Skip to main content

Platelet Aggregation and Its Control

  • Chapter
  • First Online:
Guide to Signal Pathways in Immune Cells
  • 990 Accesses

Abstract

Platelet aggregation exemplifies various cellular activation processes. Adhesion of platelets to collagen is by means of an integrin and a signal transduction pathway. Nitric oxide helps to control platelets and other cells of the immune system. It is produced by nitric oxide synthases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yee DL, Sun C W, Bergeron AL et al Aggregometry detects platelet hyperactivity in healthy individuals. Blood 2005;106:2723–2729

    Article  PubMed  CAS  Google Scholar 

  2. Siess W. Inositol phospholipids metabolism and platelet function. Biochem Pharmacol 1986;35:3184–3187

    Article  PubMed  CAS  Google Scholar 

  3. Karniguian A, Grelac F, Levy-Toledone S et al Collagen induced platelet activation involves protein kinase C pathway. Biochem J 1990;268:325–331

    PubMed  CAS  Google Scholar 

  4. Paul BZS, Jin JG, Kunapuli SP. Molecular mechanism of thromboxane A2 induced platelet aggregation. J Biol Chem 1999;274:29108–29114

    Article  PubMed  CAS  Google Scholar 

  5. Offermanns S. Activation of platelet function through G protein-coupled receptors. Circ Res 2006;99:1293–1304

    Article  PubMed  CAS  Google Scholar 

  6. Jurk K, Kehrel BE. Platelets:physiology and biochemistry. Semin Thromb Hemost 2005;31:381–392

    Article  PubMed  CAS  Google Scholar 

  7. Jackson SP, Nesbitt WS, Kulkamis S. Signaling events underlying thrombus formation. J Thromb Haemost 2003;1:1602–1612

    Article  PubMed  CAS  Google Scholar 

  8. Gachet C. ADP receptors of platelets. Thromb Haemost 2001;86:222–232

    PubMed  CAS  Google Scholar 

  9. Birk AV, Broekman J, Gladek EM et al Role of extracellular ATP metabolism in regulation of platelet reactivity. J Lab Clin Med 2002;140:166–175

    Article  PubMed  CAS  Google Scholar 

  10. Dorsam RT, Kunapuli SP. Central role of P2X1 receptors in platelet activation. J Clin Invest 2004;113:340–345

    PubMed  CAS  Google Scholar 

  11. Oury C, Toth-Zsamboki E, Vermylen J, Hoylaerts FF. P2X1 mediated activation of ERK2 contributes to platelet secretion and aggregation by collagen. Blood 2002;100:2499–2500

    Article  PubMed  CAS  Google Scholar 

  12. Shrimpton CN, Borthakur G, Larrucea Set al Localization of the adhesion receptor GP Ib-IX-V complex to lipid rafts. J Exp Med 2002;196:1057–1066

    Article  PubMed  CAS  Google Scholar 

  13. Begonja AJ, Gambaryan S, Geiger Jet al Platelet NADPHox generated ROS production regulates αIIβIII integrin activation. Blood 2005;106:2757–2760

    Article  PubMed  CAS  Google Scholar 

  14. Mundell SJ, Jones ML, Hardy ARet al Distinct roles for PKC isoforms in regulating platelet purinergic receptor function. Mol Pharm 2006;70:1132–1134

    Article  CAS  Google Scholar 

  15. Bahou WF. Attacked from within, blood thins. Nat Med 2002;8:1082–1083

    Article  PubMed  CAS  Google Scholar 

  16. Clark EA, Shattil SJ, Brugge JS. Regulation of protein tyrosine kinases in platelets. Trends Biochem Sci 1994;19:464–469

    Article  PubMed  CAS  Google Scholar 

  17. Rittenhouse SE. Phosphoinositide-3-kinase and platelet function. Blood 1995;88:4401–4414

    Google Scholar 

  18. Alberio L, Dale GL. Platelet-collagen interactions: membrane receptors and intra-cellular signalling pathways. Eur J Clin Invest 1999;29:1066–1075

    Article  PubMed  CAS  Google Scholar 

  19. Gassama-Diagne A, Yu W, ter Beest M et al Phosphatidylinositol 3,4,5 triphosphate regulates formation of the basolateral membrane in epithelial cells. Nat Cell Biol 2006 8:963–970

    Article  PubMed  CAS  Google Scholar 

  20. Kashiwagi H, Shiraga M, Kato Het al Negative regulation of platelet function by semaphorin 3A of endothelial cells. Blood 2005;106:913–921

    Article  PubMed  CAS  Google Scholar 

  21. Manus AJ, Safier LB. Thromboregulation: multicellular modulation of platelet reactivity in hemostasis and thrombosis. FASEB J 1993;7:516–522

    Google Scholar 

  22. Kimura M, Lasker N, Aviv A. Cyclic nucleotides attenuate thrombin evoked alterations in parameters of the platelet Na+/H+ antiport. J Clin Invest 1992;89:1121–1127

    Article  PubMed  CAS  Google Scholar 

  23. Yamamoto T, Bing R. Nitric oxide donors. Proc Soc Exp Biol Med 2000;225:200–206

    Article  PubMed  CAS  Google Scholar 

  24. Pampuch A, Cerletti C, de Gaetano G. Comparison of VASP-phosphorylation assay to light-transmission aggregometry in assessing inhibition of the platelet ADP P2Y12 receptor. Thromb Haemost 2006;96:767–773

    PubMed  CAS  Google Scholar 

  25. Judd BA, Myung PS, Leng Let al Hematopoietic reconstitution of SLP76 corrects hemostasis and platelet signaling through αIIβ3 and collagen receptors. Proc Natl Acad Sci U S A 2000;97:12056–12061

    Article  PubMed  CAS  Google Scholar 

  26. Han Jet al Reconstructing and deconstructing agonist induced activation of integrin αIIβ3 Curr Biol 2006;16:1796–1806

    Article  PubMed  CAS  Google Scholar 

  27. Crittenden JR, Bergmeier W, Zhang Y et al CalDAG-GEF1 integrates signaling for platelet aggregation and thrombus formation. Nat Med 2004;10:982–986

    Article  PubMed  CAS  Google Scholar 

  28. Nieswandt B, Watson SP. Platelet-collagen interaction: is GP VI the central receptor? Blood 2003;102:446–449

    Article  Google Scholar 

  29. Kasirer-Friede A, Kahn ML, Shattil SJ. Platelet integrins and immunoreceptors. Immunol Rev 2007;218:247–264

    Article  PubMed  CAS  Google Scholar 

  30. Marwoli MR, Hu C-P, Mohandas B et al Modulation of ADP induced platelet activation by aspirin and pravastatin: role of Lox-1, nitric oxide, oxidative stress and inside-out integrin signaling. J Pharmacol Exp Ther 2007;322:1324–1332

    Article  Google Scholar 

  31. Cho M, Liu J, Pestina TI et al The roles of αIIβ3 mediated outside-in signal trans-duction, TxA2 and ADP in collagen induced platelet aggregation. Blood 2003;101:2646–2651

    Article  PubMed  CAS  Google Scholar 

  32. Bodin S, Viala C, Ragab A, Payrastre B. A role of lipid rafts in organization of a key FcgammaRIIa-mediated signaling pathway in platelets. Thromb Haemost 2003;89:318–330

    PubMed  CAS  Google Scholar 

  33. Patil S, Newman DK, Newman PJ. Platelet endothelial cell adhesion molecule-1 serves as an inhibitory receptor that modulates platelet responses to collagen. Blood 2001;97:1727–1732

    Article  PubMed  CAS  Google Scholar 

  34. Inove O, Suzuki-Inove K, McCarty OJTet al Laminin stimulates spreading of platelets through integrin α6β1 dependent activation of GPVI. Blood 2006;107:1405–1412

    Article  Google Scholar 

  35. Davi G, Patrono C. Platelet activation and atherothrombosis. N Engl J Med 2007;357:2482

    Article  PubMed  CAS  Google Scholar 

  36. von Hundelshausen P, Weber C. Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 2007;100:27–40

    Article  PubMed  CAS  Google Scholar 

  37. Moncada S, Higgs A. The L-arginine nitric oxide pathway. N Engl J Med 1993;329:2002–2012

    Article  PubMed  CAS  Google Scholar 

  38. Anggard A. Nitric oxide. Lancet 1994;343:1199–1206

    Article  PubMed  CAS  Google Scholar 

  39. Kalyanaraman B. Nitrated lipids: a class of cell signaling molecules. Proc Natl Acad Sci U S A 2004;101:11527–11528

    Article  PubMed  CAS  Google Scholar 

  40. Cosby K, Partoviks KS, Crawford JHet al Nitrite reduction to NO by deoxy-haemoglobin vasodilates the human circulation. Nat Med 2003;9:1498–1505

    Article  PubMed  CAS  Google Scholar 

  41. Cui T, Schopfer FJ, Zhang Jet al Nitrated fatty acids: endogenous anti-inflammatory signaling mediators. J Biol Chem 2006;281:35686–35698

    Article  PubMed  CAS  Google Scholar 

  42. Iwakiri Y, Satoh H, Chatterjee Set al NO synthase generates NO locally to regulate compartmentalized protein S-nitrosylation. Proc Natl Acad Sci U S A 2006;103:19777–19782

    Article  PubMed  CAS  Google Scholar 

  43. Hill BG, Bhatnager A. Role of glutathiolation in regulation of protein function. IUBMB Life 2007;59:21–26

    Article  PubMed  CAS  Google Scholar 

  44. Hofmann F. The biology of cyclic GMP-dependent protein kinases. J Biol Chem 2005;280(1):1–4

    PubMed  CAS  Google Scholar 

  45. Paul-Clark MJ, Gilroy DW, Willis D, Willoughby DA, Tomlinson A. Nitric oxide synthase inhibitors have opposite effects on acute inflammation depending on route of inflammation. J Immunol 2001;166:1169–1177

    PubMed  CAS  Google Scholar 

  46. Singel DJ, Stamler JS. Blood traffic control. Nature 2004;439:297

    Article  Google Scholar 

  47. Piedrafita D, Liew FY. Nitric oxide. Rev Med Microbiol 1998;9:179–189

    Google Scholar 

  48. Sass G, Koreber K, Bang R et al Inducible nitric oxide synthase is critical for immune mediated liver injury in mice. J Clin Invest 2001;171:979–988

    Google Scholar 

  49. Villar IC, Francis S, Webb Aet al Novel aspects of endothelium-dependent regulation of vascular tone. Kidney Int 2006;70:840–853

    Article  PubMed  CAS  Google Scholar 

  50. Chen C-W, Chang Y-H, Tsi C-J, Lin W-W. Inhibition of IFNγγ mediated iNOS induction by 15 deoxy-prostaglandin J2. J Immunol 2003;171:979–988

    PubMed  CAS  Google Scholar 

  51. Rubbo H, Rodi R, Trujillo M et al Nitric oxide regulation of superoxide and peroxynitrite dependent lipid peroxidation. J Biol Chem 1994;269:26066–26077

    PubMed  CAS  Google Scholar 

  52. Messmer UK, Brune B. Nitric oxide induced apoptosis: p53 dependent and p53 independent signalling pathways. Biochem J 1996;319:299–305

    PubMed  CAS  Google Scholar 

  53. Bronte V, Kasic T, Gri Get al Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 2005;201:1257–1268

    Article  PubMed  CAS  Google Scholar 

  54. Connelly L, Palacios-Callender M, Ameixa C et al Biphasic regulation of NFkB activity underlies pro- and anti-inflammatory actions of nitric oxide. J Immunol 2001;166:3873–3881

    PubMed  CAS  Google Scholar 

  55. Bogdan C. Nitric oxide and the immune response. Nat Immunol 2001;2:907–916

    Article  PubMed  CAS  Google Scholar 

  56. Bingisser RM, Tilbrook PA, Holy PG, Kees UR. Macrophage derived nitric oxide regulates T cell activation via reversible disruption of the Jak3/Stat5 signaling pathway. J Immunol 1998;160:5729–5734

    PubMed  CAS  Google Scholar 

  57. Mahidhara RS, Hoffman RA, Huang Set al Nitric oxide mediated inhibition of caspase dependent T lymphocyte proliferation. J Leukoc Biol 2003;74:403–411

    Article  PubMed  CAS  Google Scholar 

  58. Niedbala W, Cai B, Liew FY. Role of nitric oxide in the regulation of T cell functions. Ann Rheum Disease 2006;65(Suppl 111):iii37–iii40

    Article  Google Scholar 

  59. Vig M, Srivastava S, Kampal Uet al Inducible NO synthase in T cells regulates T cell death and immune memory. J Clin Invest 2004;113:1734–1742

    PubMed  CAS  Google Scholar 

  60. Diet A, Abbas K, Bouton C et al Regulation of peroxiredoxins by nitric oxide in macrophages. J Biol Chem 2007;282:36199–36205

    Article  PubMed  CAS  Google Scholar 

  61. Eastmond NC, Banks EMS, Coleman JW. Nitric oxide inhibits IgE-mediated degranulation of mast cells. J Immunol 1997;159:1444–1448

    PubMed  CAS  Google Scholar 

  62. MacPherson JC, Comhair SA, Erzurum SC, Klein DF et al Eosinophils are a major source of nitric oxide-derived oxidants in severe asthma. J Immunol 2001;166:5763–5770

    PubMed  CAS  Google Scholar 

  63. Bove PF, van der Vliet A. Nitric oxide and reactive N species in airway epithelial signaling and inflammation. Free Radic Biol Med 2006;41:515–527

    Article  PubMed  CAS  Google Scholar 

  64. Ricciardolo FLM, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev 2004;84(3):731–765

    Article  PubMed  CAS  Google Scholar 

  65. Marriott HM, Ali F, Read RCet al Nitric oxide levels regulate macrophage commitment to apoptosis or necrosis during pneumococcal infection. FASEB J 2004;18:1126–1128

    PubMed  CAS  Google Scholar 

  66. Wallace HM, Fraser AV, Hughes AA. A perspective of polyamine metabolism. Biochem J 2003;376:1–14

    Article  PubMed  CAS  Google Scholar 

  67. Bronte V, Zanovello P. Regulation of immune responses by l-arginine metabolism. Nat Rev Immunol 2005;5:641–654

    Article  PubMed  CAS  Google Scholar 

  68. Hesse M, Modolell M, La Flamme AC et al Differential regulation of NOS2 and arginase-1 by type 1:2 cytokines: granulomatous pathology is shaped by the pattern of l-arginine metabolism. J Immunol 2001;167:6533–6544

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Nigel Wardle .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wardle, E.N. (2009). Platelet Aggregation and Its Control. In: Guide to Signal Pathways in Immune Cells. Humana Press. https://doi.org/10.1007/978-1-60327-538-5_3

Download citation

Publish with us

Policies and ethics