Skip to main content

Signalling in Immune Reactions

  • Chapter
  • First Online:
  • 1058 Accesses

Abstract

Regarding signalling in immune reactions, by now there is sufficient background for logical understanding of the immune response and how macrophages work. Macrophages and dendritic cells bear Toll-like receptors (TLRs) whose signal transduction pathways link to the formation of proinflammatory cytokines and chemokines. There are also intracellular sensors for pathogens called nucleotide oligomerisation domain (NOD)-like receptors. NLRs occur as “inflammosomes” that account for production of the important cytokine interleukin 1 (IL-1). The cytokines and their functions are delineated. The activation of macrophages and dendritic cells is presented, for example, in response to IL-1 and TNFa. The processes must not get out of control, and IL-10 exerts a moderating influence that is not completely understood. Attempting to understand rheumatoid arthritis highlights cutting-edge aspects of immunology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Delves PJ, Roitt IM. The immune system. N Engl J Med 2000;343:3–49,108–117

    Google Scholar 

  2. Banchereau J, Brierer F, Caux C. Immunobiology of dendritic cells. Annu Rev Immunol 2000;18:767–811

    PubMed  CAS  Google Scholar 

  3. Beutler B, Hoebe K, Du X, Ulevitch RJ. How we detect microbes and respond to them: the Toll like receptors and transducers. J Leukoc Biol 2003;74:479–485

    PubMed  CAS  Google Scholar 

  4. Saboe I, Read RC, Whyte MKB. Toll like receptors in health and disease. J Immunol 2003;171:163–165

    Google Scholar 

  5. Shimaoka T, Nakayana T, Kume N. SR-PXOX mediate bacterial phagocytosis by antigen presenting cells. J Immunol 2003;171:1647–1651

    PubMed  CAS  Google Scholar 

  6. Foti M, Granucci F, Ricciardi-Castagnoli P. A central role for tissue-resident dendritic cells in innate responses. Trends Immunol 2004;25:650–654

    PubMed  CAS  Google Scholar 

  7. Bae EM, Kim WJ, Suk K, Kang YM. Reverse signaling initiated from GITRL induces NF-κB in the inflammatory activation of macrophages. Mol Immunol 2008;45:523–533

    PubMed  CAS  Google Scholar 

  8. Mantovani A, Sica A, Locati M. New vistas on macrophage differentiation and activation. Eur J Immunol 2007;37:14–16

    PubMed  CAS  Google Scholar 

  9. Ogawa K, Funaba M, Chen Y, Tsujimoto M. Activin A as Th2 cytokine in the promotion of the alternative activation of macrophages. J Immunol 2006;177:6787–6794

    PubMed  CAS  Google Scholar 

  10. Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007;117:175–184

    PubMed  CAS  Google Scholar 

  11. Edwards JP, Zhang X, Frauwirth KA, Mosser DM.Three activated macrophage populations. J Leukoc Biol 2006;80:1298–1307

    PubMed  CAS  Google Scholar 

  12. Visintin A, Iliev DB, Monks BG. MD2: review. Immunobiology 2006;211:437–447

    PubMed  CAS  Google Scholar 

  13. Bowie A, O’Neill LAJ. The Il-1 receptor/Toll like receptor superfamily: signal generators for proinflammatory interleukins and microbial products. J Leukoc Biol 2000;67:508–514

    PubMed  CAS  Google Scholar 

  14. Hennek P, Golenbock DT. TIRAP: how Toll receptors fraternize. Nat Immunol 2001;2:828–830

    Google Scholar 

  15. Suzuki N, Saito T. IRAK-4: a shared NFkB activator in innate and acquired immunity. Trends Immunol 2006;27:566–572

    PubMed  CAS  Google Scholar 

  16. Doyle SE, O’Connell RM, Miranda GA. Toll-like receptors induce a phagocytic gene program through p38. J Exp Med 2004;199:81–90

    PubMed  CAS  Google Scholar 

  17. Kawai T, Akira S. Pathogen recognition with Toll-like receptors. Curr Opin Immunol 2005;17:338–344

    PubMed  CAS  Google Scholar 

  18. Hoebe K, Jansson E, Beutler E. The interface between innate and adaptive immunity. Nat Immun 2004;5:971–974

    CAS  Google Scholar 

  19. Takeda K, Akira S. TLR signaling pathways. Semin Immun 2004;16:3–9

    CAS  Google Scholar 

  20. Blander JM. Coupling TLR signaling with phagocytosis. Trends Immunol 2007;28:21–24

    Google Scholar 

  21. Kawai T, Adachi O, Ogawa T. Unresponsiveness of MyD88 deficient mice to endotoxin. Immunity. 1999;11:115–122

    PubMed  CAS  Google Scholar 

  22. Godowski PJ. A smooth operator for LPS responses. Nat Immun 2005;6:544–546

    CAS  Google Scholar 

  23. (a) Palsson-McDermott EM, O’Neill LAJ. Signal transduction by the lipopolysaccharide receptor TLR4. Immunology 2004;113:153–162; (b) Gray NJ, Gangloff M. Structure and function of Toll receptors and their ligands. Annu Rev Biochem 2007;76:141–165

    Google Scholar 

  24. Iwasaki A, Medzhitov R. Toll-like receptor control of the adaptive immune response. Nat Immun 2004;5:987–995

    CAS  Google Scholar 

  25. Sugimoto K, Ohata M, Miyoshi J. A serine-threonine Cot/Tp12 modulates bacterial DNA induced Il-12 production and T helper cell differentiation. J Clin Invest 2004;114:857–866

    PubMed  CAS  Google Scholar 

  26. Parker LC, Whyte MKB, Vogel SN. TLR2 and TLR4 agonists regulate chemokine receptor expression in human monocytic cells. J Immunol 2004;172:4977–4986

    PubMed  CAS  Google Scholar 

  27. Vivarelli MS, McDonald D, Miller M, Kelliher RS, Geha RS. RIP links TLR4 to Akt and is essential for cell survival in response to lipopolysaccharide. J Exp Med 2004;200:399–404

    PubMed  CAS  Google Scholar 

  28. Malissen B, Ewbank JJ. Tailoring the response of dendritic cells to pathogens. Nat Immun 2005;6:749–750

    CAS  Google Scholar 

  29. Woodgett JR, Ohashi PS GSK3: an in Toll-erant protein kinase. Nat Immun 2005;6:751–752

    CAS  Google Scholar 

  30. Liew FY, Xu D, Brint EK, O’Neill LAJ. Negative regulation of Toll-like receptor mediated immune responses. Nat Rev Immunol 2005;5:446–458

    PubMed  CAS  Google Scholar 

  31. Han J, Ulevitch RJ. Limiting inflammatory responses during activation of innate immunity. Nat Immunol 2005;6:1198–1205

    PubMed  CAS  Google Scholar 

  32. Mansell A, Smith R, Doyle SL. SOCS1 negatively regulates TLR signalling by mediating Mal degradation. Nat Immunol 2006;7:148–155

    PubMed  CAS  Google Scholar 

  33. Wertz IE. De-ubiquitination and ubiquitin ligase domains of A20 down-regulate NF-κB signaling. Nature 2004;430:694–699

    PubMed  CAS  Google Scholar 

  34. Parmeswaren N, Pao CS, Leonhard KS. Arrestin2 and GPCRK5 interact with NFkB1 and negatively regulate LPS stimulated ERK1/2 activation in macrophages. J Biol Chem 2006;281:34159–34170

    Google Scholar 

  35. Takeshita F, Ishii KJ, Kobiyama K. Traf4 acts as a silencer in TLR-mediated signaling through association with Traf6 and Trif. Eur J Immunol 2005;35:2477–2485

    PubMed  CAS  Google Scholar 

  36. Hawlisch H, Belkaid Y, Baelder R. C5a negatively regulates Toll-like receptor 4 induced immune responses. Immunity 2005;22:415–426

    PubMed  CAS  Google Scholar 

  37. Divanovic S, Trompette A, Atabani SF. Negative regulation of TLR4 signaling by the Toll-like receptor homolog RP105. Nat Immun 2005;6:571–578

    CAS  Google Scholar 

  38. Negishi H, Ohba Y, Yanai H. Negative regulation of Toll-like receptor signaling by IRF4. Proc Natl Acad Sci U S A 2005;102:15989–15994

    PubMed  CAS  Google Scholar 

  39. Lemke G, Rothlin C. TAM receptors. Nat Rev Immunol 2008;8:327–336

    PubMed  CAS  Google Scholar 

  40. Nau GJ, Schlesinger A, Richmond J, Young RA. Cumulative Toll-like receptor activation in human macrophages treated with whole bacteria. J Immunol 2003;170:5203–5209

    PubMed  CAS  Google Scholar 

  41. De Gregorio R, Rappuoli R. Inside sensors detecting outside pathogens. Nat Immun 2004;5:1095–1100

    Google Scholar 

  42. Creagh EM, O’Neill L. TLRs, NLRs and RLRs: a trinity of pathogen sensors that cooperate in innate immunity. Trends Immunol 2006;27:352–357

    PubMed  CAS  Google Scholar 

  43. Franchi L, McDonald C, Kanneganti T-D. Nucleotide-binding oligomerization domain-like receptors: intracellular pattern recognition molecules. J Immunol 2006;177:3507–3513

    PubMed  CAS  Google Scholar 

  44. Girardin SE, Boneca IG, Viala J. NOD2 is a sensor of peptidoglycan through MDP detection. J Biol Chem 2003;278:8869–8872

    PubMed  CAS  Google Scholar 

  45. Totemeyer S, Sheppard M, Lloyd A. IFNγ enhances production of NO from macrophages via nucleotide oligomerization domain-2. J Immunol 2006;176:4804–4810

    PubMed  Google Scholar 

  46. Martinon F, Tschopp J. NLRs join TLRs as innate sensors of pathogens. Trends Immunol 2005;26:449–454

    Google Scholar 

  47. Stehlik C, Reed JC. The pyrin connection: novel players in immunity and inflammation. J Exp Med 2004;200:551–558

    PubMed  CAS  Google Scholar 

  48. Park J-H, Kim Y-G, McDonald C. Rick/RIP2 mediates innate immune responses through NOD1/2 but not TLRs. J Immunol 2007;178:2380–2386

    PubMed  CAS  Google Scholar 

  49. (a) Netea MG, Azam T, Ferwerda G et al. TREM1 amplifies signals induced by NLR pattern recognition receptors. J Leukoc Biol 2006;80:1454–1461; (b) Tessarz AS, Weiler S, Zanzinger K et al. NTAL (non-T cell activation linker) negatively regulates Trem1/Dap12 cytokine production. J Immunol 2007;178:1991–1999

    Google Scholar 

  50. Martinon F. Orchestration of pathogen recognition by inflammasome diversity. Eur J Immunol 2007;37:3003–3006

    PubMed  CAS  Google Scholar 

  51. Andrei C, Marqiocco P, Poggi A. Phospholipases C and A2 control lysosome mediated Il-1β secretion. Proc Natl Acad Sci U S A 2004;101:9745–9750

    PubMed  CAS  Google Scholar 

  52. Yoo NJ, Park WS, Kim SY NOD.1 enhances prointerleukin 1-β processing through interaction with procaspase-1. Biochem Biophys Res Commun 2002;299:652–658

    PubMed  CAS  Google Scholar 

  53. Bruey JM, Bruey-Sedano M, Newman R. PAN.1/NALP2 an inducible inflammatory mediator regulates NF-kappa B and caspase-1 activation in macrophages. J Biol Chem 2004;279:51897–51907

    PubMed  CAS  Google Scholar 

  54. Kahlenberg JM, Dubyak GR. Differing caspase-1 states in monocyte versus macrophage models of Il-1 beta processing and release. J Leukoc Biol 2004;65:676–684

    Google Scholar 

  55. Sekiyama A, Ueda H, Kashiwamura S-I. A stress induced superoxide mediated caspase-1 activation pathway causes Il-18 upregulation. Immunity 2005;22:669–677

    PubMed  CAS  Google Scholar 

  56. Roy CR, Zamboni DS. Cytosolic detection of flagellin. Nat Immun 2006;7:549–551

    CAS  Google Scholar 

  57. Drenth JPH, van der Meer JWM. The Inflammasome-a linebacker of innate defense. N Engl J Med 2006;355:730–732

    PubMed  CAS  Google Scholar 

  58. Wang J, Wang X, Hussain S. Distinct roles of NFkB subunits in regulating inflammatory and T cell stimulatory gene expression in dendritic cells. J Immunol 2007;178:6777–6788

    PubMed  CAS  Google Scholar 

  59. Sun H-J, Xu X, Wang X-L. Formation of interleukin 12. Chin J Biochem Biophys 2006;38:194–200

    CAS  Google Scholar 

  60. Lu J, Sun H, Wang X. Il-12 p40 promoter activity is regulated by the reversible acetylation mediated by HDAC1 and p300. Cytokine 2005;31:46–51

    PubMed  CAS  Google Scholar 

  61. Gilchrist M, Thorsson V, Li B. Systems biology approaches identify ATF3 as a negative regulator of TLR4. Nature 2006;441:173–178

    PubMed  CAS  Google Scholar 

  62. Hacker H, Mischah H. Cell type specific activation of MAPkinases by CPG-DNA controls Il-12 release from APCs. EMBO J 1999;18:6973–6982

    PubMed  CAS  Google Scholar 

  63. Cooper AM, Khader SA. Il-12p40. Trends Immunol 2007;28:33–38

    PubMed  CAS  Google Scholar 

  64. Grenningloh R, Kang BY, Ho I-C. Ets-1, a functional cofactor of T-bet, is essential for Th.1 inflammatory responses. J Exp Med 2005;201:615–626

    PubMed  CAS  Google Scholar 

  65. Yao Y, Li W, Kaplan MH, Chang C-H. Interleukin 4 plays a key role in Th.1 differentiation by instructing dendritic cells to produce less interleukin 10. J Exp Med 2005;201:1899–1903

