Anthropogenic and Naturally Produced Contaminants in Fish Oil: Role in Ill Health

Part of the Nutrition and Health book series (NH)

Key Points

• Fish oil dietary supplements are recommended to increase the intake of polyunsaturated fatty acids (PUFAs), such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), renowned for their beneficial effects to human health.

• Fish oil dietary supplements contain anthropogenic contaminants, such as organochlorine pesticides, polychlorinated biphenyls, polychlorinated dioxins and furans, polybrominated diphenyl ethers and mercury. Recently, a number of organobrominated compounds, such as methoxylated-PBDEs and polybrominated hexahydroxanthenes derivatives, naturally produced by marine organisms (e.g., algae and sponges) have also been identified in commercial fish oil dietary supplements.

• Since fish oil dietary supplements are consumed on a daily basis, concerns are issued about the presence of various contaminants in these capsules with improvements in the preparation and purification of supplements have reduced dramatically the contaminant’s concentrations.

• Fish oil dietary supplements might be a suitable alternative to fish consumption for certain groups of the population for which fish consumption advice has been issued such as pregnant women or children.

• There is also a stringent need to regularly monitor the presence of “classical” and “new” contaminants together with naturally occurring compounds, in marine products destined for human consumption.


Anthropogenic Organohalogenated contaminants Naturally produced Beneficial health effect Fish oil dietary supplements Dietary intake 


  1. 1.
    Sidhu KS. Health benefits and potential risks related to consumption of fish or fish oil. Regul Toxicol Pharm 2003; 38: 336–344.CrossRefGoogle Scholar
  2. 2.
    Simopoulos A. Essential fatty acids in health and chronic disease. Am J Clin Nutr 1999; 70: 560S–569S.PubMedGoogle Scholar
  3. 3.
    Mozaffarrian D, Rimm EB. Fish intake, contaminants, and human health. Evaluating the risks and the benefits. JAMA 2006; 296: 1885–1899.CrossRefGoogle Scholar
  4. 4.
    Kromhout D, Bosschieter EB, de Lezenne Coulander C. The inverse relation between fish consumption and 20-year mortality from coronary heart disease. New Engl J Med 1985; 312: 1205–1209.PubMedCrossRefGoogle Scholar
  5. 5.
    Burr ML, Fehily AM, Gilbert JF, Elwood PC, Fehily AM, Rogers S, Sweetnam PM, Deadman NM. Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 1989; 2: 757–761.PubMedCrossRefGoogle Scholar
  6. 6.
    Dolecek TA, Granditis G. Dietary polyunsaturated fatty acids and mortality in the Multiple Risk Factor Intervention Trial (MRFIT. World Rev Nutr Diet 1991; 66: 205–216.PubMedGoogle Scholar
  7. 7.
    Kromhout D, Feskens EJ, Bowles CH. The protective effect of a small amount of fish on coronary heart disease mortality in an elderly population. Int J Epidemiol 1995; 24: 340–345.PubMedCrossRefGoogle Scholar
  8. 8.
    Daviglus ML, Stamler J, Orencia AJ, Dyer AR, Liu K, Greenland P, Walsh MK, Morris D, Shekelle RB. Fish consumption and the 30-year risk of fatal myocardial infarction. New Engl J Med 1997; 336: 1046–1053.PubMedCrossRefGoogle Scholar
  9. 9.
    Albert CM, Hennekens CH, O’Donnell CJ, Ajani UA, Carey VJ, Willett WC, Ruskin JN, Manson JE. Fish consumption and risk of sudden cardiac death. JAMA 1998; 279: 23–28.PubMedCrossRefGoogle Scholar
  10. 10.
    Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI Prevenzione trial. Lancet 1999; 354: 447–455.CrossRefGoogle Scholar
  11. 11.
    Oomen CM, Feskens EJ, Rasanen L, Fidanza F, Nissinen AM, Menotti A, Kok FJ, Kromhout D. Fish consumption and coronary heart disease mortality in Finland, Italy, and The Netherlands. Am J Epidemiol 2000; 151: 999–1006.PubMedCrossRefGoogle Scholar
  12. 12.
    Hooper L, Thompson RL, Harrison RA, Summerbell CD, Ness AR, Moore HJ, Worthington HV, Durrington PN, Higgins JPT, Capps NE, Riemersma RA, Ebrahim SBJ, Smith GD. Risks and benefits of omega-3 fats for mortality, cardiovascular disease, and cancer: systematic review. BMJ 2006; 332: 752–755.PubMedCrossRefGoogle Scholar
  13. 13.
    Hu FB, Bronner L, Willett WC, Stampfer MJ, Rexrode KM, Albert CM, Hunter D, Manson JE. Fish and omega-3 fatty acid intake and risk of coronary heart disease in women. JAMA 2002; 287: 1815–1821.PubMedCrossRefGoogle Scholar
  14. 14.
    Albert CM, Campos H, Stampfer MJ, Ridker PM, Manson JE, Willett WC, Ma J. Blood levels of long-chain n-3 fatty acids and the risk of sudden death. New Engl J Med 2002; 346: 1113–1118.PubMedCrossRefGoogle Scholar
  15. 15.
    Lemaitre RN, King IB, Mozaffarian D, Kuller LH, Tracy RP, Siscovick DS. N-3 Polyunsaturated fatty acids, fatal ischemic heart disease, and nonfatal myocardial infarction in older adults: the Cardiovascular Health Study. Am J Clin Nutr 2003; 77: 319–325.PubMedGoogle Scholar
  16. 16.
    Mozaffarian D, Lemaitre RN, Kuller LH, Burke GL, Tracy RP, Siscovick DS. Cardiac benefits of fish consumption may depend on the type of fish meal consumed: the Cardiovascular Health Study. Circulation 2003; 107: 1372–1377.PubMedCrossRefGoogle Scholar
  17. 17.
    Mozaffarian D, Ascherio A, Hu FB, Stampfer MJ, Willett WC, Siscovick DS, Rimm EB. Interplay between different polyunsaturated fatty acids and risk of coronary heart disease in men. Circulation 2005; 111: 157–164.PubMedCrossRefGoogle Scholar
  18. 18.
    Yokoyama M, Origasu H, Matsuzaki M et al. Effects of eicosapentaenoic acid (EPA) on major cardiovascular events in hypercholesterolemic patients: the Japan EPA Lipid Intervention Study (JELIS). Presented at: American Heart Association Scientific Sessions; Dallas, Tex, November 17, 2005.Google Scholar
  19. 19.
    Fraser GE, Sabate J, Beeson WL, Strahan TM. A possible protective effect of nut consumption on risk of coronary heart disease: the Adventist Health Study. Arch Intern Med 1992; 152: 1416–1424.PubMedCrossRefGoogle Scholar
  20. 20.
    Mann JI, Appleby PN, Key TJ, Thorogood M. Dietary determinants of ischaemic heart disease in health conscious individuals. Heart 1997; 78: 450–455.PubMedGoogle Scholar
  21. 21.
    Osler M, Andreasen AH, Hoidrup S. No inverse association between fish consumption and risk of death from all-causes, and incidence of coronary heart disease in middle-aged, Danish adults. J Clin Epidemiol 2003; 56: 274–279.PubMedCrossRefGoogle Scholar
  22. 22.
    Folsom AR, Demissie Z. Fish intake, marine omega-3 fatty acids, and mortality in a cohort of postmenopausal women. Am J Epidemiol 2004; 160: 1005–1010.PubMedCrossRefGoogle Scholar
  23. 23.
    Nakamura Y, Ueshima H, Okamura T, Kadowaki T, Hayakawa T, Kita Y, Tamaki S, Okayama A. Association between fish consumption and all-cause and cause-specific mortality in Japan: NIPPON DATA80, 1980–1999. Am J Med 2005; 118: 239–245.PubMedCrossRefGoogle Scholar
  24. 24.
    Iso H, Kobayashi M, Ishihara J, Sasaki S, Okada K, Kita Y, Kokubo Y, Tsugane S. Intake of fish and n-3 fatty acids and risk of coronary heart disease among Japanese: the Japan Public Health Center-Based (JPHC) Study Cohort I. Circulation 2006; 113: 195–202.PubMedCrossRefGoogle Scholar
  25. 25.
    Burr ML, Ashfield-Watt PA, Dunstan FD, Fehily AM, Breay P, Ashton T, Zotos PC, Haboubi NAA, Elwood PC. Lack of benefit of dietary advice to men with angina: results of a controlled trial. Eur J Clin Nutr 2003; 57: 193–200.PubMedCrossRefGoogle Scholar
  26. 26.
    Bang HO, Dyerberg J. Lipid metabolism and ischemic heart disease in Greenland Eskimos. In: Draper H, (ed.), Advances in Nutrition Research. New York, NY: Plenum Press, 1–22, 1980.Google Scholar
  27. 27.
    Leaf A, Kang JX, Xiao YF, Billman GE. Clinical prevention of sudden cardiac death by n-3 polyunsaturated fatty acids and mechanism of prevention of arrhythmias by n-3 fish oils. Circulation 2003; 107: 2646–2652.PubMedCrossRefGoogle Scholar
  28. 28.
    Harris WS. N-3 Fatty acids and serum lipoproteins: human studies. Am J Clin Nutr 1997; 65(suppl): 1645S–1654S.PubMedGoogle Scholar
  29. 29.
    Sacks FM, Katan M. Randomized clinical trials on the effects of dietary fat and carbohydrate on plasma lipoproteins and cardiovascular disease. Am J Med 2002; 113(suppl): 13S–24S.PubMedCrossRefGoogle Scholar
  30. 30.
    Geleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ. Blood pressure response to fish oil supplementation: meta-regression analysis of randomized trials. J Hypertens 2002; 20: 1493–1499.PubMedCrossRefGoogle Scholar
  31. 31.
    Knapp HR. Dietary fatty acids in human thrombosis and hemostasis. Am J Clin Nutr 1997; 65(suppl): 1687S–1698S.PubMedGoogle Scholar
  32. 32.
    Hornstra G. Influence of dietary fat type on arterial thrombosis tendency. J Nutr Health Aging 2001; 5: 160–166.PubMedGoogle Scholar
  33. 33.
    Harris WS, Rambjor GS, Windsor SL, Diederich D. N-3 Fatty acids and urinary excretion of nitric oxide metabolites in humans. Am J Clin Nutr 1997; 65: 459–464.PubMedGoogle Scholar
  34. 34.
    Goodfellow J, Bellamy MF, Ramsey MW, Jones CJ, Lewis MJ. Dietary supplementation with marine omega-3 fatty acids improve systemic large artery endothelial function in subjects with hypercholesterolemia. J Am Coll Cardiol 2000; 35: 265–270.PubMedCrossRefGoogle Scholar
  35. 35.
    Calder PC. Polyunsaturated fatty acids, inflammation, and immunity. Lipids 2001; 36: 1007–1024.PubMedCrossRefGoogle Scholar
  36. 36.
    Siscovick DS, Lemaitre RN, Mozaffarian D. The fish story: a diet-heart hypothesis with clinical implications: n-3 polyunsaturated fatty acids, myocardial vulnerability, and sudden death. Circulation 2003; 107: 2632–2634.PubMedCrossRefGoogle Scholar
  37. 37.
    Erkkila AT, Lichtenstein AH, Mozaffarian D, Herrington DM. Fish intake is associated with a reduced progression of coronary artery atherosclerosis in postmenopausal women with coronary artery disease. Am J Clin Nutr 2004; 80: 626–632.PubMedGoogle Scholar
  38. 38.
    He K, Song Y, Daviglus ML, Liu K, Van Horn L, Dyer AR, Goldbourt U, Greenland P. Fish consumption and incidence of stroke: a meta-analysis of cohort studies. Stroke 2004; 35: 1538–1542.PubMedCrossRefGoogle Scholar
  39. 39.
    Angerer P, Kothny W, Stork S, von Schacky C. Effect of dietary supplementation with omega-3 fatty acids on progression of atherosclerosis in carotid arteries. Cardiovasc Res 2002; 54: 183–190.PubMedCrossRefGoogle Scholar
  40. 40.
    Balk EM, Lichtenstein AH, Chung M, Kupelnick B, Chew P, Lau J. Effects of omega-3 fatty acids on coronary restenosis, intima-media thickness, and exercise tolerance: a systematic review. Atherosclerosis 2006; 184: 237–246.PubMedCrossRefGoogle Scholar
  41. 41.
    Leaf A, Albert CM, Josephson M, Steinhaus D, Kluger J, Kang JX, Cox B, Zhang H, Schoenfeld D. Prevention of fatal arrhythmias in high-risk subjects by fish oil n-3 fatty acid intake. Circulation 2005; 112: 2762–2768.PubMedCrossRefGoogle Scholar
  42. 42.
    Mozaffarian D, Psaty BM, Rimm EB, Lemaitre RN, Burke GL, Lyles MF, Lefkowitz D, Siscovick S. Fish intake and risk of incident atrial fibrillation. Circulation 2004; 110: 368–373.PubMedCrossRefGoogle Scholar
  43. 43.
    Frost L, Vestergaard P. N-3 Fatty acids consumed from fish and risk of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Clin Nutr 2005; 81: 50–54.PubMedGoogle Scholar
  44. 44.
    Mozaffarian D, Bryson CL, Lemaitre RN, Burke GL, Siscovick DS. Fish intake and risk of incident heart failure. J Am Coll Cardiol 2005; 45: 2015–2021.PubMedCrossRefGoogle Scholar
  45. 45.
    Mori TA, Beilin LJ. Omega-3 fatty acids and inflammation. Curr Atheroscler Rep 2004; 6: 461–467.PubMedCrossRefGoogle Scholar
  46. 46.
    Chin JP, Gust AP, Nestel PJ, Dart AM. Marine oils dose-dependently inhibit vasoconstriction of forearm resistance vessels in humans. Hypertension 1993; 21: 22–28.PubMedCrossRefGoogle Scholar
  47. 47.
    Geleijnse JM, Giltay EJ, Grobbee DE, Donders AR, Kok FJ. Blood pressure response to fish oil supplementation: meta-regression analysis of randomized trials. J Hypertens 2002; 20: 1493–1499.PubMedCrossRefGoogle Scholar
  48. 48.
    Mozaffarian D, Geelen A, Brouwer IA, Geleijnse JM, Zock PL, Katan MB. Effect of fish oil on heart rate in humans: a meta-analysis of randomized controlled trials. Circulation 2005; 112: 1945–1952.PubMedCrossRefGoogle Scholar
  49. 49.
    Nestel PJ. Fish oil and cardiovascular disease: lipids and arterial function. Am J Clin Nutr 2000; 71: 228S–2231S.PubMedGoogle Scholar
  50. 50.
    Kristensen SD, Iversen AM, Schmidt EB. n-3 polyunsaturated fatty acids and coronary thrombosis. Lipids 2001; 36(suppl): S79–S82.PubMedCrossRefGoogle Scholar
  51. 51.
    Clandinin MT, Cheema S, Field CJ, Garg ML, Venkatraman J, Clandinin TR. Dietary fat: exogenous determination of membrane structure and cell function. FASEB J 1991; 5: 2761–2769.PubMedGoogle Scholar
  52. 52.
    Feller SE, Gawrisch K. Properties of docosahexaenoic-acid-containing lipids and their influence on the function of rhodopsin. Curr Opin Struct Biol 2005; 15: 416–422.PubMedCrossRefGoogle Scholar
  53. 53.
    Vanden Heuvel JP. Diet, fatty acids, and regulation of genes important for heart disease. Curr Atheroscler Rep 2004; 6: 432–440.PubMedCrossRefGoogle Scholar
  54. 54.
    Anderson RN, Smith LB. Division of Vital Statistics, Centers for Disease Control and Prevention. National Vital Statistics Reports: deaths: leading causes for 2002. Accessed June 14, 2009.
  55. 55.
    Brox J, Olaussen K, Osterud B, Elvevoll EO, Bjornstad E, Brenn T, Brattebo G, Iversen H. A long-term seal- and cod-liver-oil supplementation in hypercholesterolemic subjects. Lipids 2001; 36: 7–13.PubMedCrossRefGoogle Scholar
  56. 56.
    Leaf A, Jorgensen MB, Jacobs AK, Cote G, Schoenfeld DA, Scheer J, Weiner BH, Slack JD, Kellett MA, Raizner AE, Weber PC, Mahrer PR, Rossouw JE. Do fish oils prevent restenosis after coronary angioplasty?. Circulation 1994; 90: 2248–2257.PubMedCrossRefGoogle Scholar
  57. 57.
    Lewin GA, Schachter HM, Yuen D, Merchant P, Mamaladze V, Tsertsvadze A. Agency for Healthcare Research and Quality (AHRQ). Effects of omega-3 fatty acids on child and maternal health. Evid Rep Technol Assess (Summ) 2005; 118: 1–11.Google Scholar
  58. 58.
    Uauy R, Mena P, Wegher B, Nieto S, Salem N Jr. Long chain polyunsaturated fatty acid formation in neonates: effect of gestational age and intrauterine growth. Pediatr Res 2004; 47: 127–135.CrossRefGoogle Scholar
  59. 59.
    McCann JC, Ames BN. Is docosahexaenoic acid, an n-3 long-chain polyunsaturated fatty acid, required for development of normal brain function? An overview of evidence from cognitive and behavioral tests in humans and animals. Am J Clin Nutr 2005; 82: 281–295.PubMedGoogle Scholar
  60. 60.
    Uauy R, Hoffman DR, Mena P, Llanos A, Birch EE. Term infant studies of DHA and ARA supplementation on neurodevelopment: results of randomized controlled trials. J Pediatr 2003; 143: S17–S25.PubMedGoogle Scholar
  61. 61.
    Simmer K. Long-chain polyunsaturated fatty acid supplementation in infants born at term. Cochrane Database Syst Rev 2001; 4: CD000376.PubMedGoogle Scholar
  62. 62.
    Cohen JT, Bellinger DC, Connor WE, Shaywitz BA. A quantitative analysis of prenatal intake of n-3 polyunsaturated fatty acids and cognitive development. Am J Prev Med 2005; 29: 366–374.PubMedCrossRefGoogle Scholar
  63. 63.
    Helland IB, Smith L, Saarem K, Saugstad OD, Drevon CA. Maternal supplementation with very long-chain n-3 fatty acids during pregnancy and lactation augments children’s IQ at 4 years of age. Pediatrics 2003; 111: e39–e44.PubMedCrossRefGoogle Scholar
  64. 64.
    Oken E, Wright RO, Kleinman KP, Bellinger D, Amarasiriwardena CJ, Hu H, Rich-Edwards JW, Gillman MW. Maternal fish consumption, hair mercury, and infant cognition in a US Cohort. Environ Health Persp 2005; 113: 1376–1380.CrossRefGoogle Scholar
  65. 65.
    Colombo J, Kannass KN, Shaddy DJ, Kundurthi S, Maikranz JM, Anderson CJ, Blaga OM, Carlson SE. Maternal DHA and the development of attention in infancy and toddlerhood. Child Dev 2004; 75: 1254–1267.PubMedCrossRefGoogle Scholar
  66. 66.
    Daniels JL, Longnecker MP, Rowland AS, Golding J. Fish intake during pregnancy and early cognitive development of offspring. Epidemiology 2004; 15: 394–402.PubMedCrossRefGoogle Scholar
  67. 67.
    Hites RA, Foran JA, Carpenter DO, Hamilton MC, Knuth BA, Schwager SJ. Global assessment of organic contaminants in farmed salmon. Science 2004; 303: 226–229.PubMedCrossRefGoogle Scholar
  68. 68.
    Hites RA, Foran JA, Schwager SJ, Knuth BA, Hamilton MC, Carpenter DO. Global assessment of polybrominated diphenyl ethers in farmed and wild salmon. Environ Sci Technol 2004; 38: 4945–4949.PubMedCrossRefGoogle Scholar
  69. 69.
    van Leeuwen SPJ, van Velzen MJM, Swart CP, van der Veen I, Traag WA, de Boer J. Halogenated contaminants in farmed salmon, trout, tilapia, pangasius, and shrimp. Environ Sci Technol 2009; 43: 4009–4015.PubMedCrossRefGoogle Scholar
  70. 70.
    Birnbaum LS, Staskal DF. Brominated flame retardants: Cause for concern?. Environ Health Persp 2004; 112: 9–17.CrossRefGoogle Scholar
  71. 71.
    Verbeke W, Sioen I, Pieniak Z, Van Camp J, De Henauw S. Consumer perception versus scientific evidence about health benefits and safety risks from fish consumption. Pub Health Nutr 2005; 8: 422–429.CrossRefGoogle Scholar
  72. 72.
    Jacobs M, Covaci A, Schepens P. Investigation of selected persistent organic pollutants in farmed Atlantic salmon (Salmo salar), salmon aquaculture feed, and fish oil components of the feed. Environ Sci Technol 2002; 36: 2797–2805.PubMedCrossRefGoogle Scholar
  73. 73.
    Jacobs MN, Covaci A, Gheorghe A, Schepens P. Time trend investigation of PCBs, OCPs and PBDEs in n-3 polyunsaturated fatty acid rich dietary fish oil and vegetable oil supplements, nutritional relevance for human essential n-3 fatty acid requirements. J Agric Food Chem 2004; 52: 1780–1788.PubMedCrossRefGoogle Scholar
  74. 74.
    Storelli MM, Storelli A, Marcotrigiano GO. Polychlorinated biphenyls, hexachlorobenzene, hexachlorocyclohexane isomers, and pesticide organochlorine residues in cod-liver oil dietary supplements. J Food Protect 2004; 67: 1787–1791.Google Scholar
  75. 75.
    US Environmental Protection Agency. Polychlorinated biphenyls (PCBs). Accessed June, 2009.
  76. 76.
    World Health Organization (WHO). Assessment of the health risk of dioxins: re-evaluation of the Tolerable Daily Intake (TDI). WHO Consultation; May 25–29, Geneva, Switzerland. 1998.Google Scholar
  77. 77.
    National Center for Environmental Assessment, US Environmental Protection Agency. PCBs: cancer dose-response assessment and application to environmental mixtures. Washington, DC: US Environmental Protection Agency; 1996.Google Scholar
  78. 78.
    Stewart PW, Reihman J, Lonky EI, Darvill TJ, Pagano J. Cognitive development in preschool children prenatally exposed to PCBs and MeHg. Neurotoxicol Teratol 2003; 25: 11–22.PubMedCrossRefGoogle Scholar
  79. 79.
    Schantz SL, Widholm JJ, Rice DC. Effects of PCB exposure on neuropsychological function in children. Environ Health Persp 2003; 111: 357–576.CrossRefGoogle Scholar
  80. 80.
    Nakajima S, Saijo Y, Kato S, Sasaki S, Uno K, Kanagami N, Hirakawa H, Hori T, Tobiishi K, Todaka T, Nakamura Y, Yanagiya S, Sengoku Y, Iida T, Sata F, Kishi R. Effects of prenatal exposure to polychlorinated biphenyls and dioxins on mental and motor development in Japanese children at 6 months of age. Environ Health Persp 2006; 114: 773–778.CrossRefGoogle Scholar
  81. 81.
    Van den Berg M, Birnbaum L, Bosveld ATC, Brunstrom B, Cook P, Feeley M, Giesy JP, Hanberg A, Hasegawa R, Kennedy SW, Kubiak T, Larsen JC, van Leeuwen FXR, Liem AKD, Nolt C, Peterson RE, Poellinger L, Safe S, Schrenk D, Tillitt D, Tysklind M, Younes M, Waern F, Zacharewski T. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environ Health Persp 1998; 106: 775–792.CrossRefGoogle Scholar
  82. 82.
    Jacobs MN, Santillo D, Johnston PA, Wyatt CL, French MC. Organochlorine residues in fish oil dietary supplements: comparison with industrial grade oils. Chemosphere 1998; 37: 1709–1721.PubMedCrossRefGoogle Scholar
  83. 83.
    Hasegawa J, Guruge KS, Seike N, Shirai Y, Yamata T, Nakamura M, Handa H, Yamanaka N, Miyazaki S. Determination of PCDD/Fs and dioxin-like PCBs in fish oils for feed ingredients by congener-specific chemical analysis and CALUX bioassay. Chemosphere 2007; 69: 1188–1194.PubMedCrossRefGoogle Scholar
  84. 84.
    Shim SM, Santerre CR, Burgess JR, Deardoff DC. Omega-3 fatty acids and total polychlorinated biphenyls in 26 dietary supplements. J Food Sci 2003; 68: 2436–2440.CrossRefGoogle Scholar
  85. 85.
    Covaci A, Voorspoels S, Wyckmans J, Gelbin A, Neels H. Anthropogenic and natural organohalogenated compounds in fish oil dietary supplements from various countries. Organohalogen Compd 2006; 68: 5–8.Google Scholar
  86. 86.
    Rawn DFK, Breakell K, Verigin V, Nicolidakis H, Sit D, Feeley M. Persistent organic pollutants in fish oil supplements on the Canadian market: Polychlorinated biphenyls and organochlorine insecticides. J Food Sci 2008; 74: T14–T19.CrossRefGoogle Scholar
  87. 87.
    Akutsu K, Tanaka Y, Hayakawa K. Occurrence of polybrominated diphenyl ethers and polychlorinated biphenyls in shark liver oil supplements. Food Addit Contam 2006; 23: 1323–1329.PubMedCrossRefGoogle Scholar
  88. 88.
    Zennegg M, Schmid P. PCDD/F, PCB, dioxin-like PCB and PBDE in fish oil used as dietary supplement in Switzerland. Organohalogen Compd 2006; 68: 1967–1971.Google Scholar
  89. 89.
    Fernandes AR, Rose M, White S, Mortimer DN, Gem M. Dioxins and polychlorinated biphenyls (PCBs) in fish oil dietary supplements: Occurrence and human exposure in the UK. Food Addit Contam 2006; 23: 939–947.PubMedCrossRefGoogle Scholar
  90. 90.
    Nevado JJB, Martín-Doimeadiós RCR, Bernardo FJG, Fariñas NR. Development and validation of an analytical methodology for the determination of p,p′-DDT, p,p′-DDE and p,p′-DDD in fish oil pills. Microchem J 2007; 86: 183–188.CrossRefGoogle Scholar
  91. 91.
    Rehnmark M, Rehnmark S, Henkelmann B, Kotalik J, Bernhöft S, Pandelova M, Schramm KW. Omega-3 health products; the health beneficial effects of certain oils may be compromised by contaminating chemical pollutants. Organohalogen Compd 2008; 70: 1966–1969.Google Scholar
  92. 92.
    US EPA (Environmental Protection Agency). An inventory of sources and environmental releases of dioxin-like compounds in the United States for the years 1987, 1995, and 2000. National Center for Environmental Assessment, Washington, DC; EPA/600/P-03/002F. (, 2006.
  93. 93.
    Devito MJ, Birnbaum LS, Farland WH, Gasiewicz TA. Comparisons of estimated human body burdens of dioxin-like chemicals and TCDD body burdens in experimentally exposed animals. Environ Health Persp 1995; 103: 820–831.CrossRefGoogle Scholar
  94. 94.
    Ishimura R, Kawakmi T, Ohsako S, Tohyama C. Dioxin-induced toxicity on vascular remodeling of the placenta. Biochem Pharmacol 2009; 77: SI660–SI669.CrossRefGoogle Scholar
  95. 95.
    Environmental Health Criteria 9: DDT and its derivatives, World Health Organization, 1979.Google Scholar
  96. 96.
    Darnerud PO. Toxic effects of brominated flame retardants in man and in wildlife. Environ Int 2003; 29: 841–853.PubMedCrossRefGoogle Scholar
  97. 97.
    Legler J, Brouwer A. Are brominated flame retardants endocrine disruptors?. Environ Int 2003; 29: 879–885.PubMedCrossRefGoogle Scholar
  98. 98.
    Bromine Science and Environmental Forum (BSEF). Website: Last accessed June 14, 2009.
  99. 99.
    Law RJ, Allchin CR, de Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, de Wit CA. Levels and trends of brominated flame retardants in the European environment. Chemosphere 2006; 64: 187–208.PubMedCrossRefGoogle Scholar
  100. 100.
    Covaci A, Voorspoels S, Vetter W, Gelbin A, Jorens PG, Blust R, Neels H. Anthropogenic and naturally-produced brominated compounds in fish oil dietary supplements. Environ Sci Technol 2007; 41: 5237–5244.PubMedCrossRefGoogle Scholar
  101. 101.
    Kakimoto K, Akutsu K, Konishi Y, Tanaka Y. Evaluation of hexabromocyclododecane in fish and marine mammal oil supplements. Food Chem 2008; 107: 1724–1727.CrossRefGoogle Scholar
  102. 102.
    Roosens L, Dirtu A, Goemans G, Belpaire C, Gheorghe A, Neels H, Blust R, Covaci A. Brominated flame retardants and organochlorine contaminants in fish samples along Scheldt River, Belgium. Environ Int 2008; 34: 976–983.PubMedCrossRefGoogle Scholar
  103. 103.
    Wiener JG, Krabbenhoft DP, Heinz GH, Scheuhammer AM. Ecotoxicology of mercury. Chapter 16 In: Hoffman, DJ, Rattner, BA, Burton, GA Jr., Cairns, J Jr., eds., Handbook of Ecotoxicology. 2nd edn. Boca Raton, Florida: CRC Press, 409–463, 2003.Google Scholar
  104. 104.
    Guallar E, Sanz-Gallardo MI, van’t Veer P, Bode P, Aro A, Gomez-Aracena J, Kark JD, Riemersma RA, Martin-Moreno JM, Kok FJ. Heavy metals and myocardial infarction study group. Mercury, fish oils, and the risk of myocardial infarction. New Engl J Med 2002; 347: 1747–1754.PubMedCrossRefGoogle Scholar
  105. 105.
    Hagele TJ, Mazerik JN, Gregory A, Kaufman B, Magalang U, Kuppusamy ML. Mercury activates vascular endothelial cell phospholipase D through thiols and oxidative stress. Int J Toxicol 2007; 26: 57–69.PubMedCrossRefGoogle Scholar
  106. 106.
    Mazerik JN, Hagele T, Sherwani S, Ciapala V, Butler S, Kuppusamy ML, Hunter M, Kuppusamy P, Marsh CB, Parinandi NL. Phospholipase A2 activation regulates cytotoxicity of methyl-mercury in vascular endothelial cells. Int J Toxicol 2007; 26: 553–569.PubMedCrossRefGoogle Scholar
  107. 107.
    Ginsberg GL, Toal BF. Quantitative approach for incorporating methyl-mercury risks and omega-3 fatty acid benefits in developing species-specific fish consumption advice. Environ Health Persp 2009; 117: 267–275.Google Scholar
  108. 108.
    Burguera JL, Quintan IA, Salager JL, Burguera M, Rondón C, Carrero P, Anton de Salager R, Petit de Peña Y. The use of emulsions for the determination of methylmercury and inorganic mercury in fish-eggs oil by cold vapor generation in a flow injection system with atomic absorption spectrometric detection. Analyst 1999; 124: 593–599.PubMedCrossRefGoogle Scholar
  109. 109.
    Levine KE, Levine MA, Weber FX, Hu Y, Perlmutter J, Grohse PM. Determination of mercury in an assortment of dietary supplements using an inexpensive combustion atomic absorption spectrometry technique. J Autom Method Manag 2005; 4: 211–216.CrossRefGoogle Scholar
  110. 110.
    Melcher J, Olbrich D, Marsh G, Nikiforov V, Gaus C, Gaul S, Vetter W. Tetra- and tribromophenoxyanisoles in marine samples from Oceania. Environ Sci Technol 2005; 39: 7784–7789.PubMedCrossRefGoogle Scholar
  111. 111.
    Teuten EL, Xu L, Reddy CM. Two abundant bioaccumulated halogenated compounds are natural products. Science 2005; 307: 917–920.PubMedCrossRefGoogle Scholar
  112. 112.
    Malmvarn A, Marsh G, Kautsky L, Athanasiadou M, Bergman Å, Asplund L. Hydroxylated and methoxylated brominated diphenyl ethers in the red algae (Ceramium tenuicorne) and blue mussels from the Baltic Sea. Environ Sci Technol 2005; 39: 2990–2997.PubMedCrossRefGoogle Scholar
  113. 113.
    Hiebl J, Melcher J, Gundersen H, Schlabach M, Vetter W. Identification and quantification of polybrominated hexahydroxanthene derivatives and other halogenated natural products in commercial fish and other marine samples. J Agric Food Chem 2006; 54: 2652–2657.PubMedCrossRefGoogle Scholar
  114. 114.
    Melcher J, Janussen D, Garson MJ, Hiebl J, Vetter W. Polybrominated hexahydroxanthene derivatives (PBHDs) and other halogenated natural products from the Mediterranean sponge (Scalarispongia scalaris) in marine biota. Arch Environ Contam Toxicol 2007; 52: 512–518.PubMedCrossRefGoogle Scholar
  115. 115.
    Titlemier SA. Dietary exposure to a group of naturally-produced organohalogens (halogenated dimethyl bipyrroles) via consumption of fish and seafood. J Agric Food Chem 2004; 52: 2010–2015.CrossRefGoogle Scholar
  116. 116.
    Haraguchi K, Hisamichi Y, Endo T. Bioaccumulation of naturally-occurring mixed halogenated dimethylbipyrroles in whale and dolphin products on the Japanese market. Arch Environ Contam Toxicol 2006; 51: 135–141.PubMedCrossRefGoogle Scholar
  117. 117.
    Sinkkonen S, Rantalainen AL, Paasivirta J, Lahtipera M. Polybrominated methoxy diphenyl ethers (MeO-PBDEs) in fish and guillemot of Baltic, Atlantic and Arctic environments. Chemosphere 2004; 56: 767–775.PubMedCrossRefGoogle Scholar
  118. 118.
    Marsh G, Athanasiadou M, Bergman A, Asplund L. Identification of hydroxylated and methoxylated polybrominated diphenyl ethers in Baltic Sea salmon (Salmo salar) blood. Environ Sci Technol 2004; 38: 10–18.PubMedCrossRefGoogle Scholar
  119. 119.
    Vetter W, von der Recke R, Herzke D, Nygard T. Natural and man-made organobromine compounds in marine biota from Central Norway. Environ Int 2006; 33: 17–26.PubMedCrossRefGoogle Scholar
  120. 120.
    Reddy CM, Xu L, O’Neill GW, Nelson RK, Eglinton TI, Faulkner DJ, Fenical W, Norstrom RJ, Ross P, Tittlemier SA. Radiocarbon evidence for a naturally-produced, bioaccumulating halogenated organic compound. Environ Sci Technol 2004; 38: 1992–1997.PubMedCrossRefGoogle Scholar
  121. 121.
    Reddy CM, Xu L, Eglinton TI, Boon JP, Faulkner DJ. Radiocarbon content of synthetic and natural semi-volatile halogenated organic compounds. Environ Pollut 2002; 120: 163–168.PubMedCrossRefGoogle Scholar
  122. 122.
    Tittlemier SA, Borrell A, Duffe J, Duignan PJ, Hall A, Hoekstra P, Kovacs K, Krahn MM, Lebeuf M, Lydersen C, Fair P, Muir D, O’Hara TM, Olsson M, Pranschke JL, Ross P, Stern GA, Tanabe S, Norstrom RJ. Global distribution of halogenated dimethyl bipyrroles in marine mammal blubber. Arch Environ Contam Toxicol 2002; 43: 244–255.PubMedCrossRefGoogle Scholar
  123. 123.
    Tittlemier SA, Simon M, Jarman WM, Elliott JE, Norstrom RJ. Identification of a novel C10H6N2Br4Cl2 heterocyclic compound in seabird eggs. A bioaccumulating marine natural product?. Environ Sci Technol 1999; 33: 26–33.CrossRefGoogle Scholar
  124. 124.
    Bakker MI, De Winter-Sorkina R, De Mul A, Boon PE, Van Donkersgoed G, Van Klaveren JD, Baumann BA, Hijman WC, Van Leeuwen SPJ, de Boer J, Zeilmaker MJ. Dietary intake of polybrominated diphenyl ethers in The Netherlands. Organohalogen Compd 2006; 68: 387–390.Google Scholar
  125. 125.
    Bocio A, Llobet JM, Domingo JL, Corbella J, Teixido A, Casas C. Polybrominated diphenyl ethers (PBDEs) in foodstuffs: Human exposure through the diet. J Agric Food Chem 2003; 51: 3191–3195.PubMedCrossRefGoogle Scholar
  126. 126.
    Darnerud PO, Atuma S, Aune M, Bjerselius R, Glynn A, Petersson Grawé K, Becker W. Dietary intake estimations of organohalogen contaminants (dioxins, PCB, PBDE and chlorinated pesticides, e.g. DDT) based on Swedish market basket data. Food Chem Toxicol 2006; 44: 1597–1606.PubMedCrossRefGoogle Scholar
  127. 127.
    Darnerud PO, Eriksen GS, Johannesson T, Larsen PB, Viluksela M. Polybrominated diphenyl ethers: Occurrence, dietary exposure, and toxicology. Environ Health Persp 2001; 109(Suppl 1): 49–68.CrossRefGoogle Scholar
  128. 128.
    Domingo JL. Human exposure to polybrominated diphenyl ethers through the diet. J Chromatogr A 2004; 1054: 321–326.PubMedCrossRefGoogle Scholar
  129. 129.
    Harrad S, Wijesekera R, Hunter S, Halliwell C, Baker R. Preliminary assessment of UK human dietary and inhalation exposure to polybrominated diphenyl ethers. Environ Sci Technol 2004; 38: 2345–2350.PubMedCrossRefGoogle Scholar
  130. 130.
    Kiviranta H, Ovaskainen ML, Vartiainen T. Market basket study on dietary intake of PCDD/Fs, PCBs, and PBDEs in Finland. Environ Int 2004; 30: 923–932.PubMedCrossRefGoogle Scholar
  131. 131.
    Lind Y, Aune M, Atuma S, Becker W, Bjerselius R, Glynn A, Darnerud PO. Food intake of the polybrominated flame retardants PBDEs and HBCD in Sweden. Organohalogen Compd 2002; 58: 181–184.Google Scholar
  132. 132.
    Nakagawa R, Ashizuka Y, Hori T, Tobiishi K, Yasutake D, Sasaki K. Determination of brominated flame retardants in fish and market basket food samples of Japan. Organohalogen Compd 2005; 67:498–501.Google Scholar
  133. 133.
    Ryan JJ, Patry B. Body burdens and food exposure in Canada for polybrominated diphenyl ethers (PBDEs). Organohalogen Compd 2001; 51: 226–229.Google Scholar
  134. 134.
    Schecter A, Päpke O, Harris TR, Tung KC, Musumba A, Olson J, Birnbaum L. Polybrominated diphenyl ether (PBDE) levels in an expanded market basket survey of US food and estimated PBDE dietary intake by age and sex. Environ Health Persp 2006; 114: 1515–1520.CrossRefGoogle Scholar
  135. 135.
    Voorspoels S, Covaci A, Neels H. Dietary PBDE intake: A market-basket study in Belgium. Environ Int 2007; 33: 93–97.PubMedCrossRefGoogle Scholar
  136. 136.
    Zennegg M, Kohler M, Gerecke AC, Schmid P. Polybrominated diphenyl ethers in whitefish from Swiss lakes and farmed rainbow trout. Chemosphere 2003; 51: 545–553.PubMedCrossRefGoogle Scholar
  137. 137.
    Akutsu K, Takatori S, Nakazawa H, Hayakawa K, Izumi S, Makino T. Dietary intake estimations of polybrominated diphenyl ethers (PBDEs) based on a total diet study in Osaka, Japan. Food Addit Contam Part B Surveillance 2008; 1: 58–68.CrossRefGoogle Scholar
  138. 138.
    Harrad S, Wang Y, Sandaradura S, Leeds A. Human dietary intake and excretion of dioxin-like compounds. J Environ Monit 2003; 5: 224–229.PubMedCrossRefGoogle Scholar
  139. 139.
    Turrio-Baldassari L, di Domenico A, Fulgenzi A, Iacovella N, La Rocca C. Dietary intake of PCBs in the Italian population. Organohalogen Compd 1998; 38: 195–198.Google Scholar
  140. 140.
    Koizumi A, Yoshinaga T, Harada K, Inoue K, Morikawa A, Muroi J, Inoue S, Eslami B, Fujii S, Fujimine Y, Hachiya N, Koda S, Kusaka Y, Murata K, Nakatsuka H, Omae K, Saito N, Shimbo S, Takenaka K, Takeshita T, Todoriki H, Wada Y, Watanabe T, Ikeda M. Assessment of human exposure to polychlorinated biphenyls and polybrominated diphenyl ethers in Japan using archived samples from the early 1980s and mid-1990s. Environ Res 2005; 99: 31–41.PubMedCrossRefGoogle Scholar
  141. 141.
    Zuccato E, Calvarese S, Mariani G, Mangiapan S, Grasso P, Guzzi A, Fanelli R. Levels, sources and toxicity of polychlorinated biphenyls in the Italian diet. Chemosphere 1999; 38: 2753–2760.PubMedCrossRefGoogle Scholar
  142. 142.
    Wilhelm M, Schrey P, Wittsiepe J, Heinzow B. Dietary intake of persistent organic pollutants (POPs) by German children using duplicate portion sampling. Intern J Hyg Environ Health 2002; 204: 359–371.CrossRefGoogle Scholar
  143. 143.
    Llobet JM, Bocio A, Domingo JL, Teixido A, Casas C, Muller L. Levels of polychlorinated biphenyls in foods from Catalonia, Spain: Estimated dietary intake. J Food Protect 2003; 66: 479–484.Google Scholar
  144. 144.
    Kiviranta H, Ovaskainenn MAL, Vartiainen T. Market basket study on dietary intake of PCDD/Fs, PCBs, and PBDEs in Finland. Environ Int 2004; 30: 923–932.PubMedCrossRefGoogle Scholar
  145. 145.
    Usydus Z, Szlinder-Richert J, Polak-Jusuzak L, Malesa-Ciecwierz M, Dobrzanski Z. Study on the raw fish oil purification from PCDD/F and dl-PCB-industrial tests. Chemosphere 2009; 74: 1495–1501.PubMedCrossRefGoogle Scholar
  146. 146.
    Hilbert G, Lillemark L, Balchen S, Højskov CS. Reduction of organochlorine contaminants from fish oil during refining. Chemosphere 1998; 37: 1241–1252.PubMedCrossRefGoogle Scholar
  147. 147.
    Maes J, De Meulenaer B, Van Heerswynghels P, De Greyt W, Eppe G, De Pauw E, Huyghebaert A. Removal of dioxins and PCB from fish oil by activated carbon and its influence on the nutritional quality of the oil. J Am Oil Chem Soc 2005; 82: 593–597.CrossRefGoogle Scholar
  148. 148.
    Kawashima A, Iwakiri R, Honda K. Experimental study on the removal of dioxins and coplanar polychlorinated biphenyls (PCBs) from fish oil. J Agric Food Chem 2006; 54: 10294–10299.PubMedCrossRefGoogle Scholar
  149. 149.
    Oterhals Å, Solvang M, Nortvedt R, Berntssen MHG. Optimization of activated carbon-based decontamination of fish oil by response surface methodology. Eur J Lipid Sci Technol 2007; 109: 691–705.CrossRefGoogle Scholar
  150. 150.
    Kawashima A, Watanabe S, Iwakiri R,, Honda K. Removal of dioxins and dioxin-like PCBs from fish oil by countercurrent supercritical CO2 extraction and activated carbon treatment. Chemosphere 2009; 75: 788–794.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Pharmaceutical Sciences, Toxicological CenterUniversity of AntwerpAntwerpBelgium
  2. 2.Department of Chemistry“Al. I. Cuza” University of IasiIasiRomania

Personalised recommendations