Skip to main content

Dietary Supplements, Cholesterol and Cardiovascular Disease

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Key Points

• Cholesterol-lowering nutraceuticals and functional foods play an important role in reducing the risk of coronary heart disease by improving the plasma lipoprotein profile.

• Hypertriglyceridemia, low high-density lipoprotein (HDL) cholesterol levels, a preponderance of small, dense LDL particles, and an accumulation of cholesterol-rich remnant particles—emerged as the greatest “competitor” of LDL cholesterol among lipid risk factors for cardiovascular disease.

• Plant-derived nutraceuticals exhibit varied lipid-lowering effects due to the presence of a number of bioactive compounds which vary with individual nutraceuticals and functional foods.

• Future studies could profitably focus on the interaction of the active ingredients with the expression of the genes involved in cholesterol metabolism and the synergistic effects of nutraceuticals on the regulation of blood cholesterol at more than one metabolic site and tested to develop effective cholesterol-lowering functional foods and further translated to the human needs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Khot UN, Khot MB, Bajzer CT et al. Prevalence of conventional risk factors in patients with coronary heart disease. JAMA 2003; 290: 898–904.

    Article  PubMed  Google Scholar 

  2. Stampfer MJ, Hu FB, Manson JE, Rimm EB, Willett WC. Primary prevention of coronary heart disease in women through diet and lifestyle. N Engl J Med 2000; 343: 16–17.

    Article  PubMed  CAS  Google Scholar 

  3. Kris-Etherton PM, Etherton TD, Carlson J, Gardner C. Recent discoveries in inclusive food-based approaches and dietary patterns for reduction in risk for cardiovascular disease. Curr Opin Lipidol 2002; 13: 397–407.

    Article  PubMed  CAS  Google Scholar 

  4. Lichtenstein AH, Appel LJ, Brands M. Diet and lifestyle recommendations revision 2006: a scientific statement from the American heart association nutrition committee. Circulation 2006; 114: 82–96.

    Article  PubMed  Google Scholar 

  5. Castelli WP, Anderson K, Wilson PW, Levy D. Lipids and risk of coronary heart disease: the Framingham Study. Ann Epidemiol 1992; 2: 23–27.

    Article  PubMed  CAS  Google Scholar 

  6. CDC, Trends in cholesterol screening and awareness of high blood cholesterol United States, 1991s2003. Morbidity Mortality Weekly Rep. 2005; 54: 865–870.

    Google Scholar 

  7. Wang LD. Survey on Dietary and Nutritional Status of Chinese Population. Beijing, China: People’s Medical Publishing House, 60–65. (in Chinese). 2005.

    Google Scholar 

  8. Walker R. Hyperlipidaemia. In: Walter, R, Edwards, C, (eds.), Clinical Pharmacy and Therapeutics. New York: Churchill Livingstone, 309–325, 1994.

    Google Scholar 

  9. Nachimuthu S, Raggi P. Novel agents to manage dyslipidemias and impact atherosclerosis. Cardiovasc Hematol Disord Drug Targets 2006; 6(3): 209–217.

    Article  PubMed  CAS  Google Scholar 

  10. Largis EE, Wang CH, DeVries VG, Schaffer SA. CL 277,082: a novel inhibitor of ACAT-catalyzed cholesterol esterification and cholesterol absorption. J Lipid Res 1989; 30: 681–690.

    PubMed  CAS  Google Scholar 

  11. Drevon CA, Engelhorn SC, Steinberg D. Secretion of very low density lipoproteins enriched in cholesteryl esters by cultured hepatocytes during stimulation of intracellular cholesterol esterification. J Lipid Res 1980; 21: 1065–1067.

    PubMed  CAS  Google Scholar 

  12. Harchaoui EI, van der Steeg WA, Stroes ES, Kastelein JJ. The role of CETP inhibition in dyslipidemia. Curr Atheroscler Rep 2007; 9: 125–129.

    Article  PubMed  Google Scholar 

  13. Staels B, Dallongeville J, Auwerx. J. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998; 98: 2088–2093.

    Article  PubMed  CAS  Google Scholar 

  14. Ferre P. The biology of peroxisome proliferator-activated receptors: relationship with lipid metabolism and insulin sensitivity. Diabetes Suppl 2004; 1: 43–50.

    Article  Google Scholar 

  15. Steinberg D. Role of oxidized LDL and antioxidants in atherosclerosis. Adv Exp Med Biol 1995; 369: 39–49.

    Article  PubMed  CAS  Google Scholar 

  16. Ross R. Cell biology of atherosclerosis. Annu Rev Physiol 1995; 57: 791–804.

    Article  PubMed  CAS  Google Scholar 

  17. Parthasarathy S, Steinberg D et al. The role of oxidized low-density lipoproteins in the pathogenesis of atherosclerosis. Annu Rev Med 1992; 43: 219–225.

    Article  PubMed  CAS  Google Scholar 

  18. Recinos A, Jrd B, Carr K et al. Liver gene expression associated with diet and lesion development in atherosclerosis-prone mice: induction of components of alternative complement pathway. Physiol Genomics 2004; 19(1): 131–142.

    Article  PubMed  CAS  Google Scholar 

  19. Seo D, Wang T et al. Gene expression phenotypes of atherosclerosis. Arterioscler Thromb Vasc Biol 2004; 24(10): 1922–1927.

    Article  PubMed  CAS  Google Scholar 

  20. Cave AC, Brewer AC et al. NADPH oxidases in cardiovascular health and disease. Antioxid Redox Signal 2006; 8(5–6): 691–728.

    Article  PubMed  CAS  Google Scholar 

  21. Keaney JF Jr. Oxidative stress and the vascular wall: NADPH oxidases take center stage. Circulation 2005; 112(17): 2585–2588.

    Article  PubMed  Google Scholar 

  22. Stokes KY, Russell JM et al. Platelet-associated NAD(P)H oxidase contributes to the thrombogenic phenotype induced by hypercholesterolemia. Free Radic Biol Med 2007; 43(1): 22–29.

    Article  PubMed  CAS  Google Scholar 

  23. Sen CK, Packer L. Antioxidant and redox regulation of gene transcription. Faseb J 1996; 10(7): 709–720.

    PubMed  CAS  Google Scholar 

  24. Podrez EA, Febbraio M et al. Macrophage scavenger receptor CD36 is the major receptor for LDL modified by monocyte-generated reactive nitrogen species. J Clin Invest 2000; 105(8): 1095–1108.

    Article  PubMed  CAS  Google Scholar 

  25. Chen XP, Xun KL et al. Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells: role of reactive oxygen species. Vascul Pharmacol 2007; 47(1): 1–9.

    Article  PubMed  CAS  Google Scholar 

  26. Tabas I. Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler Thromb Vasc Biol 2005; 25(11): 2255–2264.

    Article  PubMed  CAS  Google Scholar 

  27. David JA Jenkins, Cyril WC Kendall, Dorothea A Faulkner et al. Assessment of the longer-term effects of a dietary portfolio of chosterol – lowering foods in hyperchosterolemia. Am J Clin Nutr 2006; 83: 582–591.

    Google Scholar 

  28. de Lorgeril M, Salen P. The mediterranean diet: rationale and evidence for its benefit. Curr Atheroscler Rep 2008 Dec; 10(6): 518–522.

    Article  PubMed  Google Scholar 

  29. Kitts DD. Bioactive substances in food: identification and potential uses. Can J Physiol Pharmacol 1994; 72: 423–434.

    Article  PubMed  CAS  Google Scholar 

  30. Penny M Kris-Etherton et al. Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 2002; 113: 71S–88S.

    Google Scholar 

  31. Bravo L. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 1998; 56: 317–333.

    Article  PubMed  CAS  Google Scholar 

  32. Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 1993; 342: 1007–1011.

    Article  PubMed  CAS  Google Scholar 

  33. Hertog MGL, Kromhout D, Aravanis C et al. Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 1995; 155: 381–386.

    Article  PubMed  CAS  Google Scholar 

  34. Knekt P, Jarvinen R, Reunanen A, Maatela J. Flavonoid intake and coronary mortality in Finland: a cohort study. BMJ 1996; 312: 478–481.

    Article  PubMed  CAS  Google Scholar 

  35. Yochum L, Kushi LH, Meyer K, Folsom AR. Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemio 1999; 149: 943–947.

    Article  CAS  Google Scholar 

  36. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 1993; 341: 454–457.

    Article  PubMed  CAS  Google Scholar 

  37. Dwyer JT, Goldin BR, Saul N, Gaultieri L, Bakarat S, Adlercreutz H. Tofu and soy drinks contain phytoestrogens. J Am Diet Assoc 1994; 94: 739–743.

    Article  PubMed  CAS  Google Scholar 

  38. Kuhn DJ, Burns AC, Kazi A, Dou QP. Direct inhibition of the ubiquitin-proteasome pathway by ester bond-containing green tea polyphenols is associated with increased expression of sterol regulatory element-binding protein 2 and LDL receptor. Biochim. Biophys. Acta 2004; 1682: 1–10.

    Article  PubMed  CAS  Google Scholar 

  39. Bursill C, Roach PD, Bottema CD, Pal S. Green tea upregulates the low-density lipoprotein receptor through the sterol-regulated element binding protein in HepG2 liver cell. J Agric Food Chem 2001; 49: 5639–5645.

    Article  PubMed  CAS  Google Scholar 

  40. Bursill CA, Roach PD. Modulation of cholesterol metabolism by the green tea polyphenol (–)-epigallocatechin gallate in cultured human liver (HepG2) cells. J Agric Food Chem 2006; 54: 1621–1626.

    Article  PubMed  CAS  Google Scholar 

  41. Bursill CA, Roach PD. A green tea catechin extract upregulates the hepatic low-density lipoprotein receptor in rats. Lipids 2007; 42: 621–627.

    Article  PubMed  CAS  Google Scholar 

  42. Bursill CA, Abbey M, Roach PD. A green tea extract lowers plasma cholesterol by inhibiting cholesterol synthesis and upregulation the LDL receptor in the cholesterol-fed rabbits. Atherosclerosis 2007; 193: 86–88.

    Article  PubMed  CAS  Google Scholar 

  43. Chan PT, Fong WP, Huang Y, Ho WKK, Chen ZY. Jasmine green tea epicatechins are hypolipidemic in hamster (Mesocricetus auratus) fed a high fat diet. J Nutr 1999; 129: 1094–1098.

    PubMed  CAS  Google Scholar 

  44. Yang TT, Koo MW. Chinese green tea lowers cholesterol level through an increase in fecal lipid excretion. Life Sci 2000; 66: 411–413.

    Article  PubMed  CAS  Google Scholar 

  45. Kono S, Shinchi K, Ikeda N, Yanai F, Imanishi K. Green tea consumption and serum lipid profiles: a cross-sectional study in northern Kyushu. Jpn Prev Med 1992; 21: 526–531.

    Article  CAS  Google Scholar 

  46. Stensvold I, Tverdal A, Solvoll K, Fosso P. Tea consumption: relationship to cholesterol, blood pressure, and coronary and total mortality. PreV Med 1992; 21: 546–548.

    Article  PubMed  CAS  Google Scholar 

  47. Maron DJ, Lu GP, Cai NS, Wu ZG, Li YH, Chen H, Zhu JQ, Jin XJ, Wouters BC, Zhao J. Cholesterol lowering effect of a theaflavin-enriched green tea extract: a randomized controlled trial. Arch Intern Med 2003; 163: 1448–1453.

    Article  PubMed  CAS  Google Scholar 

  48. Unno T, Tago M, Suzuki Y, Nozawa A, Sagesaka YM, Kakuda T, Egawa K, Kondo K. Effect of tea catechins on postprandial plasma lipid responses in human subjects. Br J Nutr 2005; 93: 543–545.

    Article  PubMed  CAS  Google Scholar 

  49. Tsobono Y, Tsugane S. Green tea intake in relation to serum lipid level in middle-aged Japanese men and women. Ann Epidemiol 1997; 7: 280–285.

    Article  Google Scholar 

  50. Samarajit Das, Hannah R Vasanthi, Dipak K Das. Function and Biochemistry of Resveratrol – Plant Phenolics and Human Health: Biochemistry, Nutrition and Pharmacology; John Wiley & Sons, Inc. 299–331, 2009.

    Google Scholar 

  51. Frankel EN, Kanner J, German JB, Parks E, Kinsella JE. Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine. Lancet 1993; 341: 454–457.

    Article  PubMed  CAS  Google Scholar 

  52. Morel-Salmi C, Souquet JM, Bes M, Cheynier V. Effect of flash release treatment on phenolic extraction and wine composition. J Agric Food Chem 2006; 54: 4270–4277.

    Article  PubMed  CAS  Google Scholar 

  53. de Gaetano G, Castelnuovo AD, Donati MB, Lacoviello L. The Mediterranean lecture: wine and thrombosis from epidemiology to physiology and back. Pathophysiol Haemost Thromb 2003/2004; 33: 466–471.

    Google Scholar 

  54. Tebib K, Besancon P, Rouanet JM. Dietary grape seed tannins affect lipoproteins, lipoprotein lipases and tissue lipids in rats fed hypercholesterolemic diets. J Nutr 1994; 124: 2451–2458.

    PubMed  CAS  Google Scholar 

  55. Auger C, Caporiccio B, Landrault N, Teissedre PL, Laurent C, Cros G, Besancon P, Rouanet JM. Red wine phenolic compounds reduce plasma lipids and apolipoprotein B and prevent early aortic atherosclerosis in hypercholesterolemic Golden Syrian hamsters (Mesocricetus auratus). J Nutr 2002; 132: 1207–1213.

    PubMed  CAS  Google Scholar 

  56. Frederiksen H, Mortensen A, Schrøder M, Frandsen H, Bysted A, Knuthsen P, Rasmussen SE. Effects of red grape skin and seed extract supplementation on atherosclerosis in Watanabe heritable hyperlipidemic rabbits. Mol Nutr Food Res 2007; 51: 564–568.

    Article  PubMed  CAS  Google Scholar 

  57. Zern TL, West KL, Fernandez ML. Grape polyphenols decrease plasma triglycerides and cholesterol accumulation in the aorta of ovariectomized guinea pigs. J Nutr 2003; 133: 2268–2272.

    PubMed  CAS  Google Scholar 

  58. Zern TL, Wood RJ, Greene C, West KL, Liu YZ, Aggarwal D, Shachter NS, Fernandez ML. Grape polyphenols exert a cardioprotective effect in pre- and postmenopausal women by lowering plasma lipids and reducing oxidative stress. J Nutr 2005; 135: 1911–1917.

    PubMed  CAS  Google Scholar 

  59. Castilla P, Echarri R, Da´valos A, Cerrato F, Ortega H, Teruel JL, Lucas MF, Go´mez-Coronado D, Ortun˜o J, Lasuncio´n MA. Concentrated red grape juice exerts antioxidant, hypolipidemic, and antiinflammatory effects in both hemodialysis patients and healthy subjects. Am J Clin Nutr 2006; 84: 252–262.

    PubMed  CAS  Google Scholar 

  60. Stein JH, Keevil JG, Wiebe DA, Aeschlimann S, Folts JD. Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 1999; 100: 1050–1056.

    Article  PubMed  CAS  Google Scholar 

  61. Nigdikar SV, Williams NR, Griffin BA, Howard AN. Consumption of red wine polyphenols reduces the susceptibility of low-density lipoproteins to oxidation in vivo. Am J Clin Nutr 1998; 68: 258–265.

    PubMed  CAS  Google Scholar 

  62. Bas JMD, Ferna´ndez-Larrea J, Blay M, Arde`vol A, Salvado´ MJ, Arola L, Blade´ C. Grape seed procyanidins improve atherosclerotic risk index and induce liver CYP7A1 and SHP expression in healthy rats. FASEB J 2005; 19: 479–481.

    PubMed  Google Scholar 

  63. Pal S, Ho N, Santos C, Dubois P, Mamo J, Croft K, Allister E. Red wine polyphenolics increase LDL receptor expression and activity and suppress the secretion of ApoB100 from human HepG2 cells. J Nutr 2003; 133: 700–707.

    PubMed  CAS  Google Scholar 

  64. Da´valos A, Ferna´ndez-Hernando C, Cerrato F, Martı´nez- Botas J, Go´mez-Coronado D, Go´mez-Cordove´s C, Lasuncio´n MA. Red grape juice polyphenols alter cholesterol homeostasis and increase LDL-receptor activity in human cells in vitro. J Nutr 2006; 136: 1766–1768.

    Google Scholar 

  65. de Kleijn MJ, van der Schouw YT, Wilson PW, Grobbee DE, Jacques PF, de Kleijn MJ, van der Schouw YT et al. Dietary intake of phytoestrogens is associated with a favorable metabolic cardiovascular risk profile in postmenopausal US women: the Framingham study. J Nutr 2002; 132: 276–282.

    PubMed  Google Scholar 

  66. Ariyo AA, Villablanca AC. Estrogens and lipids. Can HRT designer estrogens, and phytoestrogens reduce cardiovascular risk markers after menopause?. Postgrad Med 2002; 111: 23–28.

    Article  PubMed  Google Scholar 

  67. Murkies AL, Wilcox G, Davis SR. Phytoestrogens. J Clin Endocrinol Metab 1998; 83: 297–303.

    Article  PubMed  CAS  Google Scholar 

  68. Lu R, Serrero G. Resveratrol, a natural product derived from grape, exhibits antiestrogenic activity and inhibits the growth of human breast cancer cells. J Cell Physiol 1999; 179: 297–304.

    Article  PubMed  CAS  Google Scholar 

  69. Anthony MS, Clarkson TB, Weddle DL, Wolfe MS. Effects of soy protein phytoestrogens on cardiovascular risk factors in rhesus monkeys. J Nutr 1995; 125: 803–806.

    Google Scholar 

  70. Teede HJ, Dalais FS, Kotsopoulos D, Liang YL, Davis S, McGrath BP et al. Dietary soy has both beneficial and potentially adverse cardiovascular effects: A placebo-controlled study in men and postmenopausal women. J Clin Endocrinol Metab 2001; 86: 3053–3060.

    Article  PubMed  CAS  Google Scholar 

  71. Kirk EA, Sutherland P, Wang SA, Chait A, LeBoeuf RC. Dietary isoflavones reduce plasma cholesterol and atherosclerosis in C57BL/6 mice but not LDL receptor- deficient mice. J Nutr 1998; 128: 954–959.

    PubMed  CAS  Google Scholar 

  72. Owen AJ, Roach PD, Abbey M. Regulation of low-density lipoprotein receptor activity by estrogens and phytoestrogens in a HepG2 cell model. Ann Nutr Metab 2004; 48: 269–275.

    Article  PubMed  CAS  Google Scholar 

  73. Mullen E, Brown RM, Osborne TF, Shay NF. Soy isoflavones affect sterol regulatory element binding proteins (SREBPs) and SREBP-regulated genes in HepG2 cells. J Nutr 2004; 134: 2942–2946.

    PubMed  CAS  Google Scholar 

  74. Gardner CD, Newell KA, Cherin R, Haskell WL. The effect of soy protein with or without isoflavones relative to milk on plasma lipids in hypercholesterolemic postmenopausal women. Am J Clin Nutr 2001; 73: 728–735.

    PubMed  CAS  Google Scholar 

  75. Jenkins DJ, Kendall CW, Jackson CJ, Connelly PW, Parker T, Faulkner D, Vidgen E, Cunnane SC, Leiter LA, Josse RG. Effect of high- and low-isoflavone soyfoods on blood lipids, oxidized LDL, homocysteine, and blood pressure on hyperlipidemic men and women. Am J Clin Nutr 2002; 76: 365–368.

    PubMed  CAS  Google Scholar 

  76. Jenkins DJ, Kendall CW, Jackson CJ, Connelly PW, Parker T, Faulkner D, Vidgen E, Cunnane SC, Leiter LA, Josse RG. Effect of high- and low-isoflavone soyfoods on blood lipids, oxidized LDL, homocysteine, and blood pressure on hyperlipidemic men and women. Am J Clin Nutr 2002; 76: 365–368.

    PubMed  CAS  Google Scholar 

  77. Lichtenstein AH, Jalbert SM, Adlercreutz H, Goldin BR, Rasmussen H, Schaefer EJ, Ausman LM. Lipoprotein response to diets high in soy or animal protein with and without isoflavones in moderately hypercholesterolemic subjects. Arterioscler Thromb Vasc Biol 2002; 22: 1852–1857.

    Article  PubMed  CAS  Google Scholar 

  78. Lichtenstein AH, Jalbert SM, Adlercreutz H, Goldin BR, Rasmussen H, Schaefer EJ, Ausman LM. Lipoprotein response to diets high in soy or animal protein with and without isoflavones in moderately hypercholesterolemic subjects. Arterioscler Thromb Vasc Biol 2002; 22: 1852–1857.

    Article  PubMed  CAS  Google Scholar 

  79. Merz-Demlow BE, Duncan AM, Wangen KE, Xu X, Carr TP, Phipps WR, Kurzer MS. Soy isoflavones improve plasma lipids in normocholesterolemic premenopausal women. Am J Clin Nutr 2000; 71: 1462–1468.

    PubMed  CAS  Google Scholar 

  80. Crouse JR, Morgan T, Terry JG, Ellis J, Vitolins M, Burke GL. A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoprotein. Arch Intern Med 1999; 159: 2070–2077.

    Article  PubMed  CAS  Google Scholar 

  81. Steinberg FM, Guthrie NL, Villablanca AC, Kumar K, Murray MJ. Soy protein with isoflavones has favorable effect on endothelia function that are independent of lipid and antioxidant effects in healthy postmenopausal women. Am J Clin Nutr 2003; 78: 123–128.

    PubMed  CAS  Google Scholar 

  82. Zhuo XG, Melby MK, Watanabe S. Soy isoflavone intake lowers serum LDL cholesterol: a meta-analysis of 8 randomized controlled trials in humans. J Nutr 2004; 134: 2395–2400.

    PubMed  CAS  Google Scholar 

  83. Zhan S, Ho SC. Meta-analysis of the effects of soy protein containing isoflavones on the lipid profile. Am J Clin Nutr 2005; 81: 397–408.

    PubMed  CAS  Google Scholar 

  84. Crouse JR, Morgan T, Terry JG, Ellis J, Vitolins M, Burke GL. A randomized trial comparing the effect of casein with that of soy protein containing varying amounts of isoflavones on plasma concentrations of lipids and lipoprotein. Arch Intern Med 1999; 159: 2070–2077.

    Article  PubMed  CAS  Google Scholar 

  85. Ling WH, Jones PJ. Dietary phytosterols: a review of metabolism, benefits, and side effects. Life Sci 1995; 57: 195–206.

    Article  PubMed  CAS  Google Scholar 

  86. Vahouny GV, Kritchevsky D. Plant and marine sterols and cholesterol metabolism. In: Spiller GA, ed., Nutritional Pharmacology. New York: Alan R. Liss, 31–72, 1981.

    Google Scholar 

  87. Heinemann T, Leiss O, van Bergmann K. Effect of low-dose sitostanol on serum cholesterol in patients with hypercholesterolemia. Atherosclerosis 1986; 61: 219–223.

    Article  PubMed  CAS  Google Scholar 

  88. Gylling H, Miettinen TA. Serum cholesterol and cholesterol and lipoprotein metabolism in hypercholesterolaemic NIDDM patients before and during sitostanol ester-margarine treatment. Diabetologia 1994; 37: 773–778.

    Article  PubMed  CAS  Google Scholar 

  89. Vanhanen HT, Kajander J, Lehtovirta H, Miettinen TA. Serum levels, absorption efficiency, faecal elimination and synthesis of cholesterol during increasing doses of dietary sitostanol esters in hypercholesterolaemic subjects. Clin Sci 1994; 87: 61–68.

    PubMed  CAS  Google Scholar 

  90. Gylling H, Siimes MA, Miettinen TA. Sitostanol ester margarine in dietary treatment of children with familial hypercholesterolemia. J Lipid Res 1995; 36: 1807–1812.

    PubMed  CAS  Google Scholar 

  91. Miettinen TA, Puska P, Gylling H, Vanhanen H, Vartiainen E. Reduction of serum cholesterol with sitostanol-ester margarine in a mildly hypercholesterolemic population. N Engl J Med 1995; 333: 1308–1312.

    Article  PubMed  CAS  Google Scholar 

  92. Niinikoski H, Viikari J, Palmmu T. Cholesterol-lowering effect and sensory properties of sitostanol ester margarine in normocholesterolemic adults. Scand J Nutr 1997; 41: 9–12.

    Google Scholar 

  93. Gylling H, Radhakrishnan R, Miettinen TA. Reduction of serum cholesterol in postmenopausal women with previous myocardial infarction and cholesterol malabsorption induced by dietary sitostanol ester margarine women and dietary sitostanol. Circulation 1997; 96: 4226–4231.

    Article  PubMed  CAS  Google Scholar 

  94. Maki KC, Davidson MH, Umporowicz DM et al. Lipid responses to plant-sterol-enriched reduced-fat spreads incorporated into a National Cholesterol Education Program Step I diet. Am J Clin Nutr 2001; 74: 33–43.

    PubMed  CAS  Google Scholar 

  95. Jones PJ, Ntanios F. Comparable efficacy of hydrogenated versus nonhydrogenated plant sterol esters on circulating cholesterol levels in humans. Nutr Rev 1998; 56: 245–248.

    Article  PubMed  CAS  Google Scholar 

  96. Lichtenstein AH, Ausman LM, Carrasco W, Jenner JL, Ordovas JM, Schaefer EJ. Hypercholesterolemic effect of dietary cholesterol in diets enriched in polyunsaturated and saturated fat. Dietary cholesterol, fat saturation, and plasma lipids. Arterioscler Thromb 1994; 14: 168–175.

    Article  PubMed  CAS  Google Scholar 

  97. Tomeo AC, Geller M, Watkiins TR, Gapor A, Bierenbaum ML. Antioxidant effects of tocotrienols in patients with hyperlipidemia and carotid stenosis. Lipids 1995; 30: 1179–1183.

    Article  PubMed  CAS  Google Scholar 

  98. Hannah R Vasanthi, Subhendhu Mukerjee, Dipak K Das. Health Benefits of Broccoli: A Chemico- Biological Overview. Mini Rev Med Chem 2009; 9: 749–759.

    Google Scholar 

  99. Bresnick E, Birt DF, Wolterman K, Wheeler M, Markin RS. Reduction in mammary tumorigenesis in the rat by cabbage and cabbage residue. Carcinogenesis 1990; II: 1159–1163.

    Article  Google Scholar 

  100. Murashima M, Watanabe S, Zhuo XG, Vehara M, Kurashige A. Phase I study of multiple biomarkers for metabolism and oxidative stress after one week intake of broccoli sprouts. Biofactor 2004; 22: 271–275.

    Article  CAS  Google Scholar 

  101. Yochum L, Kushi LH, Meyer K, Folsom AR. Dietary flavonoid intake and risk of cardiovascular disease in postmenopausal women. Am J Epidemol 1999; 149: 943–947.

    Article  CAS  Google Scholar 

  102. Lawson LD. Garlic: a review of its medicinal effects and indicated active compounds. In: Lawson, LD, Bauer, R, (eds.), Phytomedicines of Europe: Chemistry and Biological Activity. Washington, DC: American Chemical Society, 176–209, 1998.

    Chapter  Google Scholar 

  103. Ali M, Al-Qattan KK, Al-Enezi F, Khanafer RM, Mustafa T. Effect of allicin from garlic powder on serum lipids and blood pressure in rats fed with a high cholesterol diet. Prostaglandins Leukot Essent Fatty Acids 2000; 62: 253–257.

    Article  PubMed  CAS  Google Scholar 

  104. Yeh YY, Liu L. Cholesterol-lowering effect of garlic extracts and organosulfur compounds: human and animal studies. J Nutr Suppl 2001; 131: 989–993.

    Google Scholar 

  105. Thomson M, Al-Qattan KK, Bordia T, Ali M. Including garlic in the diet may help lower blood glucose, cholesterol, and triglycerides. J Nutr Suppl 2006; 136: 800–803.

    Google Scholar 

  106. Kwon MJ, Song YS, Choi MS, Park SJ, Jeong KS, Song YO. Cholesteryl ester transfer protein activity and atherogenic parameters in rabbits supplemented with cholesterol and garlic powder. Life Sci 2003; 72: 2953–2964.

    Article  PubMed  CAS  Google Scholar 

  107. Stevinson C, Pittler MH, Ernst E. Garlic for treating hypercholesterolemia. A meta-analysis of randomized clinical trials. Ann Intern Med 2000; 133: 420–429.

    PubMed  CAS  Google Scholar 

  108. Alder R, Lookinland S, Berry JA, Williams M. A systematic review of the effectiveness of garlic as an anti-hyperlipidemic agent. J Am Acad Nurse Pract 2003; 15: 120–129.

    Article  PubMed  Google Scholar 

  109. Liu L, Yeh YY. S-Alk(en)yl cysteines of garlic inhibit cholesterol synthesis by deactivating HMG-CoA reductase in cultured rat hepatocyte. J Nutr 2002; 132: 1129–1134.

    PubMed  CAS  Google Scholar 

  110. Kim DN, Lee KT, Reiner JM, Thomas WA. Increased steroid excretion in swine fed high-fat, high-cholesterol diet with soy protein. Exp Mol Pathol 1980; 33: 25–35.

    Article  PubMed  CAS  Google Scholar 

  111. Terpstra AH, Woodward CJ, West CE, Van Boven HG. A longitudinal cross-over study of serum cholesterol and lipoproteins in rabbits fed on semi-purified diets containing either casein or soya-bean protein. Br J Nutr 1982; 47: 213–221.

    Article  PubMed  CAS  Google Scholar 

  112. Sirtori CR, Agradi E, Conti F, Mantero O, Gatti E. Soybean protein diet in the treatment of type-II hyperlipoproteinaemia. Lancet 1977; 1: 275–277.

    Article  PubMed  CAS  Google Scholar 

  113. Descovich GC, Ceredi C, Gaddi A et al. Multicentre study of soybean protein diet for outpatient hyper-cholesterolaemic patients. Lancet 1980; 2: 709–712.

    Article  PubMed  CAS  Google Scholar 

  114. Gaddi A, Descovich GC, Noseda G et al. Hypercholesterolaemia treated by soybean protein diet. Arch Dis Child 1987; 62: 274–278.

    Article  PubMed  CAS  Google Scholar 

  115. Sirtori CR, Lovati MR, Manzoni C. Reduction of serum cholesterol by soybean proteins: clinical experience and potential molecular mechanisms. Nutr Metab Cardiovasc Dis 1998; 8: 334–340.

    CAS  Google Scholar 

  116. Bakhit RM, Klein BP, Essex-Sorlie D et al. Intake of 25 g of soybean protein with or without soybean fiber alters plasma lipids in men with elevated cholesterol concentrations. J Nutr 1994; 124: 213–222.

    PubMed  CAS  Google Scholar 

  117. Burslem J, Schonfeld G, Howald MA, Weidman SW, Miller JP. Plasma apoprotein and lipoprotein lipid levels in vegetarians. Metabolism 1978; 27: 711–719.

    Article  PubMed  CAS  Google Scholar 

  118. Zhang X, Shu XO, Gao YT et al. Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J Nutr 2003; 133: 2874–2878.

    PubMed  CAS  Google Scholar 

  119. Nagata C, Takatsuka N, Kurisu Y, Shimizu H. Decreased serum total cholesterol concentration is associated with high intake of soy products in Japanese men and women. J Nutr 1998; 128: 209–213.

    PubMed  CAS  Google Scholar 

  120. Azadbakht L, Kimiagar M, Mehrabi Y et al. Soy inclusion in the diet improves features of the metabolic syndrome: a randomized crossover study in postmenopausal women. Am J Clin Nutr 2007; 85: 735–741.

    PubMed  CAS  Google Scholar 

  121. Azadbakht L, Kimiagar M, Mehrabi Y, Esmaillzadeh A, Hu FB, Willett WC. Soy consumption, markers of inflammation, and endothelial function: a crossover study in postmenopausal women with the metabolic syndrome. Diabetes Care 2007; 30: 967–973.

    Article  PubMed  CAS  Google Scholar 

  122. FDA. Food labeling health claims: soybean protein and coronary heart disease final rule. Fed Reg 1999; 57: 699–733.

    Google Scholar 

  123. Anderson JW, Johnstone BM, Cook-Newell ME. Meta-analysis of the effects of soy protein intake on serum lipids. N Engl J Med 1995; 333: 276–282.

    Article  PubMed  CAS  Google Scholar 

  124. Sirtori CR, Galli G, Lovati MR, Carrara P, Bosisio E, Kienle MG. Effects of dietary proteins on the regulation of liver lipoprotein receptors in rats. J Nutr 1984; 114: 1493–1498.

    PubMed  CAS  Google Scholar 

  125. Lovati MR, Manzoni C, Gianazza E et al. Soy protein peptides regulate cholesterol homeostasis in Hep G2 cells. J Nutr 2000; 130: 2543–2549.

    PubMed  CAS  Google Scholar 

  126. Huff MW, Hamilton RM, Carroll KK. Plasma cholesterol levels in rabbits fed low fat, cholesterol-free, semi-purified diets: effects of dietary proteins, protein hydrolysates and amino acid mixtures. Atherosclerosis 1977; 28: 187–195.

    Article  PubMed  CAS  Google Scholar 

  127. Sirtori CR, Gianazza E, Manzoni C, Lovati MR, Murphy PA. Role of isoflavones in the cholesterol reduction by soy proteins in the clinic. Am J Clin Nutr 1997; 65: 166–167.

    PubMed  CAS  Google Scholar 

  128. Anthony MS, Clarkson TB, Hughes CL Jr, Morgan TM, Burke GL. Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J Nutr 1996; 126: 43–48.

    PubMed  CAS  Google Scholar 

  129. Greaves KA, Parks JS, Williams JK, Wagner JD. Intact dietary soy protein, but not adding an isoflavone-rich soy extract to casein, improves plasma lipids in ovariectomized cynomolgus monkeys. J Nutr 1999; 129: 1585–1592.

    PubMed  CAS  Google Scholar 

  130. Sirtori CR, Arnoldi A, Johnson SK. Phytoestrogens: end of a tale?. Ann Med 2005; 37: 423–438.

    Article  PubMed  CAS  Google Scholar 

  131. Sacks FM, Lichtenstein A, Van Horn L et al. Isoflavones, and cardiovascular health: an American Heart Association Science advisory for professionals from the nutrition committee. Circulation 2006; 113: 1034–1044.

    Article  PubMed  CAS  Google Scholar 

  132. Atteritano M, Marini H, Minutoli L et al. Effects of the phytoestrogen genistein on some predictors of cardiovascular risk in osteopenic, postmenopausal women: a 2-year randomized, double-blind, placebo-controlled study. J Clin Endocrinol Metab 2007; 92: 3068–3075.

    Article  PubMed  CAS  Google Scholar 

  133. Lovati MR, Manzoni C, Corsini A et al. 7S globulin from soybean is metabolized in human cell cultures by a specific uptake and degradation system. J Nutr 1996; 126: 2831–2842.

    PubMed  CAS  Google Scholar 

  134. Lovati MR, Manzoni C, Corsini A et al. Low-density lipoprotein receptor activity is modulated by soybean globulins in cell culture. J Nutr 1992; 122: 1971–1978.

    PubMed  CAS  Google Scholar 

  135. Duranti M, Lovati MR, Dani V et al. The alpha’ subunit from soybean 7S globulin lowers plasma lipids and upregulates liver beta-VLDL receptors in rats fed a hypercholesterolemic diet. J Nutr 2004; 134: 1334–1339.

    PubMed  CAS  Google Scholar 

  136. Kohno M, Hirotsuka M, Kito M, Matsuzawa Y. Decreases in serum triacylglycerol and visceral fat mediated by dietary soybean beta-conglycinin. J Atheroscler Thromb 2006; 13: 247–255.

    Article  PubMed  CAS  Google Scholar 

  137. Deibert P, König D, Schmidt-Trucksaess A et al. Weight loss without losing muscle mass in pre-obese and obese subjects induced by a high soy-protein diet. Int J Obes Relat Metab Disord 2004; 28: 1349–1352.

    Article  PubMed  CAS  Google Scholar 

  138. Wang MF, Yamamoto S, Chung HM et al. Antihypercholesterolemic effect of undigested fraction of soybean protein in young female volunteers. J Nutr Sci Vitaminol (Tokyo) 1995; 4: 187–195.

    Article  Google Scholar 

  139. Hori G, Wang MF, Chan YC et al. Soy protein hydrolyzate with bound phospholipids reduces serum cholesterol levels in hypercholesterolemic adult male volunteers. Biosci Biotechnol Biochem 2001; 65: 72–78.

    Article  PubMed  CAS  Google Scholar 

  140. Martins JM, Riottot M, de Abreu MC et al. Cholesterol-lowering effects of dietary blue lupin (Lupinus angustifolius L.) in intact and ileorectal anastomosed pigs. J Lipid Res 2005; 46: 1539–1547.

    Article  PubMed  CAS  Google Scholar 

  141. Sirtori CR, Lovati MR, Manzoni C et al. Proteins of white lupin seed, a naturally isoflavone-poor legume, reduce cholesterolemia in rats and increase ldl receptor activity in Hep-G2 cells. J Nutr 2004; 134: 18–23.

    PubMed  CAS  Google Scholar 

  142. Spielmann J, Shukla A, Brandsch C et al. Dietary lupin protein lowers triglyceride concentrations in liver and plasma in rats by reducing hepatic gene expression of sterol regulatory element-binding protein-1c. Ann Nutr Metab 2007; 51: 387–392.

    Article  PubMed  CAS  Google Scholar 

  143. Marchesi M, Parolini C, Diani E et al. Hypolipidemic and antiatherosclerotic effects of lupin proteins in a rabbit model. Brit J Nutr 2007; 100: 707–710.

    Google Scholar 

  144. Chiesa G, Di Mario C, Colombo N et al. Development of a lipid-rich, soft plaque in rabbits, monitored by histology and intravascular ultrasound. Atherosclerosis 2001; 156: 277–287.

    Article  PubMed  CAS  Google Scholar 

  145. Pilvi TK, Jauhiainen T, Cheng ZJ et al. Lupin protein attenuates the development of hypertension and normalises the vascular function of NaCl-loaded Goto-Kakizaki rats. J Physiol Pharmacol 2006; 57: 167–176.

    PubMed  CAS  Google Scholar 

  146. Nowicka G, Klosiewicz-Latoszek L, Sirtori CR, Arnoldi A, Naruszewicz M. Lupin proteins in the treatment of hypercholesterolemia. Atherosclerosis Suppl. 2006; 7: 477.

    Article  Google Scholar 

  147. Hall RS, Johnson SK, Baxter AL, Ball MJ. Lupin kernel fibre-enriched foods beneficially modify serum lipids in men. Eur J Clin Nutr 2005; 59: 325–333.

    Article  PubMed  CAS  Google Scholar 

  148. Lasekan JB, Gueth L, Khan S. Influence of dietary golden pea protein versus casein on plasma and hepatic lipids in rats. Nutr Res 1995; 15: 71–84.

    Article  CAS  Google Scholar 

  149. Alonso R, Grant G, Marzo F. Thermal treatment improves nutritional quality of pea seeds (Pisum sativum L.) without reducing their hypocholesterolemic properties. Nutr Res 2001; 21: 1067–1077.

    Article  PubMed  CAS  Google Scholar 

  150. Zulet MA, Macarulla MT, Portillo MP et al. Lipid and glucose utilization in hypercholesterolemic rats fed a diet containing heated chickpea (Cicer aretinum L.): a potential functional food. Int J Vitam Nutr Res 1999; 69: 403–411.

    Article  PubMed  CAS  Google Scholar 

  151. Macarulla MT, Medina C, De Diego MA et al. Effects of the whole seed and a protein isolate of faba bean (Vicia faba) on the cholesterol metabolism of hypercholesterolaemic rats. Br J Nutr 2001; 85: 607–614.

    Article  PubMed  CAS  Google Scholar 

  152. Dabai FD, Walker AF, Sambrook IE et al. Comparative effects on blood lipids and faecal steroids of five legume species incorporated into a semi-purified, hypercholesterolaemic rat diet. Br J Nutr 1996; 75: 557–571.

    Article  PubMed  CAS  Google Scholar 

  153. 153. Kingman SM, Walker AF, Low AG et al. Comparative effects of four legume species on plasma lipids and faecal steroid excretion in hypercholesterolaemic pigs. Br J Nutr 1993; 69: 409–421.

    Article  PubMed  CAS  Google Scholar 

  154. Martins JM, Riottot M, de Abreu MC et al. Dietary raw peas (Pisum sativum L.) reduce plasma total and LDL cholesterol and hepatic esterified cholesterol in intact and ileorectal anastomosed pigs fed cholesterol-rich diets. J Nutr 2004; 134: 3305–3312.

    PubMed  CAS  Google Scholar 

  155. Winham DM, Hutchins AM. Baked bean consumption reduces serum cholesterol in hypercholesterolemic adults. Nutr Res 2007; 27: 380–386.

    Article  CAS  Google Scholar 

  156. Stampfer MJ, Hennekens CH et al. Vitamin E consumption and the risk of coronary disease in women. N Engl J Med 1993; 328(20): 1444–1449.

    Article  PubMed  CAS  Google Scholar 

  157. Rimm EB, Stampfer MJ et al. Vitamin E consumption and the risk of coronary heart disease in men. N Engl J Med 1993; 328(20): 1450–1456.

    Article  PubMed  CAS  Google Scholar 

  158. Stephens NG, Parsons A et al. Randomised controlled trial of vitamin E in patients with coronary disease: Cambridge Heart Antioxidant Study (CHAOS). Lancet 1996; 347(9004): 781–786.

    Article  PubMed  CAS  Google Scholar 

  159. Gey KF, Puska P et al. Inverse correlation between plasma vitamin E and mortality from ischemic heart disease in cross-cultural epidemiology. Am J Clin Nutr 1991; 53(1 Suppl): 326–329.

    Google Scholar 

  160. Zingg JM, Azzi A. Non-antioxidant activities of vitamin E. Curr Med Chem. 2004; 11(9): 1113–1133.

    Article  PubMed  CAS  Google Scholar 

  161. Azzi A, Stocker A. Vitamin E: non-antioxidant roles. Prog Lipid Res. 2000; 39(3): 231–255.

    Article  PubMed  CAS  Google Scholar 

  162. Boscoboinik D, Szewczyk A et al. Inhibition of cell proliferation by alpha-tocopherol. Role of protein kinase C. J Biol Chem 1991; 266(10): 6188–6194.

    PubMed  CAS  Google Scholar 

  163. Azzi A, Boscoboinik D, Marilley D, Özer NK, Stäuble B, Tasinato A. Vitamin E: A sensor and an information transducer of the cell oxidation state. Am J Clin Nutr 1995; 62(Suppl): 1337.

    Google Scholar 

  164. Chatelain E, Boscoboinik DO, Bartoli GM, Kagan VE, Gey FK, Packer L, Azzi A. Inhibition of smooth muscle cell proliferation and protein kinase C activity by tocopherols and tocotrienols. Biochim Biophys Acta 1993; 1176: 83.

    Article  PubMed  CAS  Google Scholar 

  165. Serbinova E, Kagan V, Han D, Packer L. Free radical recycling and intramembrane mobility in the antioxidant properties of alpha-tocopherol and alpha-tocotrienol. Free Radic Biol Med 1991; 10: 263.

    Article  PubMed  CAS  Google Scholar 

  166. Janero DA, Cohen N, Burghardt B, Schaer BH. Novel 6-hydroxychroman-2-carbonitrile inhibitors of membrane peroxidative injury. Biochem Pharmacol 1990; 40: 551.

    Article  PubMed  CAS  Google Scholar 

  167. Azzi A, Boscoboinik D, Chatelain E, Özer NK, Stäuble B. d-alpha-tocopherol control of cell proliferation. Mol Aspects Med 1993; 14: 265.

    Article  PubMed  CAS  Google Scholar 

  168. Tasinato A, Boscoboinik D, Bartoli GM, Maroni P, Azzi A. d-α-Tocopherol inhibition of vascular smooth muscle cell proliferation occurs at physiological concentrations, correlates with protein kinase C inhibition and is independent of its antioxidant properties. Proc Natl Acad Sci USA 1995; 92: 12190.

    Article  PubMed  CAS  Google Scholar 

  169. Devaraj S, Li D, Jialal I. The effects of alpha tocopherol supplementation on monocyte function decreased lipid oxidation, interleukin 1 beta secretion and monocyte adhesion to endothelium. J Clin Invest 1996; 98: 756.

    Article  PubMed  CAS  Google Scholar 

  170. Freedman JE, Farhat JH, Loscalzo J, Keaney JF Jr. α-Tocopherol inhibits aggregation of human platelets by a protein kinase C-dependent mechanism. Circulation 1996; 94: 2434.

    Article  PubMed  CAS  Google Scholar 

  171. Kanno T, Utsumi T, Kobuchi H, Takehara Y, Akiyama J, Yoshioka T, Horton AA, Utsumi K. Inhibition of stimulus-specific neutrophil superoxide generation by alpha-tocopherol. Free Radic Res 1995; 22: 431.

    Article  PubMed  CAS  Google Scholar 

  172. Okada S, Takehara Y, Yabuki M, Yoshioka T, Yasuda T, Inoue M, Utsumi K. Rapid reduction of nitric oxide by mitochondria, and reversible inhibition of mitochondrial respiration by nitric oxide. Biochem J 1996; 315: 295.

    Google Scholar 

  173. Rattan V, Sultana C, Shen YM, Kalra VK. Oxidant stress-induced transendothelial migration of monocytes is linked to phosphorylation of PECAM-1. Am J Physiol Endocrinol Metab 1997; 273: E453.

    CAS  Google Scholar 

  174. Studer RK, Craven PA, DeRubertis FR. Antioxidant inhibition of protein kinase C-signaled increases in transforming growth factor-beta in mesangial cells. Metabolism 1997; 46: 918.

    Article  PubMed  CAS  Google Scholar 

  175. Takehara Y, Kanno T, Yoshioka T, Inoue M, Utsumi K. Oxygen-dependent regulation of mitochondrial energy metabolism by nitric oxide. Arch Biochem Biophys 1995; 323: 27.

    Article  PubMed  CAS  Google Scholar 

  176. Özer NK, Sirikci Ö, Taha S, San T, Moser U, Azzi A. Effect of vitamin E and probucol on dietary cholesterol-induced atherosclerosis in rabbits. Free Radic Biol Med 1998; 24: 226–228.

    Article  PubMed  Google Scholar 

  177. Sirikci Ö, Özer NK, Azzi A. Dietary cholesterol-induced changes of protein kinase C and the effect of vitamin E in rabbit aortic smooth muscle cells. Atherosclerosis 1996; 126: 253.

    Article  PubMed  CAS  Google Scholar 

  178. Özer NK, Azzi A. Effect of vitamin E on the development of atherosclerosis. Toxicology 2000; 148: 179–185.

    Article  PubMed  Google Scholar 

  179. Aitman TJ. CD36, insulin resistance, and coronary heart disease. Lancet 2001; 357: 651–652.

    Article  PubMed  CAS  Google Scholar 

  180. Hirano K, Kuwasako T et al. Pathophysiology of human genetic CD36 deficiency. Trends Cardiovasc Med 2003; 13(4): 136–141.

    Article  PubMed  CAS  Google Scholar 

  181. Nicholson AC, Febbraio M et al. CD36 in atherosclerosis. The role of a class B macrophage scavenger receptor. Ann NY Acad Sci 2000; 902: 128–131.

    Article  PubMed  CAS  Google Scholar 

  182. Simantov R, Silverstein RL. CD36: a critical anti-angiogenic receptor. Front Biosci suppl 2003; 8: 874–882.

    Article  Google Scholar 

  183. Suzuki H, Kurihara Y et al. The multiple roles of macrophage scavenger receptors (MSR) in vivo: resistance to atherosclerosis and susceptibility to infection in MSR knockout mice. J Atheroscler Thromb 1997; 4(1): 1–11.

    PubMed  CAS  Google Scholar 

  184. Ricciarelli R, Zingg JM et al. Vitamin E reduces the uptake of oxidized LDL by inhibiting CD36 scavenger receptor expression in cultured aortic smooth muscle cells. Circulation 2000; 102(1): 82–87.

    Article  PubMed  CAS  Google Scholar 

  185. Devaraj S, Hugou I et al. Alpha-tocopherol decreases CD36 expression in human monocyte-derived macrophages. J Lipid Res 2001; 42(4): 521–527.

    PubMed  CAS  Google Scholar 

  186. Barella L, Muller PY et al. Identification of hepatic molecular mechanisms of action of alpha-tocopherol using global gene expression profile analysis in rats. Biochim Biophys Acta 2004; 1689(1): 66–69.

    Article  PubMed  CAS  Google Scholar 

  187. Venugopal SK, Devaraj S et al. RRR-alpha-tocopherol decreases the expression of the major scavenger receptor, CD36, in human macrophages via inhibition of tyrosine kinase (Tyk2. Atherosclerosis 2004; 175(2): 213–220.

    Article  PubMed  CAS  Google Scholar 

  188. Febbraio M, Podrez EA et al. Targeted disruption of the class B scavenger receptor CD36 protects against atherosclerotic lesion development in mice. J Clin Invest 2000; 105(8): 1049–1056.

    Article  PubMed  CAS  Google Scholar 

  189. Özer NK, Negis Y et al. Vitamin E inhibits CD36 scavenger receptor expression in hypercholesterolemic rabbits. Atherosclerosis 2006; 184(1): 15–16.

    Article  PubMed  CAS  Google Scholar 

  190. Trogan E, Feig JE et al. Gene expression changes in foam cells and the role of chemokine receptor CCR7 during atherosclerosis regression in ApoE-deficient mice. Proc Natl Acad Sci USA 2006; 103(10): 3781–3786.

    Article  PubMed  CAS  Google Scholar 

  191. Jialal I, Devaraj S. Scientific evidence to support a vitamin E and heart disease health claim: research needs. J Nutr. 2005; 135(2): 348–353.

    PubMed  CAS  Google Scholar 

  192. Zhang X, Beynen AC. Influence of dietary fish proteins on plasma and liver cholesterol concentrations in rats. Br J Nutr 1993; 69: 767–777.

    Article  PubMed  CAS  Google Scholar 

  193. Shukla A, Bettzieche A, Hirche F et al. Dietary fish protein alters blood lipid concentrations and hepatic genes involved in cholesterol homeostasis in the rat model. Br J Nutr 2006; 96: 674–682.

    PubMed  CAS  Google Scholar 

  194. Sirtori CR, Crepaldi G, Manzato E et al. One-year treatment with ethyl esters of n-3 fatty acids in patients with hypertriglyceridemia and glucose intolerance: reduced triglyceridemia, total cholesterol and increased HDL-C without glycemic alterations. Atherosclerosis 1998; 137: 419–427.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dipak K. Das .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Vasanthi, H.R., Kartal-Özer, N., Azzi, A., Das, D.K. (2010). Dietary Supplements, Cholesterol and Cardiovascular Disease. In: De Meester, F., Zibadi, S., Watson, R. (eds) Modern Dietary Fat Intakes in Disease Promotion. Nutrition and Health. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-571-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-571-2_16

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-570-5

  • Online ISBN: 978-1-60327-571-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics