Skip to main content
Book cover

CNS Cancer pp 93–118Cite as

The Nf1–/+; Trp53–/+cis Mouse Model of Anaplastic Astrocytoma and Secondary Glioblastoma: Dissecting Genetic Susceptibility to Brain Cancer

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Astrocytic gliomas are the most common primary brain tumors. They include diffuse astrocytomas, mixed oligoastrocytoma, anaplastic astrocytomas, and a subset of glioblastoma multiforme (GBM). Studies on human GBM have shown that upregulation of the Ras signaling pathway and disruption of the p53 checkpoint pathway are central to the formation of these tumors. Although much is now known about the molecular pathways altered in these tumors, they remain largely incurable, primarily due to their diffuse infiltration of the brain and lack of response to chemotherapeutics. The Nf1–/+; Trp53–/+cis mouse model develops diffuse anaplastic astrocytoma and GBM with histology that closely resembles the tumors seen in patients. The incidence of astrocytic gliomas varies in the model depending on the inheritance of mutations from the mother or father and on genetic background. Males and females show different effects, suggesting that sex influences the genetic and epigenetic factors that determine the susceptibility of an individual animal to astrocytic gliomas. This model system, including both genetically engineered mice and derivative cell lines, is useful for understanding the basic biological mechanisms underlying the formation of astrocytic gliomas and for preclinical testing of experimental therapeutics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The author is supported by the Intramural Research Program of the NIH.

References

  • Blatt J, Jaffe R, Deutsch M and Adkins JC (1986) Neurofibromatosis and childhood tumors. Cancer 57:1225–1229

    Article  PubMed  CAS  Google Scholar 

  • Brannan C, Perkins A, Vogel K, Ratner N, Nordlund M, Reid S, Buchberg A, Jenkins N, Parada L and Copeland N (1994) Targeted disruption of the neurofibromatosis type 1 gene leads to developmental abnormalities in heart and various neural crest-derived tissues. Genes Dev 8:1019–1029

    Article  PubMed  CAS  Google Scholar 

  • CBTRUS: 2005–2006 Primary brain tumors in the United States-Statistical report. (2006) Central Brain Tumor Registry of the United States, Chicago

    Google Scholar 

  • Chesler EJ, Wang J, Lu L, Qu Y, Manly KF and Williams RW (2003) Genetic correlates of gene expression in recombinant inbred strains: A relational model system to explore neurobehavioral phenotypes. Neuroinformatics 1:343–357

    Article  PubMed  Google Scholar 

  • Churchill GA, Airey DC, Allayee H, Angel JM, Attie AD, Beatty J, Beavis WD, Belknap JK, Bennett B, Berrettini W, Bleich A, Bogue M, Broman KW, Buck KJ, Buckler E, Burmeister M, Chesler EJ, Cheverud JM, Clapcote S, Cook MN, Cox RD, Crabbe JC, Crusio WE, Darvasi A, Deschepper CF, Doerge RW, Farber CR, Forejt J, Gaile D, Garlow SJ, Geiger H, Gershenfeld H, Gordon T, Gu J, Gu W, de Haan G, Hayes NL, Heller C, Himmelbauer H, Hitzemann R, Hunter K, Hsu HC, Iraqi FA, Ivandic B, Jacob HJ, Jansen RC, Jepsen KJ, Johnson DK, Johnson TE, Kempermann G, Kendziorski C, Kotb M, Kooy RF, Llamas B, Lammert F, Lassalle JM, Lowenstein PR, Lu L, Lusis A, Manly KF, Marcucio R, Matthews D, Medrano JF, Miller DR, Mittleman G, Mock BA, Mogil JS, Montagutelli X, Morahan G, Morris DG, Mott R, Nadeau JH, Nagase H, Nowakowski RS, O'Hara BF, Osadchuk AV, Page GP, Paigen B, Paigen K, Palmer AA, Pan HJ, Peltonen-Palotie L, Peirce J, Pomp D, Pravenec M, Prows DR, Qi Z, Reeves RH, Roder J, Rosen GD, Schadt EE, Schalkwyk LC, Seltzer Z, Shimomura K, Shou S, Sillanpaa MJ, Siracusa LD, Snoeck HW, Spearow JL, Svenson K, Tarantino LM, Threadgill D, Toth LA, Valdar W, de Villena FP, Warden C, Whatley S, Williams RW, Wiltshire T, Yi N, Zhang D, Zhang M and Zou F (2004) The Collaborative Cross, a community resource for the genetic analysis of complex traits. Nat Genet 36:1133–1137

    Article  PubMed  CAS  Google Scholar 

  • Cichowski K, Santiago S, Jardim M, Johnson BW and Jacks T (2003) Dynamic regulation of the Ras pathway via proteolysis of the NF1 tumor suppressor. Genes Dev 17:449–454

    Article  PubMed  CAS  Google Scholar 

  • Cichowski K, Shih T, Schmitt E, Santiago S, Reilly K, McLaughlin M, Bronson R and Jacks T (1999) Mouse models of tumor development in neurofibromatosis type 1. Science 286:2172–2176

    Article  PubMed  CAS  Google Scholar 

  • Collins VP (1999) Progression as exemplified by human astrocytic tumors. Semin Cancer Biol 9:267–276

    Article  PubMed  CAS  Google Scholar 

  • Colman H and Aldape K (2008) Molecular predictors in glioblastoma: Toward personalized therapy. Arch Neurol 65:877–883

    Article  PubMed  Google Scholar 

  • Ding H, Roncari L, Shannon P, Wu X, Lau N, Karaskova J, Gutmann DH, Squire JA, Nagy A and Guha A (2001) Astrocyte-specific expression of activated p21-ras results in malignant astrocytoma formation in a transgenic mouse model of human gliomas. Cancer Res 61:3826–3836

    PubMed  CAS  Google Scholar 

  • Donehower L, Harvey M, Slagle B, McArthur M, Montgomery Jr C, Butel J and Bradley A (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors. Nature 356:215–221

    Article  PubMed  CAS  Google Scholar 

  • Easton D, Ponder M, Huson S and Ponder B (1993) An analysis of variation in expression of neurofibromatosis (NF) type 1 (NF1): Evidence for modifying genes. Am J Hum Genet 53:305–313

    PubMed  CAS  Google Scholar 

  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF and Collins VP (1991) Genes for epidermal growth factor receptor, transforming growth factor alpha, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51:2164–2172

    PubMed  CAS  Google Scholar 

  • Fisher JL, Schwartzbaum JA, Wrensch M and Wiemels JL (2007) Epidemiology of brain tumors. Neurol Clin 25:867–890, vii

    Article  PubMed  Google Scholar 

  • Fleming TP, Saxena A, Clark WC, Robertson JT, Oldfield EH, Aaronson SA and Ali IU (1992) Amplification and/or overexpression of platelet-derived growth factor receptors and epidermal growth factor receptor in human glial tumors. Cancer Res 52:4550–4553

    PubMed  CAS  Google Scholar 

  • Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, Mischel PS and Nelson SF (2004) Gene expression profiling of gliomas strongly predicts survival. Cancer Res 64:6503–6510

    Article  PubMed  CAS  Google Scholar 

  • Fulci G, Labuhn M, Maier D, Lachat Y, Hausmann O, Hegi ME, Janzer RC, Merlo A and Van Meir EG (2000) p53 gene mutation and ink4a-arf deletion appear to be two mutually exclusive events in human glioblastoma. Oncogene 19:3816–3822

    Article  PubMed  CAS  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM, Mukasa A, Stommel JM, Stegh A, Hahn WC, Ligon KL, Louis DN, Brennan C, Chin L, DePinho RA and Cavenee WK (2007) Malignant astrocytic glioma: Genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

    Article  PubMed  CAS  Google Scholar 

  • Gould VE, Lee I, Wiedenmann B, Moll R, Chejfec G and Franke WW (1986) Synaptophysin: A novel marker for neurons, certain neuroendocrine cells, and their neoplasms. Hum Pathol 17:979–983

    Article  PubMed  CAS  Google Scholar 

  • Guha A, Feldkamp MM, Lau N, Boss G and Pawson A (1997) Proliferation of human malignant astrocytomas is dependent on ras activation. Oncogene 15:2755–2765

    Article  PubMed  CAS  Google Scholar 

  • Gutmann D, Wood D and Collins F (1991) Identification of the neurofibromatosis type 1 gene product. PNAS 88:9658–9662

    Article  PubMed  CAS  Google Scholar 

  • Haas-Kogan DA, Prados MD, Lamborn KR, Tihan T, Berger MS and Stokoe D (2005a) Biomarkers to predict response to epidermal growth factor receptor inhibitors. Cell Cycle 4:1369–1372

    Article  PubMed  CAS  Google Scholar 

  • Haas-Kogan DA, Prados MD, Tihan T, Eberhard DA, Jelluma N, Arvold ND, Baumber R, Lamborn KR, Kapadia A, Malec M, Berger MS and Stokoe D (2005b) Epidermal growth factor receptor, protein kinase B/AKT, and glioma response to erlotinib. J Natl Cancer Inst 97:880–887

    Article  PubMed  CAS  Google Scholar 

  • Hattori S, Maekawa M and Nakamura S (1992) Identification of neurofibromatosis type 1 gene product as an insoluble GTPase-activating protein toward ras p21. Oncogene 7:481–485

    PubMed  CAS  Google Scholar 

  • Hawes JJ, Nerva JD and Reilly KM (2008) Novel dual-reporter preclinical screen for antiastrocytoma agents identifies cytostatic and cytotoxic compounds. J Biomol Screen 13:795–803

    Google Scholar 

  • Hermanson M, Funa K, Hartman M, Claesson-Welsh L, Heldin CH, Westermark B and Nister M (1992) Platelet-derived growth factor and its receptors in human glioma tissue: Expression of messenger RNA and protein suggests the presence of autocrine and paracrine loops. Cancer Res 52:3213–3219

    PubMed  CAS  Google Scholar 

  • Hunter KW and Crawford NP (2008) The future of qtl mapping to diagnose disease in mice in the age of whole-genome association studies. Annu Rev Genet 42:131–141

    Google Scholar 

  • Huson S and Hughes R (1994) The neurofibromatoses: A pathogenetic and clinical overview. Chapman & Hall Medical, London

    Google Scholar 

  • Ichimura K, Bolin MB, Goike HM, Schmidt EE, Moshref A and Collins VP (2000) Deregulation of the p14ARF/MDM2/p53 pathway is a prerequisite for human astrocytic gliomas with G1-S transition control gene abnormalities. Cancer Res 60:417–424

    PubMed  CAS  Google Scholar 

  • Ichimura K, Schmidt EE, Goike HM and Collins VP (1996) Human glioblastomas with no alterations of the CDKN2A (p16INK4A, MTS1) and CDK4 genes have frequent mutations of the retinoblastoma gene. Oncogene 13:1065–1072

    PubMed  CAS  Google Scholar 

  • Ishii N, Tada M, Hamou MF, Janzer RC, Meagher-Villemure K, Wiestler OD, Tribolet N and Van Meir EG (1999) Cells with TP53 mutations in low grade astrocytic tumors evolve clonally to malignancy and are an unfavorable prognostic factor. Oncogene 18:5870–5878

    Article  PubMed  CAS  Google Scholar 

  • Jacks T, Remington L, Williams BO, Schmitt EM, Halachmi S, Bronson RT and Weinberg RA (1994a) Tumor spectrum analysis in p53-mutant mice. Current Biol 4:1–7

    Article  CAS  Google Scholar 

  • Jacks T, Shih TS, Schmitt EM, Bronson RT, Bernards A and Weinberg RA (1994b) Tumour predisposition in mice heterozygous for a targeted mutation in Nf1. Nature Genet 7:353–361

    Article  PubMed  CAS  Google Scholar 

  • Kleihues P and Cavenee W (2000) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer, Lyon

    Google Scholar 

  • Kleihues P, Schauble B, zur Hausen A, Esteve J and Ohgaki H (1997) Tumors associated with p53 germline mutations: A synopsis of 91 families. Am J Pathol 150:1–13

    PubMed  CAS  Google Scholar 

  • Lang FF, Miller DC, Koslow M and Newcomb EW (1994) Pathways leading to glioblastoma multiforme: A molecular analysis of genetic alterations in 65 astrocytic tumors. J Neurosurg 81:427–436

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Bollag G, Clark R, Stevens J, Conroy L, Fults D, Ward K, Friedman E, Samowitz W, McCormick F, White R and Cawthorn R (1992) Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell 69:275–281

    Article  PubMed  CAS  Google Scholar 

  • Libermann TA, Nusbaum HR, Razon N, Kris R, Lax I, Soreq H, Whittle N, Waterfield MD, Ullrich A and Schlessinger J (1985) Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313:144–147

    Article  PubMed  CAS  Google Scholar 

  • Maher EA, Brennan C, Wen PY, Durso L, Ligon KL, Richardson A, Khatry D, Feng B, Sinha R, Louis DN, Quackenbush J, Black PM, Chin L and DePinho RA (2006) Marked genomic differences characterize primary and secondary glioblastoma subtypes and identify two distinct molecular and clinical secondary glioblastoma entities. Cancer Res 66:11502–11513

    Article  PubMed  CAS  Google Scholar 

  • Malkin D (1994) p53 and the Li–Fraumeni syndrome. Biochemica et Biophysica Acta 1198:197–213

    Google Scholar 

  • Malmer B, Adatto P, Armstrong G, Barnholtz-Sloan J, Bernstein JL, Claus E, Davis F, Houlston R, Il'yasova D, Jenkins R, Johansen C, Lai R, Lau C, McCarthy B, Nielsen H, Olson SH, Sadetzki S, Shete S, Wiklund F, Wrensch M, Yang P and Bondy M (2007) GLIOGENE an international consortium to understand familial glioma. Cancer Epidemiol Biomarkers Prev 16:1730–1734

    Article  PubMed  CAS  Google Scholar 

  • Marsden HB, Kumar S, Kahn J and Anderton BJ (1983) A study of glial fibrillary acidic protein (GFAP) in childhood brain tumours. Int J Cancer 31:439–445

    Article  PubMed  CAS  Google Scholar 

  • Martin G, Viskochil D, Bollag G, McCabe P, Crosier W, Conroy L, Clark R, O'Connell P, Cawthorn R, Innis M and McCormick F (1990) The gap-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843–849

    Article  PubMed  CAS  Google Scholar 

  • Mellinghoff IK, Wang MY, Vivanco I, Haas-Kogan DA, Zhu S, Dia EQ, Lu KV, Yoshimoto K, Huang JH, Chute DJ, Riggs BL, Horvath S, Liau LM, Cavenee WK, Rao PN, Beroukhim R, Peck TC, Lee JC, Sellers WR, Stokoe D, Prados M, Cloughesy TF, Sawyers CL and Mischel PS (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    Article  PubMed  CAS  Google Scholar 

  • Momota H and Holland EC (2005) Bioluminescence technology for imaging cell proliferation. Curr Opin Biotechnol 16:681–686

    Article  PubMed  CAS  Google Scholar 

  • Mott R and Flint J (2002) Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. Genetics 160:1609–1618

    PubMed  CAS  Google Scholar 

  • Nadeau JH, Singer JB, Matin A and Lander ES (2000) Analysing complex genetic traits with chromosome substitution strains [published erratum appears in nat genet 2000 may;25(1):125]. Nat Genet 24:221–225

    Article  PubMed  CAS  Google Scholar 

  • Oertel J, von Buttlar E, Schroeder HW and Gaab MR (2005) Prognosis of gliomas in the 1970s and today. Neurosurg Focus 18:e12

    Article  PubMed  Google Scholar 

  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL, Olivi A, McLendon R, Rasheed BA, Keir S, Nikolskaya T, Nikolsky Y, Busam DA, Tekleab H, Diaz LA, Jr., Hartigan J, Smith DR, Strausberg RL, Marie SK, Shinjo SM, Yan H, Riggins GJ, Bigner DD, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE and Kinzler KW (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812

    Google Scholar 

  • Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD, Misra A, Nigro JM, Colman H, Soroceanu L, Williams PM, Modrusan Z, Feuerstein BG and Aldape K (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173

    Article  PubMed  CAS  Google Scholar 

  • Rasheed BK, McLendon RE, Herndon JE, Friedman HS, Friedman AH, Bigner DD and Bigner SH (1994) Alterations of the TP53 gene in human gliomas. Cancer Res 54:1324–1330

    PubMed  CAS  Google Scholar 

  • Reifenberger G, Ichimura K, Reifenberger J, Elkahloun AG, Meltzer PS and Collins VP (1996) Refined mapping of 12q13–q15 amplicons in human malignant gliomas suggests CDK4/SAS and MDM2 as independent amplification targets. Cancer Res 56:5141–5145

    PubMed  CAS  Google Scholar 

  • Reifenberger G, Liu L, Ichimura K, Schmidt EE and Collins VP (1993) Amplification and overexpression of the MDM2 gene in a subset of human malignant gliomas without p53 mutations. Cancer Res 53:2736–2739

    PubMed  CAS  Google Scholar 

  • Reilly KM (2004) The importance of genome architecture in cancer susceptibility: Location, location, location. Cell Cycle 3:1378–1382

    Article  PubMed  CAS  Google Scholar 

  • Reilly KM, Broman KW, Bronson RT, Tsang S, Loisel DA, Christy ES, Sun Z, Diehl J, Munroe DJ and Tuskan RG (2006) An imprinted locus epistatically influences Nstr1 and Nstr2 to control resistance to nerve sheath tumors in a neurofibromatosis type 1 mouse model. Cancer Res 66:62–68

    Article  PubMed  CAS  Google Scholar 

  • Reilly KM and Jacks T (2001) Genetically engineered mouse models of astrocytoma: GEMs in the rough? Semin Cancer Biol 11:177–191

    Article  PubMed  CAS  Google Scholar 

  • Reilly KM, Loisel DA, Bronson RT, McLaughlin ME and Jacks T (2000) Nf1;Trp53 mutant mice develop glioblastoma with evidence of strain-specific effects. Nat Genet 26:109–113

    Article  PubMed  CAS  Google Scholar 

  • Reilly KM, Rubin JB, Gilbertson RJ, Garbow JR, Roussel MF and Gutmann DH (2008) Rethinking brain tumors: The fourth mouse models of human cancers consortium nervous system tumors workshop. Cancer Res 68:5508–5511

    Article  PubMed  CAS  Google Scholar 

  • Reilly KM, Tuskan RG, Christy E, Loisel DA, Ledger J, Bronson RT, Smith CD, Tsang S, Munroe DJ and Jacks T (2004) Susceptibility to astrocytoma in mice mutant for Nf1 and Trp53 is linked to chromosome 11 and subject to epigenetic effects. Proc Natl Acad Sci USA 101:13008–13013

    Article  PubMed  CAS  Google Scholar 

  • Roberts A, Pardo-Manuel de Villena F, Wang W, McMillan L and Threadgill DW (2007) The polymorphism architecture of mouse genetic resources elucidated using genome-wide resequencing data: Implications for qtl discovery and systems genetics. Mamm Genome 18:473–481

    Article  PubMed  CAS  Google Scholar 

  • Scherer H (1940) The forms of growth in gliomas and their practical significance. Brain 63:1–35

    Article  Google Scholar 

  • Schmidt EE, Ichimura K, Reifenberger G and Collins VP (1994) CDKN2 (p16/MTS1) gene deletion or CDK4 amplification occurs in the majority of glioblastomas. Cancer Res 54:6321–6324

    PubMed  CAS  Google Scholar 

  • Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  PubMed  CAS  Google Scholar 

  • Sherr CJ and Weber JD (2000) The ARF/p53 pathway. Curr Opin Genet Dev 10:94–99

    Article  PubMed  CAS  Google Scholar 

  • Sorensen SA, Mulvihill JJ and Nielsen A (1986) Long-term follow-up of von recklinghausen neurofibromatosis. Survival and malignant neoplasms. N Engl J Med 314:1010–1015

    Article  PubMed  CAS  Google Scholar 

  • Tascos NA, Parr J and Gonatas NK (1982) Immunocytochemical study of the glial fibrillary acidic protein in human neoplasms of the central nervous system. Hum Pathol 13:454–458

    Article  PubMed  CAS  Google Scholar 

  • The Cancer Genome Atlas Research Network, McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis M, Olson JJ, Mikkelsen T, Lehman N, Aldape K, Alfred Yung WK, Bogler O, Vandenberg S, Berger M, Prados M, Muzny D, Morgan M, Scherer S, Sabo A, Nazareth L, Lewis L, Hall O, Zhu Y, Ren Y, Alvi O, Yao J, Hawes A, Jhangiani S, Fowler G, San Lucas A, Kovar C, Cree A, Dinh H, Santibanez J, Joshi V, Gonzalez-Garay ML, Miller CA, Milosavljevic A, Donehower L, Wheeler DA, Gibbs RA, Cibulskis K, Sougnez C, Fennell T, Mahan S, Wilkinson J, Ziaugra L, Onofrio R, Bloom T, Nicol R, Ardlie K, Baldwin J, Gabriel S, Lander ES, Ding L, Fulton RS, McLellan MD, Wallis J, Larson DE, Shi X, Abbott R, Fulton L, Chen K, Koboldt DC, Wendl MC, Meyer R, Tang Y, Lin L, Osborne JR, Dunford-Shore BH, Miner TL, Delehaunty K, Markovic C, Swift G, Courtney W, Pohl C, Abbott S, Hawkins A, Leong S, Haipek C, Schmidt H, Wiechert M, Vickery T, Scott S, Dooling DJ, Chinwalla A, Weinstock GM, Mardis ER, Wilson RK, Getz G, Winckler W, Verhaak RG, Lawrence MS, O'Kelly M, Robinson J, Alexe G, Beroukhim R, Carter S, Chiang D, Gould J, Gupta S, Korn J, Mermel C, Mesirov J, Monti S, Nguyen H, Parkin M, Reich M, Stransky N, Weir BA, Garraway L, Golub T, Meyerson M, Chin L, Protopopov A, Zhang J, Perna I, Aronson S, Sathiamoorthy N, Ren G, Yao J, Wiedemeyer WR, Kim H, Won Kong S, Xiao Y, Kohane IS, Seidman J, Park PJ, Kucherlapati R, Laird PW, Cope L, Herman JG, Weisenberger DJ, Pan F, Van Den Berg D, Van Neste L, Mi Yi J, Schuebel KE, Baylin SB, Absher DM, Li JZ, Southwick A, Brady S, Aggarwal A, Chung T, Sherlock G, Brooks JD, Myers RM, Spellman PT, Purdom E, Jakkula LR, Lapuk AV, Marr H, Dorton S, Gi Choi Y, Han J, Ray A, Wang V, Durinck S, Robinson M, Wang NJ, Vranizan K, Peng V, Van Name E, Fontenay GV, Ngai J, Conboy JG, Parvin B, Feiler HS, Speed TP, Gray JW, Brennan C, Socci ND, Olshen A, Taylor BS, Lash A, Schultz N, Reva B, Antipin Y, Stukalov A, Gross B, Cerami E, Qing Wang W, Qin LX, Seshan VE, Villafania L, Cavatore M, Borsu L, Viale A, Gerald W, Sander C, Ladanyi M, Perou CM, Neil Hayes D, Topal MD, Hoadley KA, Qi Y, Balu S, Shi Y, Wu J, Penny R, Bittner M, Shelton T, Lenkiewicz E, Morris S, Beasley D, Sanders S, Kahn A, Sfeir R, Chen J, Nassau D, Feng L, Hickey E, Zhang J, Weinstein JN, Barker A, Gerhard DS, Vockley J, Compton C, Vaught J, Fielding P, Ferguson ML, Schaefer C, Madhavan S, Buetow KH, Collins F, Good P, Guyer M, Ozenberger B, Peterson J and Thomson E (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455:1061–1068

    Google Scholar 

  • Tischler A, Shih T, Williams B and Jacks T (1995) Characterization of pheochromocytomas in a mouse strain with a targeted disruptive mutation of the neurofibromatosis gene Nf1. Endocrine Pathol 6:5323–335

    Article  Google Scholar 

  • Van Dyke T and Jacks T (2002) Cancer modeling in the modern era: Progress and challenges. Cell 108:135–144

    Article  PubMed  Google Scholar 

  • van Meyel DJ, Ramsay DA, Casson AG, Keeney M, Chambers AF and Cairncross JG (1994) p53 mutation, expression, and DNA ploidy in evolving gliomas: Evidence for two pathways of progression. J Natl Cancer Inst 86:1011–1017

    Article  PubMed  CAS  Google Scholar 

  • Vogel K, Klesse L, Velasco-Miguel S, Meyers K, Rushing E and Parada L (1999) Mouse tumor model for neurofibromatosis type 1. Science 286:2176–2179

    Article  PubMed  CAS  Google Scholar 

  • von Deimling A, Eibl RH, Ohgaki H, Louis DN, von Ammon K, Petersen I, Kleihues P, Chung RY, Wiestler OD and Seizinger BR (1992) p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res 52:2987–2990

    Google Scholar 

  • von Deimling A, von Ammon K, Schoenfeld D, Wiestler OD, Seizinger BR and Louis DN (1993) Subsets of glioblastoma multiforme defined by molecular genetic analysis. Brain Pathol 3:19–26

    Article  Google Scholar 

  • Watanabe K, Sato K, Biernat W, Tachibana O, von Ammon K, Ogata N, Yonekawa Y, Kleihues P and Ohgaki H (1997) Incidence and timing of p53 mutations during astrocytoma progression in patients with multiple biopsies. Clin Cancer Res 3:523–530

    PubMed  CAS  Google Scholar 

  • Watanabe K, Tachibana O, Sata K, Yonekawa Y, Kleihues P and Ohgaki H (1996) Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 6:217–223; discussion 223–214

    Article  PubMed  CAS  Google Scholar 

  • Wood AJ and Oakey RJ (2006) Genomic imprinting in mammals: Emerging themes and established theories. PLoS Genet 2:e147

    Article  PubMed  Google Scholar 

  • Xu G, Lin b, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R and Tamanoi F (1990a) The catalytic domain of the neurofibromatosis type 1 gene product stimulates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63:835–841

    Article  PubMed  CAS  Google Scholar 

  • Xu G, O'Connell P, Viskochil D, Cawthorn R, Robertson M, Culver M, Dunn D, Stevens J, Gesteland R, White R and Weiss R (1990b) The neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599–608

    Article  PubMed  CAS  Google Scholar 

  • Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Messing A and Parada LF (2005) Early inactivation of p53 tumor suppressor gene cooperating with Nf1 loss induces malignant astrocytoma. Cancer Cell 8:119–130

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Carmen Sapienza and Erwin Van Meir for proofreading the manuscript and providing thoughtful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karlyne M. Reilly .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Reilly, K.M. (2009). The Nf1–/+; Trp53–/+cis Mouse Model of Anaplastic Astrocytoma and Secondary Glioblastoma: Dissecting Genetic Susceptibility to Brain Cancer. In: Meir, E. (eds) CNS Cancer. Cancer Drug Discovery and Development. Humana Press. https://doi.org/10.1007/978-1-60327-553-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-553-8_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-552-1

  • Online ISBN: 978-1-60327-553-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics