. Law CM, Egger P, Dada O, Delgado H, Kylberg E, Lavin P, Tang GH, von Hertzen H, Shiell AW, Barker DJ. Body size at birth and blood pressure among children in developing countries. Int J Epidemiol. 2001;30(1):52–57.

    Article  PubMed  CAS  Google Scholar 

  66. Bavdekar A, Yajnik CS, Fall CHD, et al. Insulin resistance syndrome in 8-year-old Indian children: small at birth, big at 8 years, or both? Diabetes. 1999;48:2422–2429.

    Article  PubMed  CAS  Google Scholar 

  67. Walker SP, Gaskin P, Powell CA, Bennett FI, Forrester TE, Grantham-McGregor S. The effects of birth weight and postnatal linear growth retardation on blood pressure at age 11–12 years. J Epidemiol Community Health. 2001;55(6):394–398.

    Article  PubMed  CAS  Google Scholar 

  68. Barros FC, Victora CG. Increased blood pressure in adolescents who were small for gestational age at birth: a cohort study in Brazil. Int J Epidemiol. 1999;28:676–681.

    Article  PubMed  CAS  Google Scholar 

  69. Adair LS, Cole TJ. Rapid child growth raises blood pressure in adolescent boys who were thin at birth. Hypertension. 2003;41:451–456.

    Article  PubMed  CAS  Google Scholar 

  70. Nelson RG, Morgenstern H, Bennett PH. Birth weight and renal disease in Pima Indians with type 2 diabetes mellitus. Am J Epidemiol. 1998;148:650–656.

    Article  PubMed  CAS  Google Scholar 

  71. Hoy WE, Rees M, Kile E, Mathews JD, Wang Z. A new dimension to the Barker hypothesis: low birthweight and susceptibility to renal disease. Kidney Int. 1999;56:1072–1077.

    Article  PubMed  CAS  Google Scholar 

  72. World Health Organization. Feto-maternal nutrition and low birth weight. World health Organization, Geneva. Available at: http://www.who.int/nutrition/topics/feto_maternal/en. [Last Accessed on February 23, 2009].

  73. http://www.who.int/reproductive-health/publications/low_birthweight/low_birthweight_estimates.pdf. [Last Accessed on February 23, 2009].

  74. de Onis M, Blössner M. The World Health Organization Global Database on Child Growth and Malnutrition: methodology and applications. Int J Epidemiol. 2003;32(4):518–526.

    Article  PubMed  Google Scholar 

  75. http://www.who.int/reproductive-health/publications/ifc/ifc.pdf. [Last Accessed on February 23, 2009].

  76. http://www.who.int/making_pregnancy_safer/en/. [Last Accessed on February 23, 2009].

  77. Singhal A, Cole TJ, Lucas A. Early nutrition in preterm infants and later blood pressure: two cohorts after randomised trials. Lancet. 2001;357(9254):413–419.

    Article  PubMed  CAS  Google Scholar 

  78. Singhal A, Fewtrell M, Cole TJ, Lucas A. Low nutrient intake and early growth for later insulin resistance in adolescents born preterm. Lancet. 2003;361(9363):1089–1097.

    Article  PubMed  CAS  Google Scholar 

  79. http://www.who.int/cardiovascular_diseases/guidelines/Fulltext.pdf. [Last Accessed on February 23, 2009].

  80. Reddy KS, Yusuf S. Emerging epidemic of cardiovascular disease in developing countries. Circulation. 1998;97:596–601.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vera H. Koch MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Koch, V.H. (2011). Hypertension in the Developing World. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press. https://doi.org/10.1007/978-1-60327-824-9_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-824-9_27

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-823-2

  • Online ISBN: 978-1-60327-824-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics