Skip to main content

Lipid Products and Cell Signaling

  • Chapter
  • First Online:
Guide to Signal Pathways in Immune Cells
  • 978 Accesses

Abstract

Cell signaling implicates lipid products like phosphatidic acid. Thus, the action of TNFa (transforming growth factor-a cytokine) stems from activation of phospholipase D. Other cell controls arise from ceramide or sphingosine of the sphingomyelin-ceramide cycle. Serum growth factor turns out to be lysophosphatidic acid, whose action is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hodgkin MN, Pettitt TR, Martin A et al Diacylglycerols and phosphatides: which molecular species are intracellular messengers? Trends Biochem Sci 1998;23:200–204

    Article  PubMed  CAS  Google Scholar 

  2. Shukla SD, Halenda SP. Phospholipase D in cell signalling and its relationship to phospholipase C. Life Sci 1991;48:851–856

    Article  PubMed  CAS  Google Scholar 

  3. Sethu S, Mendez-Corao G, Melendez AJ. Phospholipsae D1 plays a key role in TNFa signaling. J Immunol 2008;180:6027–6034

    PubMed  CAS  Google Scholar 

  4. Colsen S, Lambeth JD. Biochemistry and cell biology of phospholipase D in human neutrophils. Chem Phys Lipids 1996;80:3–19

    Article  Google Scholar 

  5. Van Lint J, Ryky A, Maeda Y, Vantus T et al Protein kinase D: intracellular traffic regulator on the move. Trends Cell Biol 2002;12:193–200

    Article  PubMed  CAS  Google Scholar 

  6. Van Lint J, Ryky A, Vantus T, Vardenheede JR. Getting to know protein kinase D. Int J Biochem Cell Biol 2003;34:577–581

    Article  Google Scholar 

  7. Rozengurt E, Rey O, Waldron RT. Protein kinase D signaling. J Biol Chem 2005;280:13205–13208

    Article  PubMed  CAS  Google Scholar 

  8. Storz P. Mitochondrial ROS radical detoxification mediated by protein kinase D. Trends Cell Biol 2007;17:13–18

    Article  PubMed  CAS  Google Scholar 

  9. Wang QJ. PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci 2006;27:317–323

    Article  PubMed  CAS  Google Scholar 

  10. Pena L, Fuks Z, Kolesnick R. Stress induced apoptosis and the sphingomyelin pathway Biochem Pharmacol 1997;53:613–621

    Article  Google Scholar 

  11. Kronke M. Biophysics of ceramide signaling. Chem Phys Lipids 1999;101:109–21

    Article  PubMed  CAS  Google Scholar 

  12. Falcone S, Perrotta C, DePalma C, Pisconti A et al Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cGMP pathway: key events in E. coli elicited apoptosis of dendritic cells. J Immunol 2004;173:4452–4463

    PubMed  CAS  Google Scholar 

  13. Brindley DN, Abousalam A, Kikuchi Y, et al Crosstalk between the bioactive glycerolipids and sphingolipids in signal transduction. Biochem Cell Biol 1996;74:469–476

    Article  PubMed  CAS  Google Scholar 

  14. Woodcock J. Sphingosine and ceramide in apoptosis. IUBMB Life 2006;58:462–466

    Article  PubMed  CAS  Google Scholar 

  15. Abboushi N, El-Hed A, El-Assaad W et al Ceramide inhibits I1-2 production by preventing PKC dependent NFkB activation. J Immunol 2004;173:3193–3200

    PubMed  CAS  Google Scholar 

  16. Stratford S, Hoehn KL, Liu F, Sumners SA. Regulation of insulin action by ceramide. J Biol Chem 2004;279:36608–36615

    Article  PubMed  CAS  Google Scholar 

  17. Franchi L, Malison F, Tonassini B, Testi R. Ceramide catabolism critically controls survival of human dendritic cells. J Leukoc Biol 2006;79:166–172

    Article  PubMed  CAS  Google Scholar 

  18. Hannun YA. The sphingomyelin cycle and second messenger function of ceramide. J Biol Chem 1994;259:3125–3128

    Google Scholar 

  19. Shayman JA. Sphingolipids. Kidney Int 2000;58:11–26

    Article  PubMed  CAS  Google Scholar 

  20. Ballou R, Laulederkind S, Rosloniec EF, Ragow R. Ceramide signaling and the immune response. Biochim Biophys Acta 1996;1301:273–278

    PubMed  Google Scholar 

  21. Hannun YA, Luberto C. Ceramide is the eukaryotic stress response. Trends Cell Biol 2000;10:73–80

    Article  PubMed  CAS  Google Scholar 

  22. Tonetti L, Veri MC, Bonvini E, D’Adamio L. A role for neutral sphingomyelinase mediated ceramide production in T cell receptor induced apoptosis and MAP kinase signal transduction. J Exp Med 2000;189:1581–1589

    Article  Google Scholar 

  23. Shakor ABA, Kwiatkowska K, Sobata A. Cell surface ceramide generation precedes and controls FcγRII clustering and phosphorylation in rafts. J Biol Chem 2004;279:36778–36787

    Article  PubMed  Google Scholar 

  24. Mackinnon AC, Buchley A, Chilvers ER et al Sphingosine kinase: a point of convergence in the action of diverse neutrophil priming agents. J Immunol 2003;169:6394–6400

    Google Scholar 

  25. Kolesnick RN, Haimowitz-Friedman A, Fuks Z. The sphingomyelin signal transduction pathway mediates apoptosis for TNF, Fas and ionising radiation. Biochem Cell Biol 1994;72:471–474

    Article  PubMed  CAS  Google Scholar 

  26. Kolesnick R. The therapeutic potential of moduling the ceramide/sphingomyelin pathway. J Clin Invest 2002;110:3–8

    PubMed  CAS  Google Scholar 

  27. Cuvillier O, Pirianov G, Kleuser B et al Suppression of ceramide mediated programmed cell death by sphingosine-1-phosphate. Nature 1996;381:800–803

    Article  PubMed  CAS  Google Scholar 

  28. Liu P, Anderson R. Compartmentalized production of ceramide at the cell surface. J Biol Chem 1997;279:27179–27185

    Google Scholar 

  29. Prieschl EE, Baumruker T. Sphingolipids, second messengers, mediators and raft constituents in signaling. Immunol Today 2000;21:555–560

    Article  PubMed  CAS  Google Scholar 

  30. Matsunga T, Kotamraju S, Kalivendi SV et al Ceramide induced intracellular oxidant formation and apoptosis in endothelial cells. J Biol Chem 2004;279:28614–28624

    Article  Google Scholar 

  31. Liu B, Andrieu-Abodie N, Levande T et al Glutathione regulation of neutral sphingomyelinase in TNFa induced cell death. J Biol Chem 1998;273:11313–11320

    Article  PubMed  CAS  Google Scholar 

  32. Rosen H, Goetzl EJ. Sphingosine-1-phosphate and its receptors. Nat Rev Immunol 2005;5:560–570

    Article  PubMed  CAS  Google Scholar 

  33. Wang W, Graeler MH, Goetzl EJ. Physiological sphingosine-1-phosphate requirement for optimum activity of mouse CD4+ regulatory T cells. FASEB J 2004;18:1043–1045

    PubMed  CAS  Google Scholar 

  34. Cinamon G, Matkoubian M, Lesneski MJ. Sphingosine-1-phosphate receptor-1 promotes B cell localization in the splenic marginal zone. Nat Immunol 2004;5:713–720

    Article  PubMed  CAS  Google Scholar 

  35. Singleton PA, Dudek SM, Ma S-F, Garcia JGN. Transactivation of sphingosine-1-phosphate receptors for vascular barrier regeneration. J Biol Chem 2006;281:34381–34393

    Article  PubMed  CAS  Google Scholar 

  36. Anliker B, Chun J. Lysophospholipid G protein coupled receptors. J Biol Chem 2004;279:20555–20558

    Article  PubMed  CAS  Google Scholar 

  37. Goetzl EJ, An S. Diversity of cellular receptors and functions for LPA and sphingosine-1-phosphate. FASEB J 1998;12:1589–1598

    PubMed  CAS  Google Scholar 

  38. Posern G, Treisman R. Serum response factor. Trends Cell Biol 2006;16(11):588–596

    Article  PubMed  CAS  Google Scholar 

  39. Goetzl EJ. Diverse pathways for nuclear signaling by GPCRs and their ligands. FASEB J 2007;21:638–642

    Article  PubMed  CAS  Google Scholar 

  40. Zhang C, Baker DL, Yasuda S et al Lysophosphatidic acid induces neointima formation through PPARgamma activation. J Exp Med 2004;199:763–774

    Article  PubMed  CAS  Google Scholar 

  41. Panther E, Idzko N, Corinti S et al The influence of lysophosphatidic acid on human dendritic cells. J Immunol 2002;169:4129–4135.

    PubMed  CAS  Google Scholar 

  42. Rieken S, Herroeder S, Sassmann A et al Lysophospholipids control integrin dependent adhesion in splenic B cells. J Biol Chem 2006;281:36985–36992

    Article  PubMed  CAS  Google Scholar 

  43. Stock C, Schilling T, Schwab A, Eder C. Lysophosphatidylcholine stimulates Il-1β release from microglia via a P2X7 receptor. J Immunol 2006;177:8560–8568

    PubMed  CAS  Google Scholar 

  44. Nakasaki T, Tanaka T, Okudarna S et al. Involvement of the lysophosphatidic acid generating enzyme autotaxin in lymphocyte-endothelial cell interactions. Am J Pathol 2008;173:1566–1576

    Article  PubMed  CAS  Google Scholar 

  45. Williams JM, Pettitt TR, Powell W, Grove J, Savage C, Wakelam MJO. ANCA stimulated neutrophil adhesion depends on phosphatidic acid formation. J Am Soc Nephrol 2007;18:1112–1120

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Nigel Wardle .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wardle, E.N. (2009). Lipid Products and Cell Signaling. In: Guide to Signal Pathways in Immune Cells. Humana Press. https://doi.org/10.1007/978-1-60327-538-5_7

Download citation

Publish with us

Policies and ethics