Skip to main content

Dietary Plant Extracts to Modify Effects of High Fat Modern Diets in Health Promotion

  • Chapter
  • First Online:
Modern Dietary Fat Intakes in Disease Promotion

Part of the book series: Nutrition and Health ((NH))

  • 1395 Accesses

Key Points

• In healthy populations, a correct diet can prevent typical deficiency diseases, which almost disappeared in advanced Western societies; however, some forms of “non-deficiency malnutrition” are now well known and easily understandable, especially in high-fat modern diets.

• Plant polyphenols and plant extracts in general may be employed as an effective tool to achieve an optimized nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McKeown T. The Modern Rise of Population. New York: Academic Press, 1976.

    Google Scholar 

  2. Clarke SD, Abraham S. Gene expression: nutrient control of pre- and posttranscriptional events. FASEB J 1992; 6: 3146–3152.

    PubMed  CAS  Google Scholar 

  3. Clarke SD et al. Regulation of hepatic gene expression by dietary fats: a unique role for polyunsaturated fatty acids. In: Berdanier, CD, Hargrove, JL, (eds.), CRC Press Reviews. Boca Raton, Florida: CRC Press, 1992.

    Google Scholar 

  4. Ottley C. Individual variability in the nutrition response: key issues from the Nutrition Society Summer Meeting, Kings College London, 7–10 July 2003. Trends Food Sci Technol 2004; 15(5): 280–281.

    Article  CAS  Google Scholar 

  5. Campión J et al. Genetic manipulation in nutrition, metabolism, and obesity research. Nutr Rev 2004; 62: 321–330.

    PubMed  Google Scholar 

  6. Fuhrman B et al. Consumption of red wine with meals reduces the susceptibility of human plasma and low-density lipoprotein to lipid peroxidation. Am J Clin Nutr 1995; 61: 549–554.

    PubMed  CAS  Google Scholar 

  7. Wild and Associates. Global prevalence of diabetes. Diabetes Care 2004; 27: 1047–1053.

    Article  Google Scholar 

  8. Howson CP et al. Control of Cardiovascular Diseases in Developing Countries: Research, Development, and Institutional Strengthening. Washington DC: National Academy press, 1998.

    Google Scholar 

  9. Stoclet JC et al. Vascular protection by dietary polyphenols. Eur J Pharmacol 2004; 500: 299–313.

    Article  PubMed  CAS  Google Scholar 

  10. Gryglewski RJ et al. On the mechanism of antithrombotic action of flavonoids. Biochem Pharmacol 1987; 36: 317–322.

    Article  PubMed  CAS  Google Scholar 

  11. Gorelik S. A novel function of red wine polyphenols in humans: prevention of absorption of cytotoxic lipid peroxidation products. FASEB J 2008; 22: 41–46.

    Article  PubMed  CAS  Google Scholar 

  12. Ursini F et al. Optimization of nutrition: polyphenols and vascular protection. Nutr Rev 1999; 57(8): 241–249.

    Article  PubMed  CAS  Google Scholar 

  13. Nuttall SL et al. Mini-review. Antioxidant therapy for the prevention of cardiovascular disease. QJM Int J Med 1999; 92(5): 239–244.

    Article  CAS  Google Scholar 

  14. Yamamoto A. A Unique Antilipidemic Drug—Probucol. J Atheroscler Thromb 2008; 15(6): 304–305.

    Article  PubMed  Google Scholar 

  15. Yamakoshi J et al. Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 1999; 142: 139–149.

    Article  PubMed  CAS  Google Scholar 

  16. Fitzpatrick DF et al. Vasodilating procyanidins derived from grape seeds. Ann NY Acad Sci 2002; 957: 78–89.

    Article  PubMed  CAS  Google Scholar 

  17. Mendes A et al. Vasorelaxant effects of grape polyphenols in rat isolated aorta. Possible involvement of a purinergic pathway. Fundam Clin Pharmacol 2003; 17(6): 673–681.

    Article  PubMed  CAS  Google Scholar 

  18. Shao Z et al. Cytotoxicity induced by grape seed proanthocyanidins: role of nitric oxide. Cell Biol Toxicol 2006; 22(3): 149–158.

    Article  PubMed  CAS  Google Scholar 

  19. Sano T et al. Anti-thrombotic effect of proanthocyanidin, a purified ingredient of grape seed. Thromb Res 2005; 115(1–2): 115–121.

    Article  PubMed  CAS  Google Scholar 

  20. Shafiee M et al. Grape and grape seed extract capacities at protecting LDL against oxidation generated by Cu2+, AAPH or SIN-1 and at decreasing superoxide THP-1 cell production. A comparison to other extracts or compounds. Free Radic Res 2003; 37: 573–584.

    Article  PubMed  CAS  Google Scholar 

  21. Tosca L et al. Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. J Nutr 2003; 133: 2268–2272.

    Google Scholar 

  22. Del Bas JM et al. Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats. FASEB J 2005; 19: 479–481.

    PubMed  CAS  Google Scholar 

  23. Natella F et al. Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric Food Chem 2002; 50(26): 7720–7725.

    Article  PubMed  CAS  Google Scholar 

  24. Yilmaz Y et al. Health aspects of functional grape seed constituents. Trends Food Sci Technol 2004; 15(9): 422–433.

    Article  CAS  Google Scholar 

  25. Blake GJ, Ridker PM et al. Inflammatory bio-markers and cardiovascular risk prediction. J Int Med 2002; 252(4): 283–294.

    Article  CAS  Google Scholar 

  26. Khanna S et al. Upregulation of oxidant-induced VEGF expression in cultured keratinocytes by a grape seed proanthocyanidin extract. Free Radic Biol Med 2001; 31(1): 38–42.

    Article  PubMed  CAS  Google Scholar 

  27. Kalin R. Activin, a grape seed-derived proanthocyanidin extract, reduces plasma levels of oxidative stress and adhesion molecules (ICAM-1, VCAM-1 and E-selectin) in systemic sclerosis. Free Radic Res 2002; 36(8): 819–825.

    Article  PubMed  Google Scholar 

  28. Carini M et al. Procyanidins from Vitis vinifera seeds inhibit the respiratory burst of activated human neutrophils and lysosomal enzyme release. Planta Medica 2001; 67(8): 714–717.

    Article  PubMed  CAS  Google Scholar 

  29. Gu L et al. Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 2004; 134(3): 613–617.

    PubMed  CAS  Google Scholar 

  30. Holt RR et al. Procyanidin dimer B2 [epicatechin-(4ß-8)-epicatechin] in human plasma after the consumption of a flavanol-rich cocoa. Am J Clin Nutr 2002; 76(4): 798–804.

    PubMed  CAS  Google Scholar 

  31. Baba S et al. Absorption and urinary excretion of procyanidin B2 [epicatechin-(4β-8)-epicatechin] in rats. Free Radic Biol Med 2002; 33: 142–148.

    Article  PubMed  CAS  Google Scholar 

  32. Tsang C et al. The absorption, metabolism and excretion of flavan-3-ols and procyanidins following the ingestion of a grape seed extract by rats. Br J Nutr 2005; 94: 170–181.

    Article  PubMed  CAS  Google Scholar 

  33. Merken HM et al. Kinetics method for the quantitation of anthocyanidins, flavonols, and flavones in foods. J Agric Food Chem 2001; 49(6): 2727–2732.

    Article  PubMed  CAS  Google Scholar 

  34. Rios LY et al. Cocoa procyanidins are stable during gastric transit in humans. Am J Clin Nutr 2002; 76: 1106–1110.

    PubMed  CAS  Google Scholar 

  35. Deprez S et al. Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr 2000; 130: 2733–2738.

    PubMed  CAS  Google Scholar 

  36. Bonanome A et al. Effect of dietary monounsaturated and polyunsaturated fatty acids on the susceptibility of plasma low density lipoproteins to oxidative modification. Arterioscler Thromb 1992; 12: 529–533.

    Article  PubMed  CAS  Google Scholar 

  37. Mensink RP et al. Effects of dietary fatty acids and carbohydrates on the ratio of serum total to HDL cholesterol and on serum lipids and apolipoproteins: a meta-analysis of 60 controlled trials. Am J Clin Nutr 2003; 77(5): 1146–1155.

    PubMed  CAS  Google Scholar 

  38. Dougherty RM et al. Lipid and phospholipid fatty acid composition of plasma, red blood cells, and platelets and how they are affected by dietary lipids: a study of normal subjects from Italy, Finland, and the USA. Am J Clin Nutr 1987; 45(2): 443–455.

    PubMed  CAS  Google Scholar 

  39. Visioli F et al. Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 1998; 247(1): 60–64.

    Article  PubMed  CAS  Google Scholar 

  40. Carr AC et al. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 2000; 20(7): 1716–1723.

    Article  PubMed  CAS  Google Scholar 

  41. Trichopoulou A et al. Cancer and Mediterranean dietary traditions. Cancer Epidemiol Biomarkers Prev 2000; 9(9): 869–873.

    PubMed  CAS  Google Scholar 

  42. Visioli F et al. Olive oil phenolics are dose-dependently absorbed in humans. FEBS Lett 2000; 468(2–3): 159–160.

    Article  PubMed  CAS  Google Scholar 

  43. Miro-Casas E et al. Tyrosol and hydroxytyrosol are absorbed from moderate and sustained doses of virgin olive oil in humans. Eur J Clin Nutr 2003; 57(1): 186–190.

    Article  PubMed  CAS  Google Scholar 

  44. Visioli F et al. Olive oils rich in natural catecholic phenols decrease isoprostane excretion in humans. Biochem Biophys Res Commun 2000; 278(3): 797–799.

    Article  PubMed  CAS  Google Scholar 

  45. Leger CL et al. A thromboxane effect of a hydroxytyrosol-rich olive oil wastewater extract in patients with uncomplicated type I diabetes. Eur J Clin Nutr 2005; 59(5): 727–730.

    Article  PubMed  CAS  Google Scholar 

  46. Salvini S et al. Daily consumption of a high-phenol extra-virgin olive oil reduces oxidative DNA damage in postmenopausal women. Br J Nutr 2006; 95(4): 742–751.

    Article  PubMed  CAS  Google Scholar 

  47. Covas MI. Olive oil and the cardiovascular system. Pharmacol Res 2007; 55(3): 175–186.

    Article  PubMed  CAS  Google Scholar 

  48. Soni MG et al. Safety assessment of aqueous olive pulp extract as an antioxidant or antimicrobial agent in foods. Food Chem Toxicol 2006; 44(7): 903–915.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Togni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Togni, S. (2010). Dietary Plant Extracts to Modify Effects of High Fat Modern Diets in Health Promotion. In: De Meester, F., Zibadi, S., Watson, R. (eds) Modern Dietary Fat Intakes in Disease Promotion. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-571-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-571-2_27

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-570-5

  • Online ISBN: 978-1-60327-571-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics