Skip to main content

Influence of Dietary Electrolytes on Childhood Blood Pressure

  • Chapter
  • First Online:
Pediatric Hypertension

Abstract

Although the prevalence of hypertension (HTN) is relatively low during childhood and adolescence (1), an estimated 2.6–3.4% of children and adolescents have hypertensive blood pressure (BP) levels and 5.7–13.6% have prehypertensive BP levels (2,3). BP patterns have been shown to track from childhood to the third and fourth decades of life (1,4), and elevated BP levels have been associated with increased risk of cardiovascular and renal diseases (5). Hypertension and cardiovascular risk also increase with increasing rates of overweight and obesity, and prevention programs are needed to reduce these risks in youth (5–7). Modifying intake of dietary electrolytes such as sodium and/or potassium has been shown to be an effective approach to BP reduction in adults (8–10), but there is less evidence for the benefit of this approach in children and adolescents (11). Current recommendations for primary prevention of HTN, published by The National High Blood Pressure Education Program Coordinating Committee (12), involve a population approach and an intensive strategy for targeting individuals who are at increased risk for developing HTN in early adulthood. The Committee outlines a number of approaches that have proven effective for prevention of HTN. Two of these approaches include reducing sodium intake and maintaining an adequate intake of potassium. Evidence also suggests that addressing obesity-related hypertension through weight reduction and maintenance programs may be more efficacious when physical activity is incorporated into the intervention, and regular aerobic activity is strongly recommended for improving BP (13–15).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sinaiko AR, Gomez-Marin O, Prineas RJ. Prevalence of significant hypertension in junior high school-aged children. J Pediatr. 1989;114:664–669.

    Article  PubMed  CAS  Google Scholar 

  2. Muntner P, He J, Cutler J, Wildman RP, Whelton PK. Trends in blood pressure among children and adolescents. JAMA. 2004;291:2107–2113.

    Article  PubMed  CAS  Google Scholar 

  3. Ostchega Y, Carroll M, Prineas RJ, McDowell MA, Louis T, Tilert T. Trends of elevated blood pressure among children and adolescents: data from the National Health and Nutrition Examination Survey 1988–2006. Am J Hypertens. 2009;22:59–67.

    Article  PubMed  Google Scholar 

  4. Lauer RM, Clarke WR. Childhood risk factors for high adult blood pressure: the Muscatine study. Pediatrics. 1989;84:633–644.

    PubMed  CAS  Google Scholar 

  5. Berenson GS, Srinivasan SR, Wattigney WA, Harsha DW. Obesity and cardiovascular risk in children. Ann N Y Acad Sci. 1993;699:93–103.

    Article  PubMed  CAS  Google Scholar 

  6. Chiolero A, Bovet P, Paradis G, Paccaud F. Has blood pressure increased in children in response to the obesity epidemic? Pediatrics. 2007;119:544–553.

    Article  PubMed  Google Scholar 

  7. Zhu H, Yan W, Ge D, et al. Relationships of cardiovascular phenotypes with healthy weight, at risk of overweight, and overweight in US youths. Pediatrics. 2008;121:115–122.

    Article  PubMed  Google Scholar 

  8. Carvalho JJ, Baruzzi FG, Howard PF, Poulter N, Alpers M, Stamler R. Blood pressure in four remote populations: INTERSALT study. Hypertension. 1989;14:238–246.

    PubMed  CAS  Google Scholar 

  9. INTERSALT Cooperative Research Group. INTERSALT: An international study of electrolyte excretion and blood pressure. Results for 24-hour urinary sodium and potassium excretion. Br Med J. 1988;297:319–328.

    Article  Google Scholar 

  10. Whelton PK, He J, Cutler JA, et al. Effects of oral potassium on blood pressure: meta-analysis of randomized controlled clinical trials. JAMA. 1997;277:1624–1632.

    Article  PubMed  CAS  Google Scholar 

  11. Sinaiko AR, Gomez-Marin O, Prineas R. Effect of a low sodium diet or potassium supplementation on adolescent blood pressure. Hypertension. 1993;21:989–994.

    PubMed  CAS  Google Scholar 

  12. Whelton PK, He J, Appel LJ, et al. Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. National High Blood Pressure Education Program Coordinating Committee. JAMA. 2002;288:1882–1888.