    PubMed  CAS  Google Scholar 

  66. Agrawal S, Agrawal A, Doughty B. Different Toll-like receptor agonists instruct dendritic cells to induce distinct T helper responses via differential modulation of ERK-mitogen activated protein kinase and c-fos. J Immunol 2003;171:4984–4989

    PubMed  CAS  Google Scholar 

  67. Schade AE, Levine AD. Cutting edge: extracellular signal-related kinases 1:2 function as integrators of T cell receptor signal strength. J Immunol 2004;172:5828–5832

    PubMed  CAS  Google Scholar 

  68. Bhalla US, Ram PT, Iyenger R. The strength of a signal can induce negative feedback circuits. Science 2002;297:1018–1021

    PubMed  CAS  Google Scholar 

  69. Duckworth BC, Cantley LC. Conditional inhibition of MAP kinase cascade by wortmannin: dependence on signal strength. J Biol Chem 1997;272:27665–27700

    PubMed  CAS  Google Scholar 

  70. Damiano JS, Newman RM, Reed JC. Multiple roles of CLAN in the mammalian innate immune response. J Immunol 2004;173:6338–6345

    PubMed  CAS  Google Scholar 

  71. Murray HW. Interferon-gamma, the activated macrophage and host defence against microbial challenge. Ann Int Med 1988;108:585–608

    Google Scholar 

  72. Xu W, Schlagwein N, Roos A. Human peritoneal macrophages show characteristics of M-CSF driven anti-inflammatory type 2 macrophages. Eur J Immunol 2007;37:1594–1599

    PubMed  CAS  Google Scholar 

  73. Janssen MJ, Hendriks T, Huyben CM. Increased cytolytic activity and production of reactive oxygen and nitrogen intermediates by peritoneal macrophages during development of macrophage dysfunction in sepsis. Scand J Immunol 1995;44:361–368

    Google Scholar 

  74. Bae EM, Kim W-J, Suk K. Reverse signaling from GITRL induces NF-κB activation of macrophages. Mol Immunol 2008;45:523–533

    PubMed  CAS  Google Scholar 

  75. Zasloff M. Fighting infections with vitamin D. Nat Med 2006;12:388–390

    PubMed  CAS  Google Scholar 

  76. Martineau AR, Wilkinson K, Newton S, Floto R. Vitamin D inducible suppression of Mycobacteria: the role of cathelicidin LL37. J Immunol 2007;178:7190–7198

    PubMed  CAS  Google Scholar 

  77. Tobias PS, Ulevitch RJ. Lipopolysaccharide binding protein and CD14 in LPS dependent macrophage activation. Immunobiology 1993;187:227–232

    PubMed  CAS  Google Scholar 

  78. Lien E, Means TK, Heine H, Yoshimura S. Toll like receptor 4 imparts ligand specific recognition of bacterial lipopolysaccharide. J Immunol 2000;105:497–504

    CAS  Google Scholar 

  79. Melendez AJ, Mohd Ibrahim FB. Antisense knockout of sphingosine kinase-1 in human macrophages inhibits C5a receptor dependent signal transduction, calcium signals, enzyme release, cytokine production and chemotaxis. J Immunol 2004;173:1596–1603

    PubMed  CAS  Google Scholar 

  80. Scott MJ, Hoth JJ, Stagner MK. CD40-CD154 interactions between macrophages and NK cells during sepsis are critical for macrophage activation. Clin Exp Immunol 2004;137:469–477

    PubMed  CAS  Google Scholar 

  81. Park HS, Jung HY, Park EY. Direct interaction of TLR4 with NADPHox.4 isozyme is essential for LPS induced production of ROS and activation of NFkB. J Immunol 2004;173:3589–3593

    PubMed  CAS  Google Scholar 

  82. Vivarelli MS, McDonald D, Miller M. RIP links TLR4 to Akt and is essential for cell survival in response to LPS stimulation. J Exp Med 2004;200:399–404

    PubMed  CAS  Google Scholar 

  83. Nieves D, Moreno JJ. Role of 5 lipoxygenase pathway in the regulation of RAW264.7 macrophage proliferation. J Biol Chem 2006;72:1022–1030

    CAS  Google Scholar 

  84. Bone RC, Sprung CL, Sibbald WJ. Definitions for sepsis and organ failure. Crit Care Med 1992;20:724–726

    PubMed  CAS  Google Scholar 

  85. Sitkovsky MV, Lukashev S, Apasov S. Physiological control of immune response and inflammatory tissue damage by hypoxia inducible factors and adenosine A2A receptors. Annu Rev Immunol 2004;22:657–682

    PubMed  CAS  Google Scholar 

  86. Bryn T, Mahic M, Enserink JM. The cyclic AMP-Epac1-Rap1 pathway acquires immunoregulatory function in mature macrophages. J Immunol 2006;176:7361–7370

    PubMed  CAS  Google Scholar 

  87. Lorenowicz MJ, van Gils J, de Boer M. Epac1-Rap1 signaling regulates monocyte adhesion and chemotaxis. J Leukoc Biol 2006;80:1542–1552

    PubMed  CAS  Google Scholar 

  88. Hirasaka K, Kohno S, Goto J. Deficiency of cbl-b enhances infiltration and activation of macrophages and causes peripheral insulin resistance in mice. Diabetes 2007;56:2511–2522

    PubMed  CAS  Google Scholar 

  89. Rauh MJ, Sly LM, Kalesnikoff J. The role of SHIP1 in macrophage programming and activation. Biochem Soc Trans 2004;32:785–786

    PubMed  CAS  Google Scholar 

  90. Lemke G, Lu Q. Macrophage regulation by Tyro 3 family receptors. Curr Opin Immunol 2003;15:31–36

    PubMed  CAS  Google Scholar 

  91. Maruyama K, Takada Y, Ray N. RANKL and osteoprotogerin regulate proinflammatory cytokine production in mice. J Immunol 2006;177:3799–3805

    PubMed  CAS  Google Scholar 

  92. Zhang M, Caragine T, Wang H. Spermine inhibits proinflammatory cytokine synthesis in human mononuclear cells: a counterregulatory mechanisms that restrains the immune response. J Exp Med 1997;185:1759–1768

    PubMed  CAS  Google Scholar 

  93. Freeman MW, Moore KJ. eLIXiR for restraining inflammation. Nat Med 2003;9:168–169

    PubMed  CAS  Google Scholar 

  94. Dauphinee SM, Karsan A. Lipopolysaccharide signaling in endothelial cells. Lab Invest 2006;86:9–22

    PubMed  CAS  Google Scholar 

  95. O’Toole T, Peppelenbosch MP. PI-3kinase mediates CD14 dependent signaling. Mol Immunol 2007;44:2362–2399

    PubMed  Google Scholar 

  96. Yeh W-C, Chen N-J. Another Toll road. Nature 2003;424:736–737

    PubMed  CAS  Google Scholar 

  97. Nakayama K, Okugawa S, Yanagimoto S. Involvement of IRAK.M in peptidoglycan induced tolerance in macrophages. J Biol Chem 2004;279:6629–6634

    PubMed  CAS  Google Scholar 

  98. Jiang Z, Ninomiya-Tsuji J, Qian Y. IRAK dependent Il-1 induced signal complexes phosphorylate TAK1 and TAB2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol 2002;22:7158–7167

    PubMed  CAS  Google Scholar 

  99. Cheung PC, Nebreda AR, Cohen P. TAB3, a new binding partner of the protein kinase TAK1. Biochem J 2004;378:27–34

    PubMed  CAS  Google Scholar 

  100. Chen Y-Q, Zhou Y-Q, Wang MH. RON receptor tyrosine kinase protects murine macrophages from apoptotic death induced by LPS. J Leukoc Biol 2002;71:359–366

    PubMed  CAS  Google Scholar 

  101. Procyk KJ, Rippo MR, Testi R. Lipopolysaccharide induces JNK in macrophages by a novel cdc42/Rac independent path involving phosphatidylcholine dependent phospholipase C. Blood 2000;96:2592–2597

    PubMed  CAS  Google Scholar 

  102. Cuschieri J, Billgren J, Maier RV. PC-PLC is required for LPS mediated macrophage activation through CD14. J Leukoc Biol 2006;80:407–414

    PubMed  CAS  Google Scholar 

  103. Hsu Y-W, Chi K-H, Huang W-C, Lin W-W. Ceramide inhibits LPS mediated nitric oxide synthase and Cox.2 induction in macrophages. J Immunol 2001;166:5388–5397

    PubMed  CAS  Google Scholar 

  104. Foey AD, Brennan FM. Conventional protein kinase C and atypical PKC differentially regulate macrophage production of TNFa and Il-10. Immunology 2004;112:44–53

    PubMed  CAS  Google Scholar 

  105. Pengal RA, Ganeson LP, Wei G. LPS induced production of interleukin 10 is promoted by serine/threonine kinase Akt. Mol Immunol 2006;43:1557–1564

    PubMed  CAS  Google Scholar 

  106. Annane D, Bellisant E, Cavaillon J-M. Septic shock. Lancet 2005;365:63–78

    PubMed  CAS  Google Scholar 

  107. Lang T, Mansell A. The negative regulation of Toll-like receptor and associated pathways. Immunol Cell Biol 2007;85:425–434

    PubMed  CAS  Google Scholar 

  108. Panderey S, Agrawal DK. Immunobiology of Toll-like receptors. Immunol Cell Biol 2006;84:333–341

    Google Scholar 

  109. Liang J, Jiang D, Griffith J. CD44 is a negative regulator of LPS-TLR signaling in mouse macrophages. J Immunol 2007;178:2469–2475

    PubMed  CAS  Google Scholar 

  110. Wang Y, Tang Y, Teng L. Association of β-arrestin and TRAF6 negatively regulates TLR Il-1 receptor signaling. Nat Immunol 2006;7:139–147

    PubMed  CAS  Google Scholar 

  111. Fraser DA, Arora M, Bohlson SS. Anti-inflammatory activity of complement protein C1q in human monocytes. J Biol Chem 2007;282:7360–7367

    PubMed  CAS  Google Scholar 

  112. Schroder K, Swelt MJ, Hume DA. Signal integration between IFNγ and TLR signaling pathways in macrophages. Immunbiology 2006;211:511–524

    CAS  Google Scholar 

  113. Shortman K, Liu Y-J. Mouse and human dendritic subtypes. Nat Rev 2002;2:151–161

    CAS  Google Scholar 

  114. Galgani M, De Rosa V, De Simone S. Cyclic AMP modulates the functional plasticity of immature dendritic cells by inhibiting Src-like kinases through protein kinase A mediated signaling. J Biol Chem 2004;279:32507–32514

    PubMed  CAS  Google Scholar 

  115. Marteau F, Communi D, Boeynaems J-M, Gonzalez NS. Involvement of multiple P2Y receptors and signaling pathways in the action of adenine nucleotide diphosphates on human monocyte derived dendritic cells. J Leukoc Biol 2004;76:796–803

    PubMed  CAS  Google Scholar 

  116. Santambrogio L, Potolicchio I, Fessler SP. Involvement of caspase cleaved and intact AP1 complex in endosomal remodelling in dendritic cells. Nat Immun 2005;6:1020–1028

    CAS  Google Scholar 

  117. Kantenga S, Jornot L, Devenoges C, Nicord LP. Superoxide anions induce the maturation of human dendritic cells. Am J Resp Crit Care Med 2003;167:431–437

    Google Scholar 

  118. Sedlik C, Orbach D, Venon P. A critical role for Syk in Fc receptor mediated antigen presentation and induction of dendritic cell maturation. J Immunol 2003;170:846–852

    PubMed  CAS  Google Scholar 

  119. Flohe SB, Bruggenabb J, Lendermans S. Human HSP60 induces maturation of dendritic cells via a Th.1 phenotype. J Immunol 2003;170:2340–2348

    PubMed  CAS  Google Scholar 

  120. Luft T, Maraskowsky E, Schnorr M. Tuning the volume of the immune response, strength and persistence of stimulation determines migration and cytokine secretion of dendritic cells. Blood 2004;104:1066–1074

    PubMed  CAS  Google Scholar 

  121. Setterblad N, Roucard C, Bocaccio C. Composition of MHC class II enriched lipid microdomains is modified during maturation of primary dendritic cells. J Leukoc Biol 2003;74:40–48

    PubMed  CAS  Google Scholar 

  122. Serbina NV, Salazar-Mather TP, Biron CA. TNFα/iNOS producing dendritic cells mediate innate immune defence against bacterial infection. Immunity 2003;19:59–70

    PubMed  CAS  Google Scholar 

  123. Van Gisbergen KPJM, Sanchez-Hernandez M, Geijtenbeck TBH, van Kooyk Y. Neutrophils mediate immune modulation of dendritic cells through glycosylation dependent interactions between Mac-1 and DC-SIGN. J Exp Med 2005;201:1281–1292

    PubMed  CAS  Google Scholar 

  124. Reth M. Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immun 2002;3:1129–1135

    CAS  Google Scholar 

  125. Matsue H, Edelbaum D, Shalhevet D. Generation and function of oxygen species in dendritic cells during antigen presentation. J Immunol 2001;171:3010–3018

    Google Scholar 

  126. Vulcano M, Dusi S, Lissandrene D. Toll-like receptor mediated regulation of NADPH oxidase in human dendritic cells. J Immunol 2004;173:5749–5756

    PubMed  CAS  Google Scholar 

  127. Maemura K, Zheng Q, Wada T. Reactive oxygen species are essential mediators in antigen presentation by Kupffer cells. Immunol Cell Biol 2005;83:336–343

    PubMed  CAS  Google Scholar 

  128. Bhattacharyya S, Sen P, Wallet M. Immunoregulation of dendritic cells by interleukin 10 is mediated through suppression of the PI3kinase/Akt pathway and of IkB kinase. Blood 2004;104:1100–1109

    PubMed  CAS  Google Scholar 

  129. Ronger-Savle S, Valladeau J, Claudy A. TGFbeta inhibits CD1d expression on dendritic cells. J Invest Derm 2005;124:116–118

    PubMed  CAS  Google Scholar 

  130. Cohen N, Mouly E, Hamdi H. GILZ expression in human dendritic cells redirects their maturation and prevents antigen specific T lymphocyte response. Blood 2006;107:2037–2044

    PubMed  CAS  Google Scholar 

  131. Piercy J, Petyrova S, Tchilion EZ, Beverley PCL. CD45 negatively regulates TNF and Il-6 production in dendritic cells. Immunology 2006;118:250–256

    PubMed  CAS  Google Scholar 

  132. Vlad G, Cortesini R, Suciu-Foca N. Bidirectional interaction of antigen specific regulatory T cells and tolerogenic antigen presenting cells. J Immunol 2005;174:5907–5914

    PubMed  CAS  Google Scholar 

  133. Vivier E, Dalad M. Tolerogenic dendritic cells. Blood 2006;107:2591–2592

    CAS  Google Scholar 

  134. Tracey KJ, Vlassara H, Cerami A. Cachectin/tumor necrosis factor. Lancet 1989;i:1122–1125

    Google Scholar 

  135. Andersson U, Erlandsson-Harris H, Yang H, Tracey KJ. HMGB1 as a DNA binding cytokine. J Leukoc Biol 2002;72:1084–1091

    PubMed  CAS  Google Scholar 

  136. Oppenhein JJ, Yong DE. Alarmins: chemotactic activators of the immune response. Curr Opin Immunol 2005;17:359–365

    Google Scholar 

  137. Tang D, Kang R, Xiao W. Nuclear hsp72 as a negative regulator of oxidative stress induced HMGB1 release. J Immunol 2007;178:7376–7384

    PubMed  CAS  Google Scholar 

  138. Goeddel DV. Signal transduction by TNFa. Chest 1999;166:suppl 69S–73S

    Google Scholar 

  139. Wajant H, Pfizenmaier K, Scheueriel P. TNFa signaling. Cell Death Differ 2003;10:45–65

    PubMed  CAS  Google Scholar 

  140. MacEwan DJ. TNF ligands and receptors-a matter of life and death. Br J Pharmacol 2002;135:855–875

    PubMed  CAS  Google Scholar 

  141. Hsu H, Shu H-B, Pan M-G, Goeddel DV. TRADD-TRAF2 and TRADD-FADD inter-actions define two distinct TNF-R I signal pathways. Cell 1996;84:299–308

    PubMed  CAS  Google Scholar 

  142. Wullaert A, Heyninck K, Beyaert R. Mechanisms of crosstalk between TNFa induced NF-κB in hepatocytes. Biochem Pharmacol 2006;72:1090–1101

    PubMed  CAS  Google Scholar 

  143. Temkin V, Karin M. From death receptor to reactive oxygen species and c-Jun N-terminal protein kinase: RIP1 odyssey. Immunol Rev 2007;220:8–21

    PubMed  CAS  Google Scholar 

  144. Heller RA, Song K, Fan N, Chang DJ. The p70 TNF-R mediates cytotoxicity. Cell 1002;70:47–56

    Google Scholar 

  145. Liu J, Lin A. Wiring the cell signaling circuitry by NFkB and JNK cross-talk and its applications in human disease. Oncogene 2007;26:3267–3278

    PubMed  CAS  Google Scholar 

  146. Duckell CA. Apoptosis and NFkB. J Clin Invest 2002;109:579–580

    Google Scholar 

  147. Gupta S, Kim C, Yu L, Gollapudi SA. A role of FADD in increased apoptosis in aged humans. J Clin Immunol 2004;24:24–29

    PubMed  CAS  Google Scholar 

  148. Lombardo E, Alvarez-Barrientos A, Maroto B. TLR4 mediated survival of macrophages is MyD88 dependent and requires TNFα autocrine signaling. J Immunol 2007;178:3731–3739

    PubMed  CAS  Google Scholar 

  149. Dempsey PW, Doyle SE, He JQ, Cheng Q. The signaling adaptors and pathway activated by the TNF superfamily. Cytokine Growth Factor Rev 2003;14:193–209

    PubMed  CAS  Google Scholar 

  150. Papa S, Bubici C, Zazzeranni F. NF-κB mediated control of the JNK cascade. Cell Death Differ 2006;13:712–729

    PubMed  CAS  Google Scholar 

  151. Reddy SAG, Huang J, Kiao WSL. PI 3-kinase as a mediator of TNFa induced NFkB activation. J Immunol 2000;164:1355–1365

    PubMed  CAS  Google Scholar 

  152. Gupta SA. A decision between life and death during TNFa induced NFkB activation. J Clin Immunol 2002;22:185–194

    PubMed  CAS  Google Scholar 

  153. Wang J, Li C, Liu Y. JAB1 determines the response of RA synovial fibroblasts to TNFα. Am J Pathol 2006;169:889–902

    PubMed  CAS  Google Scholar 

  154. Wang CY, Mayo MW, Korneluk RG. NFkB antiapoptosis. Science 1998;281:1680–1683

    PubMed  CAS  Google Scholar 

  155. Shen H-M, Pervaiz S. TNF receptor superfamily-induced cell death: redox dependent exution. FASEB J 2006;20:1589–1598

    PubMed  CAS  Google Scholar 

  156. Meylan E, Tschopp J. The RIP kinases: crucial integrators of cellular stress. Trends Biochem Sci 2005;30:151–159

    PubMed  CAS  Google Scholar 

  157. Kelliher MB, Grim S, Ishida Y. The death domain kinase RIP mediates the TNF-induced NF-κB signal. Immunity 1998;8:297–303

    PubMed  CAS  Google Scholar 

  158. Festjens F, van den Berghe T, Cornelis S, Vandenabeele P. RIP-1, a kinase on the crossroads of a cell’s decision to live or die. Cell Death Differ 2007;14:400–410

    PubMed  CAS  Google Scholar 

  159. Malewicz M, Zeller N, Yilmaz ZB, Weih F. NFkB controls the balance between Fas and TNF cell death pathways during T cell receptor induced apoptosis via the target gene A20. J Biol Chem 2003;278:32825–32833

    PubMed  CAS  Google Scholar 

  160. Pettus BJ, Bielawski J, Porcelli AM. The sphingosine kinase: sphingosine-1-phosphate pathway mediates cyclooxygenase 2 induction and PGE2 production in response to TNFa. FASEB J 2003;17:1411–1421

    PubMed  CAS  Google Scholar 

  161. Andrade RM, Wessendorp M, Portillo JAC. TRAF6 dependent CD40 signaling primes macrophages to acquire anti-microbial activity in response to TNFa. J Immunol 2005;175:6014–6021

    PubMed  CAS  Google Scholar 

  162. Zakharova M, Ziegler HK. Paradoxical anti-inflammatory actions of TNFα:inhibition of Il-12 and Il-23 via TNF.RI in macrophages and dendritic cells. J Immunol 2005;175:5024–5033

    PubMed  CAS  Google Scholar 

  163. Toh M-L, Aeberli D, Lacey D. Regulation of Il-1 and TNF-receptors and function by endogenous MIF. J Immunol 2006;177:4818–4825

    PubMed  CAS  Google Scholar 

  164. Hoi AY, Hickey MJ, Hall P. MIF deficiency attenuates macrophage recruitment, GN and lethality in MRL/lpr mice. J Immunol 2006;177:5687–5696

    PubMed  CAS  Google Scholar 

  165. Calandra T, Roger T. Macrophage migration inhibitory factor: a regulator of innate immunity. Nat Rev Immunol 2003;3:791–800

    PubMed  CAS  Google Scholar 

  166. Bucala R, Donnelly SC. Macrophage migration inhibitory factor. Immunity 2007;26:281–285

    PubMed  CAS  Google Scholar 

  167. Anderson P. Post-transcriptional regulation of tumour necrosis factor α production. Ann Rheum Dis 2000;59(Suppl I):i3–i5

    PubMed  CAS  Google Scholar 

  168. Lord DJ, McIntosh BC, Greenberg PD, Nelson BH. The Il-2 receptor promotes lymphocyte proliferation and induction of c-myc, bcl-2, bcl-x genes through the transcription domain of Stat 5. J Immunol 2000;164:2533–2541

    PubMed  CAS  Google Scholar 

  169. Kovanen PE, Rosenwald A, Fu J. Analysis of γc family cytokine target genes: DUSP5 as a regulator in Il-2 signaling. J Biol Chem 2003;278:5205–5213

    PubMed  CAS  Google Scholar 

  170. Tenbrock K, Juang Y-T, Tolnay M, Tsokos GC. The cyclic AMP response element modulator suppresses Il-2 production in stimulated T cells by a chromatin dependent mechanism. J Immunol 2003;170:2971–2976

    PubMed  CAS  Google Scholar 

  171. Gong D, Malek TR. Cytokine dependent Blimp1 expression in activated T cells inhibits Il-2 production. J Immunol 2007;178:242–252

    PubMed  CAS  Google Scholar 

  172. Lawrence A, Tato CM, Davidson TS. Interleukin 2 signaling via Stat5 constrains T helper 17 cell activation. Immunity 2007;26:371–381

    Google Scholar 

  173. Ivanov II, McKenzie BS, Zhou L. The orphan nuclear receptor RORγ directs the differentiation program of Il-17 + T helper cells. Cell 2006;126:1121–1133

    PubMed  CAS  Google Scholar 

  174. Skov S, Rienech K, Bovin LF. Histone deacetylase inhibitors: a new class of immunosuppressives targeting a novel signal pathway for CD154 expression. Blood 2003;101:1430–1438

    PubMed  CAS  Google Scholar 

  175. Stepkowski SM, Kao J, Wang M-E. Mannich base NC1153 promotes longterm allograft survival. J Immunol 2005;175:4236–4246

    PubMed  CAS  Google Scholar 

  176. Ii M, Matsunaga N, Hazeki K. TAK242 selectively inhibits TLR4 mediated cytokine production through suppression of signaling. Mol Pharm 2006;69:1288–1295

    CAS  Google Scholar 

  177. Sevigny CP, Li L, Awad AS. Activation of adenosine 2A receptors attenuates allograft rejection and alloantigen recognition. J Immunol 2009;178:4240–4249

    Google Scholar 

  178. Ohteki T, Tada H, Ishida K. Essential role of dendritic cell derived Il-15 as a mediator of inflammatory responses in vivo. J Exp Med 2006;203:2329–2338

    PubMed  CAS  Google Scholar 

  179. Wilks AF, Harpur AG. Cytokine signal transduction and the JAK family of protein tyrosine kinases. Bioessays 1994;15:313–320

    Google Scholar 

  180. Leaman DW, Leung S, Li X, Stark GR. Regulation of Stat dependent pathways by growth factors and cytokines. FASEB J 1995;10:1578–1588

    Google Scholar 

  181. Trinchieri G. Interleukin 12, a proinflammatory cytokine with immunoregulatory functions. Annu Rev Immunol 1995;13:251–275

    PubMed  CAS  Google Scholar 

  182. Ahn H-J, Tomura M, Yu WG. Requirement for distinct Janus kinases and Stat proteins in T cell proliferation versus IFNγ production with Il-12 stimulation. J Immunol 1998;161:5893–5900

    PubMed  CAS  Google Scholar 

  183. Yoshimura A, Naka T, Kubo M. SOCS proteins, cytokine signalling and immune regulation. Nat Rev Immunol 2007;7(6):454–466

    PubMed  CAS  Google Scholar 

  184. Yu CR, Mahdi RM, Ebong S. SOCS3 regulates proliferation and activation of T helper cells. J Biol Chem 2003;278:29752–29759

    PubMed  CAS  Google Scholar 

  185. O’Neill LAJ, Dinarello CA. The Il-1 receptor/Toll-like receptor superfamily; crucial receptors for inflammation and host defence. Immunol Today 2000;21:206–209

    PubMed  Google Scholar 

  186. Eder J. Tumour necrosis factor and Il-1 signalling: do MAP kinases connect it all. Trends Pharm Sci 1997;18:319–322

    PubMed  CAS  Google Scholar 

  187. Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol 2002;192:1–15

    PubMed  CAS  Google Scholar 

  188. Cimino F, Esposito F, Ammendola R, Russo T. Gene regulation by reactive oxygen species. Curr Top Cell Regul 1997;35:123–148

    PubMed  CAS  Google Scholar 

  189. Bonizzi G, Piette J, Merville M-P, Bours V. Cell type specific role for reactive oxygen species in NFkB activation by interleukin 1. Biochem Pharm 1999;59:7–11

    Google Scholar 

  190. Huang W-C, Chen J-J, Inoue H, Chen C-C. Tyrosine phosphorylation of I-κB kinase α/β is involved in TNFα induced cyclooxygenase -2 expression. J Immunol 2003;170:4756–4775

    Google Scholar 

  191. de Oliveira-Marques V, Cyrne L, Marinho HS, Antunes F. A study of NF-κB activation by H202: relevance in inflammation and synergy with TNFa. J Immunol 2007;178:3893–3902

    PubMed  CAS  Google Scholar 

  192. Yao J, Kim TW, Qin J. Il-1 induced TAK1 dependent versus MEKK3 dependent NF-κB activations bifurcate at Il-1Receptor associated kinase modification. J Biol Chem 2007;282:6075–6089

    PubMed  CAS  Google Scholar 

  193. Wullaert A, Heyninck K, Janssens S, Beyaert R. Ubiquitin: tool and target for intracellular NFkB inhibitors. Trends Immunol 2006;27:533–540

    PubMed  CAS  Google Scholar 

  194. Wan YY, Chi H, Xie M. The kinase TAK1 integrates cytokine receptor signaling for T cell development, survival and function. Nat Immunol 2006;7:851–859

    PubMed  CAS  Google Scholar 

  195. Alford KA, Glennie S, Turrell BR. Hsp27 in inflammatory gene expression and TAK1 mediated signaling. J Biol Chem 2007;282:6232–6241

    PubMed  CAS  Google Scholar 

  196. Li X. IRAK4 in TLR/Il-1R signaling: possible clinical applications. Eur J Immunol 2008;38:614–618

    PubMed  CAS  Google Scholar 

  197. Aggarwal BB. Signal pathways of the TNF superfamily. Nat Rev Immunol 2003;3:745–746

    PubMed  CAS  Google Scholar 

  198. Takeuchi M, Rothe M, Goeddel DV. Anatomy of TRAF2. Distinct domains for NFkB activation and association with TNF signaling proteins. J Biol Chem 1996;271:19935–19942

    PubMed  CAS  Google Scholar 

  199. Unoue J-I, Ishida T, Tasukamoto N, Kobayashi N. TNFa receptor associated factor (TRAF) family adapter proteins that mediate cytokine signaling. Exp Cell Res 2000;254:14–24

    Google Scholar 

  200. Grech AP, Amesbury M, Chan T. TRAF2 differentially regulates the canonical and non-canonical NFkB activation in mature B cells. Immunity 2004;21:629–642

    PubMed  CAS  Google Scholar 

  201. Chambers TJ. Regulation of the differentiation and function of osteoclasts. J Pathol 2000;192:4–13

    PubMed  CAS  Google Scholar 

  202. King CG, Kobayashi T, Cejas PJ. TRAF6 is a T cell intrinsic negative regulator required for maintenance of immune homeostasis. Nat Med 2006;12:1088–1092

    PubMed  CAS  Google Scholar 

  203. Hacker H, Redecke V, Blagoev B. Specificity in TLR signaling through distinct effector function of TRAF3 and TRAF6. Nature 2006;439:204–207

    PubMed  Google Scholar 

  204. Banchereau J, Bazan F, Blanchard D. The CD40 antigen and its ligand. Annu Rev Immunol 1994;12:811–922

    Google Scholar 

  205. van den Blink B, Juffermans NP, ten Hove T. p38 MAPkinase inhibition increases cytokine release by macrophages. J Immunol 2001;166:582–587

    PubMed  CAS  Google Scholar 

  206. Munroe ME, Bishop GA. Costimulatory function for T cell CD40. J Immunol 2007;178:671–682

    PubMed  CAS  Google Scholar 

  207. Baccam M, Woo S-Y, Vinson C, Bishop GA. CD40 mediated transcriptional regulation of the Il-6 gene in B lymphocytes. J Immunol 2003;176:3099–3108

    Google Scholar 

  208. Bishop GA, Hostager BB, Brown KD. Mechanisms of TNF-receptor associated factor (TRAF) regulation in B lymphocytes. J Leukoc Biol 2002;72:19–23

    PubMed  CAS  Google Scholar 

  209. Xie P, Hostager BS, Munroe ME, Moore CR, Bishop GA. Cooperation between TRAF1 and 2 in CD40 signaling. J Immunol 2006;176:5388–5400

    PubMed  CAS  Google Scholar 

  210. Qian Y, Qin J, Cui G. Act.1, a negative regulator in CD40 and BAFF mediated B cell survival. Immunity 2004;21:575–587

    PubMed  CAS  Google Scholar 

  211. Walls TH. Tnf/Tnf.R family members in costimulation of T cell receptors. Annu Rev Immunol 2005;23:23–68

    Google Scholar 

  212. Del Prete F, DeCarli M, D’Elios M. CD30 mediated signaling promotes development of human T helper type 2 T cells. J Exp Med 1995;182:1655–1661

    PubMed  CAS  Google Scholar 

  213. Gommermann JL, Browning JL. Lymphotoxin/ Light, lymphoid microenvironments and autoimmune disease. Nat Rev Immunol 2003;3:642–655

    Google Scholar 

  214. Takahashi C, Mittler RS, Vella AT. 4–1BB is a bonefide CD8 T cell survival signal. J Immunol 1999;162:5037–5040

    PubMed  CAS  Google Scholar 

  215. Myers LM, Vella AT. Interfering T cell effector and regulatory function through CD137(4–1BB) costimulation. Trends Immunol 2005;26:440–447

    PubMed  CAS  Google Scholar 

  216. Weinberg AD, Evans DE, Thalhofer C. Generation of T cell memory: molecular and cellular events following OX40 engagement. J Leukoc Biol 2004;75:962–972

    PubMed  CAS  Google Scholar 

  217. Kim MY, Bekiaris V, McConnell FM. OX40 signals during priming on dendritic cells inhibit CD4 cell proliferation. J Immunol 2004;174:1433–1437

    Google Scholar 

  218. Nocentini G, Riccardi C. GITR: a multifaceted regulator of immunity belonging to the TNF receptor superfamily. Eur J Immunol 2005;35:1016–1022

    PubMed  CAS  Google Scholar 

  219. Bushell A, Wood K. GITR ligation blocks allograft protection by regulatory T cells without enhancing effector T cell function. Am J Transplant 2007;7:759–68

    PubMed  CAS  Google Scholar 

  220. Bae E, Kim WJ, Kang YM. GITR related protein mediated macrophage stimulation may induce cell adhesion and cytokine expression in RA. Clin Exp Immunol 2007;148:410–418

    PubMed  CAS  Google Scholar 

  221. Schmidt AM, Yan SD, Yan SF, Stern DM. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses. J Clin Invest 2001;108:949–995

    PubMed  CAS  Google Scholar 

  222. Dalton TP, Shertzer HG, Puga A. Regulation of gene expression by reactive oxygen. Annu Rev Pharmacol Toxicol 1999;39:67–99

    PubMed  CAS  Google Scholar 

  223. Morbini P, Villa C, Campo I. The receptor for advanced glycation end-products and its ligands: a new inflammatory pathway in lung disease. Modern Pathol 2006;19:1437

    CAS  Google Scholar 

  224. Dougan M, Dranoff G. Inciting inflammation: the RAGE about tumor promotion. J Exp Med 2008;205:267–270

    PubMed  CAS  Google Scholar 

  225. Zen K, Chen CX, Chen YY. Receptor for AGEPs mediates neutrophil migration across intestinal epithelium. J Immunol 2007;178:2483–2490

    PubMed  CAS  Google Scholar 

  226. Pullerits R. Soluble receptor for AGEPs triggers a proinflammatory cascade via β2-integrin Mac-1. Arthr Rheum 2006;54:3898–3907

    CAS  Google Scholar 

  227. Lu C, He JC, Cai W. AGE Receptor-1 is a negative regulator of the inflammatory response to AGE in mesangial cells. Proc Natl Acad Sci U S A 2004;101:11767–11772

    PubMed  CAS  Google Scholar 

  228. Fukami K, Ueda S, Yamagishi S-I. AGEs activate mesangial TGFβ-Smad signaling via an angiotensin II type I receptor interaction. Kid Int 2004;66:2137–2147

    CAS  Google Scholar 

  229. Moore KW, de Waal Malefyt R, Coffman RL, O’Garra A. Interleukin 10 and the interleukin 10 receptor. Annu Rev Immunol 2001;19:683–765

    PubMed  CAS  Google Scholar 

  230. O’Garra M, Vieira PL, Vieira P, Goldfeld AE. Il-10 producing and naturally occurring CD4 + T regs: limiting collateral damage. J Clin Invest 2004;114:1372–1377

    PubMed  Google Scholar 

  231. Williams LM, Ricchetti G, Sarma V, Smallie T, Foxwell BMH. Interleukin 10 suppression of myeloid cell activation. Immunology 2004;113:281–292

    PubMed  CAS  Google Scholar 

  232. Grutz G. New insights into the molecular mechanisms of Il-10 mediated immunosuppression. J Leukoc Biol 2005;77:3–15

    PubMed  Google Scholar 

  233. Antoniu T T, Parek-Min K H, Ivashkiv L B. Kinetics of Il-10 induced gene expression in human macrophages. J Immunol 2005;210:87–95

    Google Scholar 

  234. Riley JK, Takeda K, Akina S, Schreiber RB. Interleukin 10 Receptor signaling through the Jak-Stat pathway. J Biol Chem 1999;274:16513–16521

    PubMed  CAS  Google Scholar 

  235. Dean JL, Sully G, Clark AR, Saklatvala J. The involvement of AU-rich element-binding proteins in p38 MAP kinase mediated RNA stabilization. Cell Signal 2004;16:1113–1121

    PubMed  CAS  Google Scholar 

  236. Murray PJ. The endogenous Il-10/Stat3 mediated anti-inflammatory response. Curr Opin Pharmacol 2006;6:379–386

    PubMed  CAS  Google Scholar 

  237. Cao SA, Liu J, Chesi M. Differential regulation of Il-12 and Il-10 gene expression in macrophages by leucine-zipper transcription factor c-Maf. J Immunol 2002;169:5715–5725

    PubMed  CAS  Google Scholar 

  238. Riemann M, Endres R, Liptay S. Bcl-3 negatively regulates transcription of the interleukin-10 gene in macrophages. J Immunol 2005;175:3560–3356

    PubMed  CAS  Google Scholar 

  239. Perrier P, Martinez FO, Locati M. Distinct transcriptional programs activated by Il-10 with or without lipopolysaccharide in dendritic cells:induction of the B cell activating chemokine CXCL13. J Immunol 2004;172:7031–7042

    PubMed  CAS  Google Scholar 

  240. Renauld J-C. Class II cytokine receptors and their ligands. Key antiviral and inflammatory modulators. Nat Rev Immunol 2003;3:667–669

    PubMed  CAS  Google Scholar 

  241. El Kasmi KC, Smith AM, Williams L. A transcriptional repressor and corepressor induced by Stat3 regulated anti-inflammatory signaling pathway. J Immunol 2007;179:7215–7219

    PubMed  CAS  Google Scholar 

  242. Jankovic D, Trinchieri G. Il-10 or not Il-10. Nat Immunol 2007;8:1281–1283

    PubMed  CAS  Google Scholar 

  243. Vincenti F, Luggen M. T cell costimulation. Annu Rev Med 2007;58:347–358

    PubMed  CAS  Google Scholar 

  244. McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol 2007;7(6):429–442

    PubMed  CAS  Google Scholar 

  245. Hirota K, Yoshitomi H. Preferential recruitment of CCR6 expressing Th-17 cells to inflamed joints via CCL20 in RA and animal model. J Exp Med 2007;204:2803–2812

    PubMed  CAS  Google Scholar 

  246. Sacre SM, Andreakos E, Kirikidis S. Toll-like receptor adaptor proteins MyD88 and Mal contribute destructive processes in a human model of RA. Am J Pathol 2007;170:518–525

    PubMed  CAS  Google Scholar 

  247. Sakaguchi S, Sakaguchi N, Yoshitoni H. Spontaneous development of autoimmune arthritis due to genetic anomaly of T cell signal transduction. Semin Immunol 2006;18:199–106

    PubMed  CAS  Google Scholar 

  248. Hoffmann MH, Tuncel J, Skriner K. RA33 is a major stimulator of autoimmunity in rats with pristane induced arthritis. J Immunol 2007;179:7568–7576

    PubMed  CAS  Google Scholar 

  249. Kikly K, Liu L, Na S, Sedgwick JD. The Il-23/Th17 axis. Curr Opin Immunol 2006;18:670–675

    PubMed  CAS  Google Scholar 

  250. van den Berg WB, Van Lant PL, Joosten L. Amplifying elements of arthritis and joint destruction. Ann Rheum Dis 2007;66(Suppl iiii):iii45–48

    PubMed  CAS  Google Scholar 

  251. Perper SJ, Browning B, Burkly LC. Tweak is a novel arthritogenic mediator. J Immunol 2006;177:2610–2620

    PubMed  CAS  Google Scholar 

  252. Feldmann M, Maini RN. Anti-TNFa therapy of RA. Annu Rev Immunolol 2001;19:163–196

    CAS  Google Scholar 

  253. Rossol M, Meusch U. TNF activation of monocytes. J Immunol 2007;179:4239–4248

    PubMed  CAS  Google Scholar 

  254. Dai S-M, Shan Z-Z, Xu H, Nishioka K. Cellular targets of interleukin 18 in rheumatoid arthritis. Ann Rheum Dis 2007;66:1411–1418

    PubMed  CAS  Google Scholar 

  255. Firestein GS. Inhibiting inflammation in rheumatoid arthritis. N Engl J Med 2006;354:80–82

    PubMed  CAS  Google Scholar 

  256. Pollard LC. Inhibiting costimulatory activation of T cells. Drugs 2007;67(1):1–9

    PubMed  CAS  Google Scholar 

  257. Rahman A. Regulators of cytokine signalling in RA. Rheumatology 2007;46:1745–1746

    PubMed  CAS  Google Scholar 

  258. Paniagua RT, Sharpe O, Ho PP. Selective tyrosine kinase inhibition by imatinib mesylate for the treatment of autoimmune arthritis. J Clin Invest 2006;116:2633–2642

    PubMed  CAS  Google Scholar 

  259. Li X, Makarov SS. Essential role of NF-κB in the tumor-like phenotype of arthritic synoviocytes. Proc Natl Acad Sci U S A 2006;103:17432–17437

    PubMed  CAS  Google Scholar 

  260. Vasilopoulos Y, Gkretsi V, Armaka M, Aidinis V, Kollias G. Actin cytoskeleton dynamics linked to synovial fibroblast activation as a novel pathogenic principle in TNF-driven arthritis. Ann Rheum Dis 2007;66(Suppl iii):iii23–iii28

    PubMed  CAS  Google Scholar 

  261. Alsaleh G, Messer L, Semaan N. BAFF synthesis by rheumatoid synoviocytes. Arthritis Rheum 2007;56:3202–3214

    PubMed  CAS  Google Scholar 

  262. Smolen JS, Aletaha D, Koeller M, Weisman MH, Emery P. New therapies for treatment of rheumatoid arthritis. Lancet 2007;370:1861–1873

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Nigel Wardle .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Wardle, E.N. (2009). Signalling in Immune Reactions. In: Guide to Signal Pathways in Immune Cells. Humana Press. https://doi.org/10.1007/978-1-60327-538-5_12

Download citation

Publish with us

Policies and ethics