Skip to main content

Normal Erectile Physiology

Part of the Contemporary Endocrinology book series (COE)

Abstract

The human penis is composed of the paired dorsal corpora cavernosa and the ventral corpus spongiosum each of which is encased within a fibrous sheath, the tunica albuginea, and then all of which are enclosed within Buck’s fascia, Colles’ fascia, and the skin. The spongiosum contains the urethra and is contiguous with the glans distally. The arterial supply to the penis is from the four terminal branches of the paired penile arteries, which are themselves branches of the internal pudendal arteries. The external iliac, obturator, vesical, and femoral arteries provide accessory arterial supply to the penile artery in some cases. Venous outflow originates from postcavernous venules that coalesce to form emissary veins. These veins empty into the cavernous vein, the deep dorsal vein, and the superficial dorsal vein depending on their origin within the penis. Efferent innervation is from parasympathetic, sympathetic, and somatic sources. Somatosensory afferents course from the penis to central sites.

The maintenance of penile flaccidity and the erectile response are controlled via intercommunicating supraspinal and spinal reflex pathways. During the flaccid state, antierectile neural input, primarily via sympathetic efferents, acts to limit blood flow to the penis to a quantity sufficient to meet physiologic needs but insufficient for erection. Following either physical or psychological sexual stimulation proerectile neural signals are sent to the penis primarily via parasympathetic tracts. This input initiates the erectile response via neurotransmitter release onto postsynaptic smooth muscle cells within the corporal bodies. Nitric Oxide (NO) is the main proerectile neurotransmitter. The resultant molecular cascade leads to a decrease in intracellular Ca2+ and arteriolar smooth muscle relaxation. This relaxation allows for increased blood flow and subsequent corporal engorgement with increasing penile rigidity. As the corpora become engorged, the emissary veins are compressed by within the tunica albuginea limiting venous outflow. The increased arterial inflow and limited venous outflow increases intracorporal pressure and leads to erection. As proerectile input ceases, the secondary molecular messenger cGMP is hydrolyzed allowing for a rise intracellular Ca2+, subsequent smooth muscle contraction, decreased penile blood flow and a return to flaccid state physiology.

Keywords

  • Corpora
  • Glans
  • Venous drainage
  • Peripheral innervations
  • Tumescence and erection
  • Detumescence
  • Spinal and supraspinal control
  • Proerectile transmitters

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-536-1_2
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-536-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 2.1
Fig. 2.2
Fig. 2.3
Fig. 2.4

References

  1. Andersson, K. E., & Wagner, G. (1995). Physiology of penile erection. Physiological Reviews, 75(1), 191–236.

    CAS  PubMed  Google Scholar 

  2. Hoznek, A., Rahmouni, A., Abbou, C., Delmas, V., & Colombel, M. (1998). The suspensory ligament of the penis: An anatomic and radiologic description. Surgical and Radiologic Anatomy, 20(6), 413–417.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Bitsch, M., Kromann-Andersen, B., Schou, J., & Sjontoft, E. (1990). The elasticity and the tensile strength of tunica albuginea of the corpora cavernosa. The Journal of Urology, 143(3), 642–645.

    CAS  PubMed  Google Scholar 

  4. Droupy, S., Benoit, G., Giuliano, F., & Jardin, A. (1997). Penile arteries in humans. Origin–distribution–variations. Surgical and Radiologic Anatomy, 19(3), 161–167.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Newman, H. F., & Northup, J. D. (1981). Mechanism of human penile erection: An overview. Urology, 17(5), 399–408.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Hanyu, S. (1988). Morphological changes in penile vessels during erection: The mechanism of obstruction of arteries and veins at the tunica albuginea in dog corpora cavernosa. Urologia Internationalis, 43(4), 219–224.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Lue, T. F., Takamura, T., Schmidt, R. A., Palubinskas, A. J., & Tanagho, E. A. (1983). Hemodynamics of erection in the monkey. The Journal of Urology, 130(6), 1237–1241.

    CAS  PubMed  Google Scholar 

  8. Giuliano, F., Rampin, O., Bernabe, J., & Rousseau, J. P. (1995). Neural control of penile erection in the rat. Journal of the Autonomic Nervous System, 55(1–2), 36–44.

    CAS  CrossRef  PubMed  Google Scholar 

  9. Giuliano, F., & Rampin, O. (2004). Neural control of erection. Physiology & Behavior, 83(2), 189–201.

    CAS  Google Scholar 

  10. Lepor, H., Gregerman, M., Crosby, R., Mostofi, F. K., & Walsh, P. C. (1985). Precise localization of the autonomic nerves from the pelvic plexus to the corpora cavernosa: A detailed anatomical study of the adult male pelvis. The Journal of Urology, 133(2), 207–212.

    CAS  PubMed  Google Scholar 

  11. Giuliano, F., Bernabe, J., Jardin, A., & Rousseau, J. P. (1993). Antierectile role of the sympathetic nervous system in rats. The Journal of Urology, 150(2 Pt 1), 519–524.

    CAS  PubMed  Google Scholar 

  12. Steers, W. D. (2000). Neural pathways and central sites involved in penile erection: Neuroanatomy and clinical implications. Neuroscience and Biobehavioral Reviews, 24(5), 507–516.

    CAS  CrossRef  PubMed  Google Scholar 

  13. Janig, W., & McLachlan, E. M. (1987). Organization of lumbar spinal outflow to distal colon and pelvic organs. Physiological Reviews, 67(4), 1332–1404.

    CAS  PubMed  Google Scholar 

  14. Whitelaw, G. P., & Smithwick, R. H. (1951). Some secondary effects of sympathectomy; with particular reference to disturbance of sexual function. The New England Journal of Medicine, 245(4), 121–130.

    CAS  CrossRef  PubMed  Google Scholar 

  15. Schmidt, M. H., & Schmidt, H. S. (1993). The ischiocavernosus and bulbospongiosus muscles in mammalian penile rigidity. Sleep, 16(2), 171–183.

    CAS  PubMed  Google Scholar 

  16. Halata, Z., & Munger, B. L. (1986). The neuroanatomical basis for the protopathic sensibility of the human glans penis. Brain Research, 371(2), 205–230.

    CAS  CrossRef  PubMed  Google Scholar 

  17. McKenna, K. E. (1998). Central control of penile erection. International Journal of Impotence Research, 10(Suppl 1), S25–S34.

    PubMed  Google Scholar 

  18. Christ, G. J., & Lue, T. (2004). Physiology and biochemistry of erections. Endocrine, 23(2–3), 93–100.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Dean, R. C., & Lue, T. F. (2005). Physiology of penile erection and pathophysiology of erectile dysfunction. The Urologic clinics of North America, 32(4), 379–395. v.

    CrossRef  PubMed  Google Scholar 

  20. Saenz de Tejada, I., Angulo, J., Cellek, S., et al. (2004). Physiology of erectile function. The Journal of Sexual Medicine, 1(3), 254–265.

    CAS  CrossRef  PubMed  Google Scholar 

  21. Fournier, G. R., Jr., Juenemann, K. P., Lue, T. F., & Tanagho, E. A. (1987). Mechanisms of venous occlusion during canine penile erection: An anatomic demonstration. The Journal of Urology, 137(1), 163–167.

    PubMed  Google Scholar 

  22. Andersson, K. E. (2001). Neurophysiology/pharmacology of erection. International Journal of Impotence Research, 13(Suppl 3), S8–S17.

    CrossRef  PubMed  Google Scholar 

  23. Saenz de Tejada, I., Kim, N., Lagan, I., Krane, R. J., & Goldstein, I. (1989). Regulation of adrenergic activity in penile corpus cavernosum. The Journal of Urology, 142(4), 1117–1121.

    CAS  PubMed  Google Scholar 

  24. Lue, T. F. (2000). Erectile dysfunction. The New England Journal of Medicine, 342(24), 1802–1813.

    CAS  CrossRef  PubMed  Google Scholar 

  25. Berridge, M. J. (1993). Inositol trisphosphate and calcium signalling. Nature, 361(6410), 315–325.

    CAS  CrossRef  PubMed  Google Scholar 

  26. Cellek, S., Rees, R. W., & Kalsi, J. (2002). A Rho-kinase inhibitor, soluble guanylate cyclase activator and nitric oxide-releasing PDE5 inhibitor: Novel approaches to erectile dysfunction. Expert Opinion on Investigational Drugs, 11(11), 1563–1573.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Walsh, M. P. (1991). The Ayerst Award Lecture 1990. Calcium-dependent mechanisms of regulation of smooth muscle contraction. Biochemistry and Cell Biology  =  Biochimie et Biologie Cellulaire, 69(12), 771–800.

    CAS  CrossRef  PubMed  Google Scholar 

  28. Rees, R. W., Ziessen, T., Ralph, D. J., Kell, P., Moncada, S., & Cellek, S. (2002). Human and rabbit cavernosal smooth muscle cells express Rho-kinase. International Journal of Impotence Research, 14(1), 1–7.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Somlyo, A. P., & Somlyo, A. V. (2000). Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and non-muscle myosin II. The Journal of Physiology, 522(Pt 2), 177–185.

    CAS  CrossRef  PubMed  Google Scholar 

  30. Wang, H., Eto, M., Steers, W. D., Somlyo, A. P., & Somlyo, A. V. (2002). RhoA-mediated Ca2+ sensitization in erectile function. The Journal of Biological Chemistry, 277(34), 30614–30621.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Ignarro, L. J., Bush, P. A., Buga, G. M., Wood, K. S., Fukuto, J. M., & Rajfer, J. (1990). Nitric oxide and cyclic GMP formation upon electrical field stimulation cause relaxation of corpus cavernosum smooth muscle. Biochemical and Biophysical Research Communications, 170(2), 843–850.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Saenz de Tejada, I., Goldstein, I., Azadzoi, K., Krane, R. J., & Cohen, R. A. (1989). Impaired neurogenic and endothelium-mediated relaxation of penile smooth muscle from diabetic men with impotence. The New England Journal of Medicine, 320(16), 1025–1030.

    CAS  CrossRef  PubMed  Google Scholar 

  33. Bors, E., & Comarr, A. E. (1960). Neurological disturbances in sexual function with special reference to 529 patients with spinal cord injury. Urological Survey, 10, 191–222.

    Google Scholar 

  34. Comarr, A. E. (1971). Sexual concepts in traumatic cord and cauda equina lesions. The Journal of Urology, 106(3), 375–378.

    CAS  PubMed  Google Scholar 

  35. Chapelle, P. A., Durand, J., & Lacert, P. (1980). Penile erection following complete spinal cord injury in man. British Journal of Urology, 52(3), 216–219.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Luiten, P. G., ter Horst, G. J., Karst, H., & Steffens, A. B. (1985). The course of paraventricular hypothalamic efferents to autonomic structures in medulla and spinal cord. Brain Research, 329(1–2), 374–378.

    CAS  CrossRef  PubMed  Google Scholar 

  37. Sawchenko, P. E., & Swanson, L. W. (1982). Immunohistochemical identification of neurons in the paraventricular nucleus of the hypothalamus that project to the medulla or to the spinal cord in the rat. The Journal of Comparative Neurology, 205(3), 260–272.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Wagner, C. K., & Clemens, L. G. (1991). Projections of the paraventricular nucleus of the hypothalamus to the sexually dimorphic lumbosacral region of the spinal cord. Brain Research, 539(2), 254–262.

    CAS  CrossRef  PubMed  Google Scholar 

  39. Argiolas, A., & Gessa, G. L. (1991). Central functions of oxytocin. Neuroscience and Biobehavioral Reviews, 15(2), 217–231.

    CAS  CrossRef  PubMed  Google Scholar 

  40. Argiolas, A., & Melis, M. R. (1995). Oxytocin-induced penile erection. Role of nitric oxide. Advances in Experimental Medicine and Biology, 395, 247–254.

    CAS  PubMed  Google Scholar 

  41. MacLean, P. D., & Ploog, D. W. (1962). Cerebral representation of penile erection. Journal of Neurophysiology, 25, 29–55.

    Google Scholar 

  42. Liu, Y. C., Salamone, J. D., & Sachs, B. D. (1997). Impaired sexual response after lesions of the paraventricular nucleus of the hypothalamus in male rats. Behavioral Neuroscience, 111(6), 1361–1367.

    CAS  CrossRef  PubMed  Google Scholar 

  43. Yanagimoto, M., Honda, K., Goto, Y., & Negoro, H. (1996). Afferents originating from the dorsal penile nerve excite oxytocin cells in the hypothalamic paraventricular nucleus of the rat. Brain Research, 733(2), 292–296.

    CAS  CrossRef  PubMed  Google Scholar 

  44. Giuliano, F., & Rampin, O. (2000). Central neural regulation of penile erection. Neuroscience and Biobehavioral Reviews, 24(5), 517–533.

    CAS  CrossRef  PubMed  Google Scholar 

  45. MacLean, P. D., Denniston, R. H., & Dua, S. (1963). Further studies on cerebral representation of penile erection: Caudal thalamus, midbrain, and pons. Journal of Neurophysiology, 26, 274–293.

    Google Scholar 

  46. Paredes, R. G., & Baum, M. J. (1997). Role of the medial preoptic area/anterior hypothalamus in the control of masculine sexual behavior. Annual Review of Sex Research, 8, 68–101.

    CAS  PubMed  Google Scholar 

  47. Courtois, F. J., & Macdougall, J. C. (1988). Higher CNS control of penile responses in rats: The effect of hypothalamic stimulation. Physiology & Behavior, 44(2), 165–171.

    CAS  CrossRef  Google Scholar 

  48. Oomura, Y., Yoshimatsu, H., & Aou, S. (1983). Medial preoptic and hypothalamic neuronal activity during sexual behavior of the male monkey. Brain Research, 266(2), 340–343.

    CAS  CrossRef  PubMed  Google Scholar 

  49. Liu, Y. C., Salamone, J. D., & Sachs, B. D. (1997). Lesions in medial preoptic area and bed nucleus of stria terminalis: Differential effects on copulatory behavior and noncontact erection in male rats. The Journal of Neuroscience, 17(13), 5245–5253.

    CAS  PubMed  Google Scholar 

  50. Stefanick, M. L., & Davidson, J. M. (1987). Genital responses in noncopulators and rats with lesions in the medical preoptic area or midthoracic spinal cord. Physiology & Behavior, 41(5), 439–444.

    CAS  CrossRef  Google Scholar 

  51. McKenna, K. E. (2000). Some proposals regarding the organization of the central nervous system control of penile erection. Neuroscience and Biobehavioral Reviews, 24(5), 535–540.

    CAS  CrossRef  PubMed  Google Scholar 

  52. Chang, A. Y., Kuo, T. B., Chan, J. Y., & Chan, S. H. (1996). Concurrent elicitation of electroencephalographic desynchronization and penile erection by cocaine in the rat. Synapse, 24(3), 233–239.

    CAS  CrossRef  PubMed  Google Scholar 

  53. Chen, K. K., Chan, J. Y., Chang, L. S., Chen, M. T., & Chan, S. H. (1992). Elicitation of penile erection following activation of the hippocampal formation in the rat. Neuroscience Letters, 141(2), 218–222.

    CAS  CrossRef  PubMed  Google Scholar 

  54. Marson, L., & McKenna, K. E. (1990). The identification of a brainstem site controlling spinal sexual reflexes in male rats. Brain Research, 515(1–2), 303–308.

    CAS  CrossRef  PubMed  Google Scholar 

  55. Tang, Y., Rampin, O., Giuliano, F., & Ugolini, G. (1999). Spinal and brain circuits to motoneurons of the bulbospongiosus muscle: Retrograde transneuronal tracing with rabies virus. The Journal of Comparative Neurology, 414(2), 167–192.

    CAS  CrossRef  PubMed  Google Scholar 

  56. Veronneau-Longueville, F., Rampin, O., Freund-Mercier, M. J., et al. (1999). Oxytocinergic innervation of autonomic nuclei controlling penile erection in the rat. Neuroscience, 93(4), 1437–1447.

    CAS  CrossRef  PubMed  Google Scholar 

  57. Melis, M. R., Spano, M. S., Succu, S., & Argiolas, A. (1999). The oxytocin antagonist d(CH2)5Tyr(Me)2-Orn8-vasotocin reduces non-contact penile erections in male rats. Neuroscience Letters, 265(3), 171–174.

    CAS  CrossRef  PubMed  Google Scholar 

  58. Bjorklund, A., Lindvall, O., & Nobin, A. (1975). Evidence of an incerto-hypothalamic dopamine neurone system in the rat. Brain Research, 89(1), 29–42.

    CAS  CrossRef  PubMed  Google Scholar 

  59. Skagerberg, G., & Lindvall, O. (1985). Organization of diencephalic dopamine neurones projecting to the spinal cord in the rat. Brain Research, 342(2), 340–351.

    CAS  CrossRef  PubMed  Google Scholar 

  60. Pehek, E. A., Thompson, J. T., Eaton, R. C., Bazzett, T. J., & Hull, E. M. (1988). Apomorphine and haloperidol, but not domperidone, affect penile reflexes in rats. Pharmacology, Biochemistry and Behavior, 31(1), 201–208.

    CAS  CrossRef  Google Scholar 

  61. Hull, E. M., Eaton, R. C., Markowski, V. P., Moses, J., Lumley, L. A., & Loucks, J. A. (1992). Opposite influence of medial preoptic D1 and D2 receptors on genital reflexes: Implications for copulation. Life Sciences, 51(22), 1705–1713.

    CAS  CrossRef  PubMed  Google Scholar 

  62. Warner, R. K., Thompson, J. T., Markowski, V. P., et al. (1991). Microinjection of the dopamine antagonist cis-flupenthixol into the MPOA impairs copulation, penile reflexes and sexual motivation in male rats. Brain Research, 540(1–2), 177–182.

    CAS  CrossRef  PubMed  Google Scholar 

  63. Argiolas, A., Collu, M., D’Aquila, P., Gessa, G. L., Melis, M. R., & Serra, G. (1989). Apomorphine stimulation of male copulatory behavior is prevented by the oxytocin antagonist d(CH2)5 Tyr(Me)-Orn8-vasotocin in rats. Pharmacology, Biochemistry and Behavior, 33(1), 81–83.

    CAS  CrossRef  Google Scholar 

  64. Tang, Y., Rampin, O., Calas, A., Facchinetti, P., & Giuliano, F. (1998). Oxytocinergic and serotonergic innervation of identified lumbosacral nuclei controlling penile erection in the male rat. Neuroscience, 82(1), 241–254.

    CAS  CrossRef  PubMed  Google Scholar 

  65. Bitran, D., & Hull, E. M. (1987). Pharmacological analysis of male rat sexual behavior. Neuroscience and Biobehavioral Reviews, 11(4), 365–389.

    CAS  CrossRef  PubMed  Google Scholar 

  66. Bancila, M., Verge, D., Rampin, O., et al. (1999). 5-Hydroxytryptamine2C receptors on spinal neurons controlling penile erection in the rat. Neuroscience, 92(4), 1523–1537.

    CAS  CrossRef  PubMed  Google Scholar 

  67. Chen, K. K., Chan, S. H., Chang, L. S., & Chan, J. Y. (1997). Participation of paraventricular nucleus of hypothalamus in central regulation of penile erection in the rat. The Journal of Urology, 158(1), 238–244.

    CAS  CrossRef  PubMed  Google Scholar 

  68. Melis, M. R., & Argiolas, A. (1997). Role of central nitric oxide in the control of penile erection and yawning. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 21(6), 899–922.

    CAS  CrossRef  Google Scholar 

  69. Sato, Y., Christ, G. J., Horita, H., Adachi, H., Suzuki, N., & Tsukamoto, T. (1999). The effects of alterations in nitric oxide levels in the paraventricular nucleus on copulatory behavior and reflexive erections in male rats. The Journal of Urology, 162(6), 2182–2185.

    CAS  CrossRef  PubMed  Google Scholar 

  70. Sato, Y., Horita, H., Kurohata, T., Adachi, H., & Tsukamoto, T. (1998). Effect of the nitric oxide level in the medial preoptic area on male copulatory behavior in rats. The American Journal of Physiology, 274(1 Pt 2), R243–R247.

    CAS  PubMed  Google Scholar 

  71. Melis, M. R., Succu, S., Iannucci, U., & Argiolas, A. (1997). Oxytocin increases nitric oxide production in the paraventricular nucleus of the hypothalamus of male rats: Correlation with penile erection and yawning. Regulatory Peptides, 69(2), 105–111.

    CAS  CrossRef  PubMed  Google Scholar 

  72. Melis, M. R., Succu, S., Mauri, A., & Argiolas, A. (1998). Nitric oxide production is increased in the paraventricular nucleus of the hypothalamus of male rats during non-contact penile erections and copulation. The European Journal of Neuroscience, 10(6), 1968–1974.

    CAS  CrossRef  PubMed  Google Scholar 

  73. Argiolas, A., Melis, M. R., Murgia, S., & Schioth, H. B. (2000). ACTH- and alpha-MSH-induced grooming, stretching, yawning and penile erection in male rats: Site of action in the brain and role of melanocortin receptors. Brain Research Bulletin, 51(5), 425–431.

    CAS  CrossRef  PubMed  Google Scholar 

  74. Wikberg, J. E. (1999). Melanocortin receptors: Perspectives for novel drugs. European Journal of Pharmacology, 375(1–3), 295–310.

    CAS  CrossRef  PubMed  Google Scholar 

  75. Argiolas, A., & Melis, M. R. (2005). Central control of penile erection: Role of the paraventricular nucleus of the hypothalamus. Progress in Neurobiology, 76(1), 1–21.

    CAS  CrossRef  PubMed  Google Scholar 

  76. Wessels, H. (2000). Melanocortin receptor agonists, penile erection, and sexual motivation: Human studies with Melanotan II. International Journal of Impotence Research, 12(4), 74–79.

    CrossRef  Google Scholar 

  77. Giuliano, F., Rampin, O., Brown, K., Courtois, F., Benoit, G., & Jardin, A. (1996). Stimulation of the medial preoptic area of the hypothalamus in the rat elicits increases in intracavernous pressure. Neuroscience Letters, 209(1), 1–4.

    CAS  CrossRef  PubMed  Google Scholar 

  78. Melis, M. R., Stancampiano, R., & Argiolas, A. (1994). Nitric oxide synthase inhibitors prevent N-methyl-d-aspartic acid-induced penile erection and yawning in male rats. Neuroscience Letters, 179(1–2), 9–12.

    CAS  CrossRef  PubMed  Google Scholar 

  79. Melis, M. R., Stancampiano, R., & Argiolas, A. (1994). Penile erection and yawning induced by paraventricular NMDA injection in male rats are mediated by oxytocin. Pharmacology, Biochemistry and Behavior, 48(1), 203–207.

    CAS  CrossRef  Google Scholar 

  80. de Groat, W. C., & Booth, A. M. (1993). Neural control of penile erection. In C. A. Maggi (Ed.), The autonomic nervous system (pp. 465–524). London, UK: Harwood Academic Publishers.

    Google Scholar 

  81. Melis, M. R., Succu, S., Spano, M. S., & Argiolas, A. (1999). Morphine injected into the paraventricular nucleus of the hypothalamus prevents noncontact penile erections and impairs copulation: Involvement of nitric oxide. The European Journal of Neuroscience, 11(6), 1857–1864.

    CAS  CrossRef  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Auffenberg, G.B., Helfand, B.T., McVary, K.T. (2011). Normal Erectile Physiology. In: McVary, K. (eds) Contemporary Treatment of Erectile Dysfunction. Contemporary Endocrinology. Humana Press. https://doi.org/10.1007/978-1-60327-536-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-536-1_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-535-4

  • Online ISBN: 978-1-60327-536-1

  • eBook Packages: MedicineMedicine (R0)