    Article  PubMed  Google Scholar 

  13. Appel LJ, Brands MW, Daniels SR, Karanja N, Elmer PJ, Sacks FM, American Heart Association. Dietary approaches to prevent and treat hypertension: a scientific statement from the American Heart Association. Hypertension. 2006;47:296–308.

    Article  PubMed  CAS  Google Scholar 

  14. Falkner B, Daniels SR. Summary of the fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Hypertension. 2004;44:387–388.

    Article  PubMed  CAS  Google Scholar 

  15. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The fourth report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(Suppl):555–576.

    Article  Google Scholar 

  16. Alpert BA, Wilson DK. Stress reactivity in childhood and adolescence. In: Turner JR, Sherwood A, Light K, eds. Individual Differences in Cardiovascular Response to Stress: Applications to Models of Cardiovascular Disease. New York, NY: Plenum; 1992:187–201.

    Google Scholar 

  17. Borghi C, Costa FV, Boschi S, Mussi A, Ambrosioni E. Predictors of stable hypertension in young borderline subjects: a five-year follow-up study. J Cardiovasc Pharmacol. 1986;8(Suppl):S138–S141.

    Article  PubMed  Google Scholar 

  18. Sica DA, Wilson DK. Sodium, potassium, the sympathetic nervous system, and the renin-angiotensis system: impact on the circadian variability in blood pressure. In: White WB, ed. Cardiovascular Chronobiology and Variability in Clinical Practice. Totowa, NJ: Humana; 2001:171–189.

    Google Scholar 

  19. Matthews KA, Katholi CR, McCreath H, et al. Blood pressure reactivity to psychological stress predicts hypertension in the CARDIA study. Circulation. 2004;110:74–78.

    Article  PubMed  Google Scholar 

  20. Masters KS, Hill RD, Kircher JC, Lensegrav Benson TL, Fallon JA. Religious orientation, aging, and blood pressure reactivity to interpersonal and cognitive stressors. Ann Behav Med. 2004;28:171–178.

    Article  PubMed  Google Scholar 

  21. Roemmich JN, Smith JR, Epstein LH, Lambiase M. Stress reactivity and adiposity of youth. Obesity. 2007;15:2303–2310.

    Article  PubMed  Google Scholar 

  22. Barbeau P, Litaker MS, Harshfield GA. Impaired pressure natriuresis in obese youths. Obes Res. 2003;11:745–751.

    Article  PubMed  Google Scholar 

  23. Westmaas JL, Jamner LD. Paradoxical effects of social support on blood pressure reactivity among defensive individuals. Ann Behav Med. 2006;31:238–247.

    Article  PubMed  Google Scholar 

  24. Kaneda R, Kario K, Hoshide S, Umeda Y, Hoshide Y, Shimada K. Morning blood pressure hyper-reactivity is an independent predictor for hypertensive cardiac hypertrophy in a community-dwelling population. Am J Hypertens. 2005;18:1528–1533.

    Article  PubMed  Google Scholar 

  25. al’Absi M, Devereux RB, Rao DC, Kitzman D, Oberman A, Hopkins P, Arnett DK. Blood pressure stress reactivity and left ventricular mass in a random community sample of African-American and Caucasian men and women. Am J Cardiol. 2006;97:240–244.

    Article  PubMed  Google Scholar 

  26. Moseley JV, Linden W. Predicting blood pressure and heart rate change with cardiovascular reactivity and recovery: results from 3-year and 10-year follow up. Psychosom Med. 2006;68:833–843.

    Article  PubMed  Google Scholar 

  27. Stewart KJ, Ouyang P, Bacher AC, Lima S, Shapiro EP. Exercise effects on cardiac size and left ventricular diastolic function: relationships to changes in fitness, fatness, blood pressure and insulin resistance. Heart. 2006;92:893–898.

    Article  PubMed  CAS  Google Scholar 

  28. Verdecchia P, Schillaci G, Borgioni C, Ciucci A, Porcellati C. Prognostic significance of the white coat effect. Hypertension. 1997;29:1218–1224.

    PubMed  CAS  Google Scholar 

  29. Kobrin I, Oigman W, Kumar A, et al. Diurnal variation of blood pressure in elderly patients with essential hypertension. J Am Geriatr Soc. 1984;32:896–899.

    PubMed  CAS  Google Scholar 

  30. Verdecchia P, Schillaci G, Guerrieri M, et al. Circadian blood pressure changes and left ventricular hypertrophy in essential hypertension. Circulation. 1990;81:528–536.

    Article  PubMed  CAS  Google Scholar 

  31. Devereux RB, Pickering TG. Relationship between the level, pattern and variability of ambulatory blood pressure and target organ damage in hypertension. J Hypertens. 1991;9(Suppl):S34–S38.

    CAS  Google Scholar 

  32. Wilson DK, Sica DA, Devens M, Nicholson S. The influence of potassium intake on dipper and non-dipper blood pressure status in an African-American adolescent population. Blood Press Monit. 1996;1:447–455.

    PubMed  Google Scholar 

  33. Wilson DK, Sica DA, Miller SB. Effects of potassium on blood pressure in salt-sensitive and salt-resistant adolescents. Hypertension. 1999;34:181–186.

    PubMed  CAS  Google Scholar 

  34. Espeland MA, Kumanyika S, Yunis C, Zheng B, Brown WM, Jackson S, Wilson AC, Bahnson J. Electrolyte intake and nonpharmacologic blood pressure control. Ann Epidemiol. 2002;12:587–595.

    Article  PubMed  Google Scholar 

  35. He FJ, MacGregor GA. Importance of salt in determining blood pressure in children: meta-analysis of controlled trials. Hypertension. 2006;48:861–869.

    Article  PubMed  CAS  Google Scholar 

  36. Savoca MR, Domel Baxter S, Ludwig DA, Evans CD, Mackey ML, Wilson ME, Hanevold C, Harshfield GA. A 4-day sodium-controlled diet reduces variability of overnight sodium excretion in free-living normotensive adolescents. J Am Diet Assoc. 2007;107:490–494.

    Article  PubMed  CAS  Google Scholar 

  37. Leong GM, Kainer G. Diet, salt, anthropological and hereditary factors in hypertension. Child Nephrol Urol. 1992;12:96–105.

    PubMed  CAS  Google Scholar 

  38. Allison S. Fluid, electrolytes and nutrition. Clin Med. 2004;4:573–578.

    PubMed  Google Scholar 

  39. Ge D, Su S, Zhu H, et al. Stress-induced sodium excretion: a new intermediate phenotype to study the early genetic etiology of hypertension? Hypertension. 2009;53:262–269.

    Article  PubMed  CAS  Google Scholar 

  40. Tobin MD, Timpson NJ, Wain LV, et al. Common variation in the WNK1 gene and blood pressure in childhood: the Avon Longitudinal Study of Parents and Children. Hypertension. 2008;52:974–979.

    Article  PubMed  CAS  Google Scholar 

  41. Kojima S, Inenaga T, Matsuoka H, et al. The association between salt sensitivity of blood pressure and some polymorphic factors. J Hypertens. 1994;12:797–801.

    Article  PubMed  CAS  Google Scholar 

  42. Weinberger MH, et al. Association of haptoglobin with sodium sensitivity and resistance of blood pressure. Hypertension. 1987;10:443–446.

    PubMed  CAS  Google Scholar 

  43. Guerra A, Monteiro C, Breitenfeld L, et al. Genetic and environmental factors regulating blood pressure in childhood: prospective study from 0 to 3 years. J Hum Hypertens. 1997;11:233–238.

    Article  PubMed  CAS  Google Scholar 

  44. Hanevold CD, Pollock JS, Harshfield GA. Racial differences in microalbumin excretion in healthy adolescents. Hypertension. 2008;51:334–338.

    Article  PubMed  CAS  Google Scholar 

  45. Couch SC, Saelens BE, Levin L, Dart K, Falciglia G, Daniels SR. The efficacy of a clinic-based behavioral nutrition intervention emphasizing a DASH-type diet for adolescents with elevated blood pressure. J Pediatr. 2008;152:494–501.

    PubMed  Google Scholar 

  46. Cook NR, Obarzanek E, Cutler JA, et al. Trials of Hypertension Prevention Collaborative Research Group. Joint effects of sodium and potassium intake on subsequent cardiovascular disease: the Trials of Hypertension Prevention follow-up study. Arch Intern Med. 2009;169:32–40.

    Article  PubMed  Google Scholar 

  47. Simons-Morton DG, Obarzanck E. Diet and blood pressure in children and adolescents. Pediatr Nephrol. 1997;11:244–249.

    Article  PubMed  CAS  Google Scholar 

  48. Weinberger MH, Miller JZ, Luft FC, et al. Definitions and characteristics of sodium sensitivity and blood pressure resistance. Hypertension. 1986;8:II127–II134.

    PubMed  CAS  Google Scholar 

  49. Falkner B, Kushner H, Khalsa OK, et al. Sodium sensitivity, growth and family history of hypertension in young blacks. J Hypertens. 1986;4(Suppl):S381–S383.

    CAS  Google Scholar 

  50. Wilson DK, Bayer L, Krishnamoorthy JS, Ampey-Thornhill G, Nicholson SC, Sica DA. The prevalence of salt sensitivity in an African-American adolescent population. Ethn Dis. 1999;9:350–358.

    PubMed  CAS  Google Scholar 

  51. Sullivan JM, Ratts TE. Sodium sensitivity in human subjects. Hemodynamic and hormonal correlates. Hypertension. 1988;11:717–723.

    PubMed  CAS  Google Scholar 

  52. Palacios C, Wigertz K, Martin BR, Jackman L, Pratt JH, Peacock M, McCabe G, Weaver CM. Sodium retention in black and white female adolescents in response to salt intake. J Clin Endocrinol Metab. 2004;89:1858–1863.

    Article  PubMed  CAS  Google Scholar 

  53. Wilson DK, Sica DA, Miller SB. Ambulatory blood pressure and nondipping status in salt-sensitive versus salt-resistant black adolescents. Am J Hypertens. 1999;12:159–165.

    Article  PubMed  CAS  Google Scholar 

  54. Harshfield GA, Alpert BS, Pulliam DA, Willey ES, Somes GW, Stapleton FB. Sodium excretion and racial differences in ambulatory blood pressure patterns. Hypertension. 1991;18:813–818.

    PubMed  CAS  Google Scholar 

  55. de la Sierra A, del Mar Lluch MM, Coca A, Aguilera MT, Sánchez M, Sierra C, Urbano-Márquez A. Assessment of salt sensitivity in essential hypertension by 24-h ambulatory blood pressure monitoring. Am J Hypertens. 1995;8:970–977.

    Article  PubMed  Google Scholar 

  56. Rocchini AP, Kolch V, Kveselis D, et al. Insulin and renal sodium retention in obese adolescents. Hypertension. 1989;14:367–374.

    PubMed  CAS  Google Scholar 

  57. Lurbe E, Alvarez V, Liao Y, et al. Obesity modifies the relationship between ambulatory blood pressure and natriuresis in children. Blood Press Monit. 2000;5:275–280.

    Article  PubMed  CAS  Google Scholar 

  58. Uzu T, Ishikawa K, Fujita T, Nakamura S, Inenaga T, Kimura G. Sodium restriction shifts circadian rhythm of blood pressure from nondipper to dipper in essential hypertension. Circulation. 1997;96:1859–1862.

    PubMed  CAS  Google Scholar 

  59. Higashi Y, Oshima T, Ozono R, Nakano Y, Matsuura H, Kambe M, Kajiyama G. Nocturnal decline in blood pressure is attenuated by NaCl loading in salt-sensitive patients with essential hypertension: noninvasive 24-hour ambulatory blood pressure monitoring. Hypertension. 1997;30:163–167.

    PubMed  CAS  Google Scholar 

  60. Harshfield GA, Pulliam DA, Alpert BS. Patterns of sodium excretion during sympathetic nervous system arousal. Hypertension. 1991;17:1156–1160.

    PubMed  CAS  Google Scholar 

  61. Light KC, Koepke JP, Obrist PA, Willis PW. Psychological stress induces sodium and fluid retention in men at high risk for hypertension. Science. 1983;220:429–431.

    Article  PubMed  CAS  Google Scholar 

  62. Berenson GS, Voors AW, Webber LS, Dalferes ER Jr, Harsha DW. Racial differences of parameters associated with blood pressure levels in children—the Bogalusa Heart Study. Metabolism. 1979;28:1218–1228.

    Article  PubMed  CAS  Google Scholar 

  63. Morgan T, Teow BH, Myers J. The role of potassium in control of blood pressure. Drugs. 1984;28(Suppl):I188–I195.

    Article  Google Scholar 

  64. Goto A, Yamada K, Nagoshi H, et al. Relation of 24-h ambulatory blood pressure with plasma potassium in essential hypertension. J Hypertens. 1997;10:337–340.

    Article  CAS  Google Scholar 

  65. Solomon R, Weinberg MS, Dubey A. The diurnal rhythm of plasma potassium: relationship to diuretic therapy. J Cardiovasc Pharmacol. 1991;17:854–859.

    Article  PubMed  CAS  Google Scholar 

  66. Struthers AD, Reid JL, Whitesmith R, Rodger JC. Effect of intravenous adrenaline on electrocardiogram, blood pressure, and serum potassium. Br Heart J. 1983;49:90–93.

    Article  PubMed  CAS  Google Scholar 

  67. Linas SL. The role of potassium in the pathogenesis and treatment of hypertension. Kidney Int. 1991;39:771–786.

    Article  PubMed  CAS  Google Scholar 

  68. Falkner B, Michel S. Blood pressure response to sodium in children and adolescents. Am J Clin Nutr. 1997;65(Suppl):618S–621S.

    PubMed  CAS  Google Scholar 

  69. Frank GC, Webber LS, Nicklas TA, Berenson GS. Sodium, potassium, calcium, magnesium, and phosphorus intakes of infants and children: Bogalusa Heart Study. J Am Diet Assoc. Jul 1988;88:801–807.

    PubMed  CAS  Google Scholar 

  70. Pomeranz A, Dolfin T, Korzets Z, Eliakim A, Wolach B. Increased sodium concentrations in drinking water increase blood pressure in neonates. J Hypertens. 2002;20:203–207.

    Article  PubMed  CAS  Google Scholar 

  71. Cullen KW, Koehly LM, Anderson C, et al. Gender differences in chronic disease risk behaviors through the transition out of high school. Am J Prev Med. 1999;17(1):1–7.

    Article  PubMed  CAS  Google Scholar 

  72. Neumark-Sztainer D, Story M, Resnick MD, Blum RW. Lessons learned about adolescent nutrition from the Minnesota Adolescent Health Survey. J Am Diet Assoc. 1998;98:1449–1456.

    Article  PubMed  CAS  Google Scholar 

  73. Berenson GS, Voors AW, Dalferes ER Jr, Webber LS, Shuler SE. Creatinine clearance, electrolytes, and plasma renin activity related to the blood pressure of white and black children—the Bogalusa Heart Study. J Lab Clin Med. 1979;93:535–548.

    PubMed  CAS  Google Scholar 

  74. Pratt JH, Jones JJ, Miller JZ, Wagner MA, Fineberg NS. Racial differences in aldosterone excretion and plasma aldosterone concentrations in children. N Engl J Med. 1989;321:1152–1157.

    Article  PubMed  CAS  Google Scholar 

  75. Miller JZ, Weinberger MH, Daugherty SA, Fineberg NS, Christian JC, Grim CE. Blood pressure response to dietary sodium restriction in healthy normotensive children. Am J Clin Nutr. 1988;47:113–119.

    PubMed  CAS  Google Scholar 

  76. Gillum RF, Elmer PJ, Prineas RJ. Changing sodium intake in children. The Minneapolis Children’s Blood Pressure Study. Hypertension. 1981;3:698–703.

    PubMed  CAS  Google Scholar 

  77. Watt GCM, Foy DJW, Hart JT, et al. Dietary sodium and arterial blood pressure: evidence against genetic susceptibility. Br Med J. 1985;291:1525–1528.

    Article  CAS  Google Scholar 

  78. Rocchini AP, Key J, Bondie D, et al. The effect of weight loss on the sensitivity of blood pressure to sodium in obese adolescents. N Engl J Med. 1989;321:580–585.

    Article  PubMed  CAS  Google Scholar 

  79. Wilson DK, Becker JA, Alpert BS. Prevalence of sodium sensitivity in black versus white adolescents. Circulation. 1992;1(Suppl):13.

    Google Scholar 

  80. Couch SC, Saelens BE, Levin L, Dart K, Falciglia G, Daniels SR. The efficacy of a clinic-based behavioral nutrition intervention emphasizing a DASH-type diet for adolescents with elevated blood pressure. J Pediatr. 2008;152:494–501.

    PubMed  Google Scholar 

  81. Günther AL, Liese AD, Bell RA, et al. Association between the dietary approaches to hypertension diet and hypertension in youth with diabetes mellitus. Hypertension. 2009;53:6–12.

    Article  PubMed  CAS  Google Scholar 

  82. Falkner B, Onesti G, Angelakos E. Effect of salt loading on the cardiovascular response to stress in adolescents. Hypertension. 1981;3(II):II195–II199.

    Google Scholar 

  83. Falkner B, Kushner H. Effect of chronic sodium loading on cardiovascular response in young blacks and whites. Hypertension. 1990;15:36–43.

    PubMed  CAS  Google Scholar 

  84. Sorof JM, Forman A, Cole N, Jemerin JM, Morris RC. Potassium intake and cardiovascular reactivity in children with risk factors for essential hypertension. J Pediatr. 1997;131:87–94.

    Article  PubMed  CAS  Google Scholar 

  85. Fujita T, Ando K. Hemodynamic and endocrine changes associated with potassium supplementation in sodium-loaded hypertensives. Hypertension. 1984;6:184–192.

    PubMed  CAS  Google Scholar 

  86. Svetkey LP, Yarger WE, Feussner JR, DeLong E, Klotman E. Double-blind, placebo-controlled trial of potassium chloride in the treatment of mild hypertension. Hypertension. 1987;9:444–450.

    PubMed  CAS  Google Scholar 

  87. Cappuccio FP, MacGregor GA. Does potassium supplementation lower blood pressure? A meta-analysis of published trials. J Hypertens. 1991;9:465–473.

    Article  PubMed  CAS  Google Scholar 

  88. Krishna GG, Miller E, Kapoor S. Increased blood pressure during potassium depletion in normotensive men. N Engl J Med. 1989;320:1177–1182.

    Article  PubMed  CAS  Google Scholar 

  89. Weinberger MH, Luft FC, Bloch R, et al. The blood pressure-raising effects of high dietary sodium intake: racial differences and the role of potassium. J Am Coll Nutr. 1982;1:139–148.

    PubMed  CAS  Google Scholar 

  90. Fujita T, Ito Y. Salt loads attenuate potassium-induced vasocilation of forearm vasculature in humans. Hypertension. 1993;21:772–778.

    PubMed  CAS  Google Scholar 

  91. Phillips RJW, Robinson BF. The dilator response to K+ is reduced in the forearm resistance vessels of men with primary hypertension. Clin Sci. 1984;66:237–239.

    PubMed  CAS  Google Scholar 

  92. Campese VM, Romoff MS, Levitan D, et al. Abnormal relationship between Na+ intake and sympathetic nervous activity in salt-sensitive patients with essential hypertension. Kidney Int. 1982;21:371–378.

    Article  PubMed  CAS  Google Scholar 

  93. Stamler R, Stamler J, Riedlinger WF, Algera G, Roberts RH. Family (parental) history and prevalence of hypertension. Results of a nationwide screening program. JAMA. 1979;241:43–46.

    Article  PubMed  CAS  Google Scholar 

  94. Kostic N, Secen S. Circadian rhythm of blood pressure and daily hormone variations. Med Pregl. 1997;50:37–40.

    PubMed  CAS  Google Scholar 

  95. Patterson TL, Rupp JW, Sallis JF, Atkins CJ, Nader PR. Aggregation of dietary calories, fats, and sodium in Mexican-American and Anglo families. Am J Prev Med. 1988;4:75–82.

    PubMed  CAS  Google Scholar 

  96. Perry CL, Luepker RV, Murray DM, Kurth C, Mullis R, Crockett S, Jacobs DR Jr. Parent involvement with children’s health promotion: the Minnesota Home Team. Am J Public Health. 1988;78:1156–1160.

    Article  PubMed  CAS  Google Scholar 

  97. Wilson DK, Ampey-Thornhill G. The role of gender and family support on dietary compliance in an African American adolescent hypertension prevention study. Ann Behav Med. 2001;23:59–67.

    Article  PubMed  CAS  Google Scholar 

  98. Nader PR, Sallis JF, Patterson TL, et al. A family approach to cardiovascular risk reduction: results from the San Diego Family Health Project. Health Educ Q. 1989;16:229–244.

    PubMed  CAS  Google Scholar 

  99. Cohen RY, Felix MR, Brownell KD. The role of parents and older peers in school-based cardiovascular prevention programs: implications for program development. Health Educ Q. 1989;16:245–253.

    PubMed  CAS  Google Scholar 

  100. Gortmaker SL, Cheung LW, Peterson KE, et al. Impact of a school-based interdisciplinary intervention on diet and physical activity among urban primary school children: eat well and keep moving. Arch Pediatr Adolesc Med. 1999;153:975–983.

    PubMed  CAS  Google Scholar 

  101. Simons-Morton BG, Baranowski T, Parcel GS, O’Hara NM, Matteson RC. Children’s frequency of consumption of foods high in fat and sodium. Am J Prev Med. 1990;6:218–227.

    PubMed  CAS  Google Scholar 

  102. Wilson DK, Bayer L. The role of diet in hypertension prevention among African-American adolescents. Ann Behav Med. 2002;24(Suppl):S198.

    Google Scholar 

  103. Whitten CF, Stewart RA. The effect of dietary sodium in infancy on blood pressure and related factors. Studies of infants fed salted and unsalted diets for five months at eight months and eight years of age. Acta Paediatr Scand. 1980;279(Suppl):1–17.

    CAS  Google Scholar 

  104. Trevisan M, Cooper R, Ostrow D, Miller W, Sparks S, Leonas Y, Allen A, Steinhauer M, Stamler J. Dietary sodium, erythrocyte sodium concentration, sodium-stimulated lithium efflux and blood pressure. Clin Sci (Lond). 1981;61:29 s–32 s.

    Google Scholar 

  105. Hofman A, Hazebroek A, Valkenburg HA. A randomized trial of sodium intake and blood pressure in newborn infants. JAMA. 1983;250:370–373.

    Article  PubMed  CAS  Google Scholar 

  106. Cooper R, Van Horn L, Liu K, Trevisan M, Nanas S, Ueshima H, Larbi E, Yu CS, Sempos C, LeGrady D, Stamler J. A randomized trial on the effect of decreased dietary sodium intake on blood pressure in adolescents. J Hypertens. 1984;2:361–366.

    PubMed  CAS  Google Scholar 

  107. Calabrese EJ, Tuthill RW. The Massachusetts blood pressure study, part 3. Experimental reduction of sodium in drinking water: effect on blood pressure. Toxicol Ind Health. 1985;1:19–34.

    PubMed  CAS  Google Scholar 

  108. Howe PRC, Jureidini KF, Smith RM. Sodium and blood pressure in children—a short-term dietary intervention study. Proc Nutr Soc Aust. 1985;10:121–124.

    Google Scholar 

  109. Tuthill RW, Calabrese EJ. The Massachusetts Blood Pressure Study, Part 4. Modest sodium supplementation and blood pressure change in boarding school girls. Toxicol Ind Health. 1985;1:35–43.

    PubMed  CAS  Google Scholar 

  110. Tochikubo O, Sasaki O, Umemura S, Kaneko Y. Management of hypertension in high school students by using new salt titrator tape. Hypertension. 1986;8(12):1164–1171.

    PubMed  CAS  Google Scholar 

  111. Ellison RC, Capper AL, Stephenson WP, Goldberg RJ, Hosmer DW Jr, Humphrey KF, Ockene JK, Gamble WJ, Witschi JC, Stare FJ. Effects on blood pressure of a decrease in sodium use in institutional food preparation: the Exeter-Andover Project. J Clin Epidemiol. 1989;42:201–208.

    Article  PubMed  CAS  Google Scholar 

  112. Myers JB. Reduced sodium chloride intake normalises blood pressure distribution. J Hum Hypertens. 1989;3:97–104.

    PubMed  CAS  Google Scholar 

  113. Howe PRC, Cobiac L, Smith RM. Lack of effect of short-term changes in sodium intake on blood pressure in adolescent schoolchildren. J Hypertens. 1991;9:181–186.

    Article  PubMed  CAS  Google Scholar 

  114. Mu JJ, Liu ZQ, Liu WM, Liang YM, Yang DY, Zhu DJ, Wang ZX. Reduction of blood pressure with calcium and potassium supplementation in children with salt sensitivity: a 2-year double-blinded placebo-controlled trial. J Hum Hypertens. Jun 2005;19:479–483.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawn K. Wilson PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wilson, D.K., Coulon, S. (2011). Influence of Dietary Electrolytes on Childhood Blood Pressure. In: Flynn, J., Ingelfinger, J., Portman, R. (eds) Pediatric Hypertension. Clinical Hypertension and Vascular Diseases. Humana Press. https://doi.org/10.1007/978-1-60327-824-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-824-9_15

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-823-2

  • Online ISBN: 978-1-60327-824-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics