Skip to main content

Drug Resistance by Non-Tuberculous Mycobacteria

  • Chapter
Book cover Antimicrobial Drug Resistance

Part of the book series: Infectious Disease ((ID))

  • 2043 Accesses

Non-tuberculous Mycobacterium species (NTM) cause disease in diverse animals as well as in susceptible humans. Antiretroviral therapy has decreased AIDS-associated NTM in many settings; however, the reported incidence of M. avium complex (MAC) infection of non-AIDS patients has increased in recent years, especially among women (1–4). Most NTMs are slowly growing mycobacteria like their close cousin, M. tuberculosis, with which they share many similarities in genomic composition, cellular physiology, and mechanisms of pathogenesis. Chemotherapeutic treatments, and mechanisms of resistance to these treatments, also bear many similarities to tuberculosis. However, there are critical distinctions, especially in the case of the most common NTM pathogen of humans, MAC. This chapter focuses on clinical aspects of NTM therapy and the biology of antimicrobial resistance by NTMs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chalermskulrat W, Gilbey JG, Donohue JF. Nontuberculous mycobacteria in women, young and old. Clin Chest Med 2002;(23):675–686

    Google Scholar 

  2. Falkinham JO, III. Epidemiology of infection by nontuberculous mycobacteria. Clin Microbiol Rev 1996; 9(2):177–215

    PubMed  Google Scholar 

  3. Marras TK, Daley CL. Epidemiology of human pulmonary infection with nontuberculous mycobacteria. Clin Chest Med 2002; 23:553–567

    Article  PubMed  Google Scholar 

  4. Henry MT, Inamdar L, O'Riordain D, Schweiger M, Watson JP. Nontuberculous mycobacteria in non-HIV patients: epidemiology, treatment and response. Eur Respir J 2004; 23(5):741–746

    Article  PubMed  CAS  Google Scholar 

  5. Jogi R, Tyring SK. Therapy of nontuberculous mycobacterial infections. Dermatol Ther 2004; 17(6):491–498

    Article  PubMed  Google Scholar 

  6. Vu TT, Daniel SJ, Quach C. Nontuberculous mycobacteria in children: a changing pattern. J Otolaryngol 2005; 34 Suppl 1:40S–44S

    Google Scholar 

  7. Pulliam JP, Vernon DD, Alexander SR, Hartstein AI, Golper TA. Nontuberculous mycobacterial peritonitis associated with continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1983; 2(6):610–614

    PubMed  CAS  Google Scholar 

  8. White R, Abreo K, Flanagan R et al. Nontuberculous mycobac-terial infections in continuous ambulatory peritoneal dialysis patients. Am J Kidney Dis 1993; 22(4):581–587

    PubMed  CAS  Google Scholar 

  9. Youmbissi JT, Malik QT, Ajit SK, al Khursany IA, Rafi A, Karkar A. Non tuberculous mycobacterium peritonitis in continuous ambulatory peritoneal dialysis. J Nephrol 2001; 14(2):132–135

    PubMed  CAS  Google Scholar 

  10. Giladi M, Lee BE, Berlin OG, Panosian CB. Peritonitis caused by Mycobacterium kansasii in a patient undergoing continuous ambulatory peritoneal dialysis. Am J Kidney Dis 1992; 19(6):597–599

    PubMed  CAS  Google Scholar 

  11. Keenan N, Jeyaratnam D, Sheerin NS. Mycobacterium simiae: a previously undescribed pathogen in peritoneal dialysis peritonitis. Am J Kidney Dis 2005; 45(5):75–78

    Article  Google Scholar 

  12. Sennesael JJ, Maes VA, Pierard D, Debeukelaer SH, Verbeelen DL. Streptomycin pharmacokinetics in relapsing Mycobacterium xenopi peritonitis. Am J Nephrol 1990; 10(5):422–425

    Article  PubMed  CAS  Google Scholar 

  13. Ellis EN, Schutze GE, Wheeler JG. Nontuberculous mycobacterial exit-site infection and abscess in a peritoneal dialysis patient. A case report and review of the literature. Pediatr Nephrol 2005; 20(7):1016–1018

    Article  PubMed  Google Scholar 

  14. Harro C, Braden GL, Morris AB, Lipkowitz GS, Madden RL. Failure to cure Mycobacterium gordonae peritonitis associated with continuous ambulatory peritoneal dialysis. Clin Infect Dis 1997; 24(5):955–957

    PubMed  CAS  Google Scholar 

  15. Schulze-Röbbecke R, Fischeder R, Feldmann C, Janning B, Exner M, Wahl G. Dental units: an environmental study of sources of potentially pathogenic mycobacteria. Tuber Lung Dis 1995; 76:318–323

    Article  PubMed  Google Scholar 

  16. Schulze-Röbbecke R, Janning B, Fischeder R. Occurrence of mycobacteria in biofilm samples. Tuber Lung Dis 1992; 73:141–144

    Article  PubMed  Google Scholar 

  17. Hall-Stoodley L, Lappin-Scott H. Biofilm formation by the rapidly growing mycobacterial species Mycobacterium fortuitum. FEMS Microbiol Lett 1998; 168:77–84

    Article  PubMed  CAS  Google Scholar 

  18. Wallace RJ, Jr., Brown BA, Griffith DE. Nosocomial outbreaks/ pseudo-outbreaks caused by nontuberculous mycobacteria. Annu Rev Microbiol 1998; 52:453–490

    Article  PubMed  CAS  Google Scholar 

  19. Fisher EJ, Gloster HM, Jr. Infection with mycobacterium abscessus after Mohs micrographic surgery in an immunocompetent patient. Dermatol Surg 2005; 31(7 Pt 1):790–794

    PubMed  CAS  Google Scholar 

  20. Kasamatsu Y, Nakagawa N, Inoue K et al. Peritonitis due to Mycobacterium fortuitum infection following gastric cancer surgery. Intern Med 1999; 38(10):833–836

    Article  PubMed  CAS  Google Scholar 

  21. Griffith DE, Aksamit T, Brown-Elliott BA et al. An official ATS/ IDSA statement: diagnosis, treatment, and prevention of nontuberculous mycobacterial diseases. Am J Respir Crit Care Med 2007; 175(4):367–416

    Article  PubMed  CAS  Google Scholar 

  22. Subcommittee of the Joint Tuberculosis Committee of the British Thoracic Society. Management of opportunist mycobacterial infections: Joint Tuberculosis Committee guidelines 1999. Thorax 2000; 55:210–218

    Article  Google Scholar 

  23. Olivier KN, Weber DJ, Lee JH et al. Nontuberculous mycobacteria. II: nested-cohort study of impact on cystic fibrosis lung disease. Am J Respir Crit Care Med 2003; 167(6):835–840

    Article  PubMed  Google Scholar 

  24. Wickremasinghe M, Ozerovitch LJ, Davies G et al. Non-tuberculous mycobacteria in patients with bronchiectasis. Thorax 2005; 60(12):1045–1051

    Article  PubMed  CAS  Google Scholar 

  25. American Lung Association and the American Thoracic Society. Diagnosis and treatment of disease caused by nontuberculous mycobacteria. Am J Respir Crit Care Med 1997; 156:S1–S25

    Google Scholar 

  26. Holland SM, Eisenstein EM, Kuhns DB et al. Treatment of refractory disseminated nontuberculous mycobacterial infection with interferon gamma. A preliminary report. N Engl J Med 1994; 330(19):1348–1355

    Article  PubMed  CAS  Google Scholar 

  27. Doucette K, Fishman JA. Nontuberculous mycobacterial infection in hematopoietic stem cell and solid organ transplant recipients. Clin Infect Dis 2004; 38(10):1428–1439

    Article  PubMed  Google Scholar 

  28. Jouanguy E, Lamhamedi-Cherradi S, Lammas D et al. A human IFNGR1 small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nat Genet 1999; 21(4):370–378

    Article  PubMed  CAS  Google Scholar 

  29. Koh WJ, Kwon OJ, Kim EJ, Lee KS, Ki CS, Kim JW. NRAMP1 gene polymorphism and susceptibility to nontuberculous mycobacterial lung diseases. Chest 2005; 128(1):94–101

    Article  PubMed  CAS  Google Scholar 

  30. Altare F, Durandy A, Lammas D et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 1998; 280(5368):1432–1435

    Article  PubMed  CAS  Google Scholar 

  31. de Jong R, Altare F, Haagen IA et al. Severe mycobacterial and Salmonella infections in interleukin-12 receptor-deficient patients. Science 1998; 280(5368):1435–1438

    Article  PubMed  Google Scholar 

  32. Hermon-Taylor J, Bull T. Crohn's disease caused by Mycobacterium avium subsp. paratuberculosis: a public health tragedy whose resolution is long overdue. J Med Microbiol 2002; 51:3–6

    PubMed  Google Scholar 

  33. Shanahan F, O'Mahony J. The mycobacteria story in Crohn's disease. Am J Gastroenterol 2005; 100(7):1537–1538

    Article  PubMed  Google Scholar 

  34. Behr MA, Semret M, Poon A, Schurr E. Crohn's disease, mycobacteria, and NOD2. Lancet Infect Dis 2004; 4(3):136–137

    Article  PubMed  Google Scholar 

  35. Liao CH, Chen MY, Hsieh SM, Sheng WH, Hung CC, Chang SC. Discontinuation of secondary prophylaxis in AIDS patients with disseminated non-tuberculous mycobacteria infection. J Microbiol Immunol Infect 2004; 37(1):50–56

    PubMed  Google Scholar 

  36. Luong A, McClay JE, Jafri HS, Brown O. Antibiotic therapy for nontuberculous mycobacterial cervicofacial lymphadenitis. Laryngoscope 2005; 115(10):1746–1751

    Article  PubMed  Google Scholar 

  37. Griffith DE, Brown-Elliott BA, Langsjoen B et al. Clinical and molecular analysis of macrolide resistance in Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2006; 174(8):928–934

    Article  PubMed  CAS  Google Scholar 

  38. Heifets L, Mor N, Vanderkolk J. Mycobacterium avium strains resistant to clarithromycin and azithromycin. Antimicrob Agents Chemother 1993; 37(11):2364–2370

    PubMed  CAS  Google Scholar 

  39. Gardner EM, Burman WJ, DeGroote MA, Hildred G, Pace NR. Conventional and molecular epidemiology of macrolide resistance among new Mycobacterium avium complex isolates recovered from HIV-infected patients. Clin Infect Dis 2005; 41(7):1041–1044

    Article  PubMed  CAS  Google Scholar 

  40. Santin M, Alcaide F. Mycobacterium kansasii disease among patients infected with human immunodeficiency virus type 1: improved prognosis in the era of highly active antiretroviral therapy. Int J Tuberc Lung Dis 2003; 7(7):673–677

    PubMed  CAS  Google Scholar 

  41. Marras TK, Morris A, Gonzalez LC, Daley CL. Mortality prediction in pulmonary Mycobacterium kansasii infection and human immunodeficiency virus. Am J Respir Crit Care Med 2004; 170(7):793–798

    Article  PubMed  Google Scholar 

  42. Karakousis PC, Moore RD, Chaisson RE. Mycobacterium avium complex in patients with HIV infection in the era of highly active antiretroviral therapy. Lancet Infect Dis 2004; 4(9):557–565

    Article  PubMed  Google Scholar 

  43. Fujikane T, Fujiuchi S, Yamazaki Y et al. Efficacy and outcomes of clarithromycin treatment for pulmonary MAC disease. Int J Tuberc Lung Dis 2005; 9(11):1281–1287

    PubMed  CAS  Google Scholar 

  44. Ward TT, Rimland D, Kauffman C, Huycke M, Evans TG, Heifets L. Randomized, open-label trial of azithromycin plus ethambutol vs. clarithromycin plus ethambutol as therapy for Mycobacterium avium complex bacteremia in patients with human immunodeficiency virus infection. Veterans Affairs HIV Research Consortium. Clin Infect Dis 1998; 27(5):1278–1285

    CAS  Google Scholar 

  45. Kim JS, Tanaka N, Newell JD et al. Nontuberculous mycobacterial infection: CT scan findings, genotype, and treatment responsiveness. Chest 2005; 128(6):3863–3869

    Article  PubMed  Google Scholar 

  46. Kaplan JE, Masur H, Holmes KK. Guidelines for preventing opportunistic infections among HIV-infected persons – 2002. Recommendations of the U.S. Public Health Service and the Infectious Diseases Society of America. MMWR Recomm Rep 2002; 51(RR-8):1–52

    Google Scholar 

  47. Benson CA, Kaplan JE, Masur H, Pau A, Holmes KK. Treating opportunistic infections among HIV-exposed and infected children: recommendations from CDC, the National Institutes of Health, and the Infectious Diseases Society of America. MMWR Recomm Rep 2004; 53(RR-15):1–112

    PubMed  Google Scholar 

  48. Sekiguchi Y, Yasui K, Yamazaki T, Agematsu K, Kobayashi N, Koike K. Effective combination therapy using interferon-gamma and interleukin-2 for disseminated Mycobacterium avium complex infection in a pediatric patient with AIDS. Clin Infect Dis 2005; 41(11):e104–106e

    Article  PubMed  Google Scholar 

  49. Race EM, Adelson-Mitty J, Kriegel GR et al. Focal mycobacterial lymphadenitis following initiation of protease-inhibitor therapy in patients with advanced HIV-1 disease. Lancet 1998; 351(9098):252–255

    Article  PubMed  CAS  Google Scholar 

  50. Hallstrand TS, Ochs HD, Zhu Q, Liles WC. Inhaled IFN-gamma for persistent nontuberculous mycobacterial pulmonary disease due to functional IFN-gamma deficiency. Eur Respir J 2004; 24(3):367–370

    Article  PubMed  CAS  Google Scholar 

  51. Alcaide F, Calatayud L, Santin M, Martin R. Comparative in vitro activities of linezolid, telithromycin, clarithromycin, levofloxacin, moxifloxacin, and four conventional antimycobacterial drugs against Mycobacterium kansasii. Antimicrob Agents Chemother 2004; 48(12):4562–4565

    Article  PubMed  CAS  Google Scholar 

  52. Brown-Elliott BA, Crist CJ, Mann LB, Wilson RW, Wallace RJ, Jr. In vitro activity of linezolid against slowly growing nontuberculous Mycobacteria. Antimicrob Agents Chemother 2003; 47(5):1736–1738

    Article  PubMed  CAS  Google Scholar 

  53. Guna R, Munoz C, Dominguez V et al. In vitro activity of linezolid, clarithromycin and moxifloxacin against clinical isolates of Mycobacterium kansasii. J Antimicrob Chemother 2005; 55(6):950–953

    Article  PubMed  CAS  Google Scholar 

  54. Wallace RJ, Jr, Brown-Elliott BA, Ward SC, Crist CJ, Mann LB, Wilson RW. Activities of linezolid against rapidly growing mycobacteria. Antimicrob Agents Chemother 2001; 45(3):764–767

    Article  PubMed  CAS  Google Scholar 

  55. Brown-Elliott BA, Wallace RJ, Jr, Blinkhorn R, Crist CJ, Mann LB. Successful treatment of disseminated Mycobacterium chelonae infection with linezolid. Clin Infect Dis 2001; 33(8):1433–1434

    Article  PubMed  CAS  Google Scholar 

  56. Rastogi N, Goh KS, Bryskier A, Devallois A. Spectrum of activity of levofloxacin against nontuberculous mycobacteria and its activity against the Mycobacterium avium complex in combination with ethambutol, rifampin, roxithromycin, amikacin, and clofazimine. Antimicrob Agents Chemother 1996; 40(11):2483–2487

    PubMed  CAS  Google Scholar 

  57. Griffith DE, Brown-Elliott BA, Shepherd S, McLarty J, Griffith L, Wallace RJ, Jr. Ethambutol ocular toxicity in treatment regimens for Mycobacterium avium complex lung disease. Am J Respir Crit Care Med 2005; 172(2):250–253

    Article  PubMed  Google Scholar 

  58. Benson CA, Williams PL, Cohn DL et al. Clarithromycin or rifabutin alone or in combination for primary prophylaxis of Mycobacterium avium complex disease in patients with AIDS: a randomized, double-blind, placebo-controlled trial. The AIDS Clinical Trials Group 196/Terry Beirn Community Programs for Clinical Research on AIDS 009 Protocol Team. J Infect Dis 2000; 181(4):1289–1297

    CAS  Google Scholar 

  59. Midoneck SR, Etingin OR. Clarithromycin-related toxic effects of digoxin. N Engl J Med 1995; 333(22):1505

    Article  PubMed  CAS  Google Scholar 

  60. Chaisson RE, Keiser P, Pierce M et al. Clarithromycin and ethambutol with or without clofazimine for the treatment of bacteremic Mycobacterium avium complex disease in patients with HIV infection. AIDS 1997; 11(3):311–317

    Article  PubMed  CAS  Google Scholar 

  61. Miguez-Burbano MJ, Flores M, Ashkin D et al. Non-tuberculous mycobacteria disease as a cause of hospitalization in HIV-infected subjects. Int J Infect Dis 2006; 10(1):47–55

    Article  PubMed  Google Scholar 

  62. Falkinham JOI, Norton CD, LeChevallier MW. Factors influencing numbers of Mycobacterium avium, Mycobacterium intracellulare, and other mycobacteria in drinking water distribution systems. Appl Environ Microbiol 2001; 67:1225–1231

    Article  PubMed  CAS  Google Scholar 

  63. Falkinham JO III. Sources, transmission, and exposure of M avium. In: Bartram J, Rees G, editors. Pathogenic Mycobacteria in Water. Geneva: World Health Organization — U.S. Environmental Protection Agency; 2003

    Google Scholar 

  64. Falkinham JO, III. Factors influencing the chlorine susceptibility of Mycobacterium avium, Mycobacterium intracellulare, and Mycobacterium scrofulaceum. Appl Environ Microbiol 2003; 69(9):5685–5689

    Article  PubMed  CAS  Google Scholar 

  65. Taylor RH, Falkinham JOI, Norton CD, LeChevallier MW. Chlorine, chloramines, chlorine dioxide, and ozone susceptibility of Mycobacterium avium. Appl Environ Microbiol 2000; 66:1702–1705

    Article  PubMed  CAS  Google Scholar 

  66. Bolan G, Reingold AL, Carson LA et al. Infections with Mycobacterium chelonei in patients receiving dialysis and using processed hemodialyzers. J Infect Dis 1985; 152(5):1013–1019

    PubMed  CAS  Google Scholar 

  67. Heifets L, Cangelosi GA. Antibiotic susceptibility testing of Mycobacterium tuberculosis — a neglected problem at the turn of the century. Int J Tuberc Lung Dis 2002; 3:564–581

    Google Scholar 

  68. Morris S, Gai BH, Suffys P, Portillo-Gomez L, Fairchok M, Rouse D. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis 1995; 171:954–960

    PubMed  CAS  Google Scholar 

  69. Somoskovi A, Parsons L, Salfinger M. The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis. Respir Res 2001; 2(3):164–168

    Article  PubMed  CAS  Google Scholar 

  70. Garcia de Viedma D. Rapid detection of resistance in Mycobacterium tuberculosis: a review discussing molecular approaches. Clin Microbiol Infect 2003; 9(5):349–359

    Article  PubMed  CAS  Google Scholar 

  71. Klein JL, Brown TJ, French GL. Rifampin resistance in Mycobacterium kansasii is associated with rpoB mutations. Antimicrob Agents Chemother 2001; 45(11):3056–3058

    Article  PubMed  CAS  Google Scholar 

  72. Williams DL, Waguespack C, Eisenach K et al. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother 1994; 38(10):2380–2386

    PubMed  CAS  Google Scholar 

  73. Marsollier L, Honore N, Legras P et al. Isolation of three Mycobacterium ulcerans strains resistant to rifampin after experimental chemotherapy of mice. Antimicrob Agents Chemother 2003; 47(4):1228–1232

    Article  PubMed  CAS  Google Scholar 

  74. Burman WJ, Stone BL, Brown BA, Richard J, Bottger EC. AIDS-related Mycobacterium kansasii infection with initial resistance to clarithromycin. Diagn Microbiol Infect Dis 1998; 31(2):369–371

    Article  PubMed  CAS  Google Scholar 

  75. Vemulapalli RK, Cantey JR, Steed LL, Knapp TL, Thielman NM. Emergence of resistance to clarithromycin during treatment of disseminated cutaneous Mycobacterium chelonae infection: case report and literature review. J Infect 2001; 43(3):163–168

    Article  PubMed  CAS  Google Scholar 

  76. Wallace RJ, Jr, Meier A, Brown BA et al. Genetic basis for clarithromycin resistance among isolates of Mycobacterium chelonae and Mycobacterium abscessus. Antimicrob Agents Chemother 1996; 40(7):1676–1681

    PubMed  CAS  Google Scholar 

  77. Nash KA, Inderlied CB. Rapid detection of mutations associated with macrolide resistance in Mycobacterium avium complex [published erratum appears in Antimicrob Agents Chemother 1996 Oct;40(10):2442]. Antimicrob Agents Chemother 1996; 40(7):1748–1750

    PubMed  CAS  Google Scholar 

  78. Jamal MA, Maeda S, Nakata N, Kai M, Fukuchi K, Kashiwabara Y. Molecular basis of clarithromycin-resistance in Mycobacterium avium-intracellulare complex. Tuber Lung Dis 2000; 80(1):1–4

    Article  PubMed  CAS  Google Scholar 

  79. Meier A, Heifets L, Wallace RJ et al. Molecular mechanisms of clarithromycin resistance in Mycobacterium avium: observation of multiple 23S rDNA mutations in a clonal population. J Infect Dis 1996; 174(2):354–360

    PubMed  CAS  Google Scholar 

  80. Belisle JT, Brennan PJ. Molecular basis of colony morphology in Mycobacterium avium. Res Microbiol 1994; 145:237–242

    Article  PubMed  CAS  Google Scholar 

  81. Belisle JT, Klaczkiewicz K, Brennan PJ, Jacobs WR, Inamine JM. Rough morphological variants of Mycobacterium avium. J Biol Chem 1993; 268:10517–10523

    PubMed  CAS  Google Scholar 

  82. Cangelosi GA, Clark-Curtiss JE, Behr M, Bull T, Stinear T. Biology of pathogenic mycobacteria in water. In: Bartram J, Rees G, Dufour A, Cotruvo JA, editors. Pathogenic Mycobacteria in Water. Geneva: World Health Organization — U.S. Environmental Protection Agency; 2004

    Google Scholar 

  83. Cangelosi GA, Palermo CO, Bermudez LE. Phenotypic consequences of red-white colony type variation in Mycobacterium avium. Microbiology 2001; 147:527–533

    PubMed  CAS  Google Scholar 

  84. Mukherjee S, Petrofsky M, Yaraei K, Bermudez LE, Cangelosi GA. The white morphotype of Mycobacterium avium-intracel-lulare is common in infected humans and virulent in infection models. J Infect Dis 2001; 184:1480–1484

    Article  PubMed  CAS  Google Scholar 

  85. Obata S, Zwolska Z, Toyota E et al. Association of rpoB mutations with rifampicin resistance in Mycobacterium avium. Int J Antimicrob Agents 2006; 27(1):32–39

    Article  PubMed  CAS  Google Scholar 

  86. Portillo-Gomez L, Nair J, Rouse DA, Morris SL. The absence of genetic markers for streptomycin and rifampicin resistance in Mycobacterium avium complex strains. J Antimicrob Chemother 1995; 36:1049–1053

    Article  PubMed  CAS  Google Scholar 

  87. Rastogi N, Goh KS, Clavel-Seres S. Stazyme, a mycobacteriolytic preparation from a Staphylococcus strain, is able to break the permeability barrier in multiple drug resistant Mycobacterium avium. FEMS Immunol Med Microbiol 1997; 19(4):297–305

    Article  PubMed  CAS  Google Scholar 

  88. Jarlier V, Nikaido H. Mycobacterial cell wall: structure and role in natural resistance to antibiotics. FEMS Microbiol Lett 1994; 123:11–18

    Article  PubMed  CAS  Google Scholar 

  89. Nikaido H, Jarlier V. Permeability of the mycobacterial cell wall. Res Microbiol 1991; 142:437–443

    Article  PubMed  CAS  Google Scholar 

  90. Philalay JS, Palermo CO, Hauge KA, Rustad TR, Cangelosi GA. Genes required for intrinsic multidrug resistance in Mycobacterium avium. Antimicrob Agents Chemother 2004; 48(9):3412–3418

    Article  PubMed  CAS  Google Scholar 

  91. Cangelosi GA, Do JS, Freeman R, Bennett JG, Semret M, Behr MA. The two component regulatory system mtrAB is required for the morphotypic multi-drug resistance of Mycobacterium avium. Antimicrob Agents Chemother 2005; in press

    Google Scholar 

  92. Mailaender C, Reiling N, Engelhardt H, Bossmann S, Ehlers S, Niederweis M. The MspA porin promotes growth and increases antibiotic susceptibility of both Mycobacterium bovis BCG and Mycobacterium tuberculosis. Microbiology 2004; 150(4):853–864

    Article  PubMed  CAS  Google Scholar 

  93. Ibrahim P, Whiteley AS, Barer MR. SYTO16 labelling and flow cytometry of Mycobacterium avium. Lett Appl Microbiol 1997; 25:437–441

    Article  PubMed  CAS  Google Scholar 

  94. Cangelosi GA, Do JS, Freeman R, Bennett JG, Semret M, Behr MA. The two-component regulatory system mtrAB is required for morphotypic multidrug resistance in Mycobacterium avium. Antimicrob Agents Chemother 2006; 50(2):461–468

    Article  PubMed  CAS  Google Scholar 

  95. Nguyen L, Thompson CJ. Foundations of antibiotic resistance in bacterial physiology: the mycobacterial paradigm. Trends Micro 2006; 14(7):304–312

    Article  CAS  Google Scholar 

  96. Buriankova K, Doucet-Populaire F, Dorson O et al. Molecular basis of intrinsic macrolide resistance in the Mycobacterium tuberculosis complex. Antimicrob Agents Chemother 2004; 48(1):143–150

    Article  PubMed  CAS  Google Scholar 

  97. Nash KA. Intrinsic macrolide resistance in Mycobacterium smegmatis is conferred by a novel erm gene, erm(38). Antimicrob Agents Chemother 2003; 47(10):3053–3060

    Article  PubMed  CAS  Google Scholar 

  98. Morris RP, Nguyen L, Gatfield J et al. Ancestral antibiotic resistance in Mycobacterium tuberculosis. Proc Natl Acad Sci 2005; 102(34):12200–12205

    Article  PubMed  CAS  Google Scholar 

  99. Voladri RK, Lakey DL, Hennigan SH, Menzies BE, Edwards KM, Kernodle DS. Recombinant expression and characterization of the major beta-lactamase of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998; 42(6):1375

    PubMed  CAS  Google Scholar 

  100. Segura C, Salvado M, Collado I, Chaves J, Coira A. Contribution of beta-lactamases to beta-lactam susceptibilities of susceptible and multidrug-resistant Mycobacterium tuberculosis clinical isolates. Antimicrob Agents Chemother 1998; 42(6):1524–1526

    PubMed  CAS  Google Scholar 

  101. Hackbarth CJ, Unsal I, Chambers HF. Cloning and sequence analysis of a class A beta-lactamase from Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother 1997; 41(5):1182

    PubMed  CAS  Google Scholar 

  102. Benson CA, Williams PL, Currier JS et al. A prospective, randomized trial examining the efficacy and safety of clarithromycin in combination with ethambutol, rifabutin, or both for the treatment of disseminated Mycobacterium avium complex disease in persons with acquired immunodeficiency syndrome. Clin Infect Dis 2003; 37(9):1234–1243

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Horan, K., Cangelosi, G.A. (2009). Drug Resistance by Non-Tuberculous Mycobacteria. In: Mayers, D.L. (eds) Antimicrobial Drug Resistance. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-595-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-595-8_17

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-594-1

  • Online ISBN: 978-1-60327-595-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics