Skip to main content

Why Is the Nervous System Vulnerable to Oxidative Stress?

  • Chapter
  • First Online:

Abstract

The nervous system is especially vulnerable to reactive oxygen species (ROS)-mediated injury for the following reasons. (1) High oxygen consumption of the brain for high energy needs, that is, high O2 consumption, results in excessive ROS produced. (2) Neuronal membranes are rich in polyunsaturated fatty acids (PUFA), which are particularly vulnerable to free radical attack. (3) The ratio of membrane surface area to cytoplasmic volume is high. (4) Specialized neuronal conduction and synaptic transmission activity depend on efficient membrane function. (5) Extended axonal morphology is prone to peripheral injury. (6) Neuronal anatomic network is vulnerable to disruptions. (7) The excitotoxic glutamate is the major effector that causes oxidative stress (OS). (8) The high Ca2+ traffic across neuronal membranes and interference of ion transport increase intracellular Ca2+, often leading to OS. (9) Auto-oxidation of neurotransmitters can generate O2 and quinones that reduce glutathione. (10) Iron is formed throughout the brain, and brain damage readily releases iron ions capable of catalyzing free radical reactions. (11) Antioxidant defense mechanisms are modest, in particular, low levels of catalase, glutathione peroxidase, and vitamin E. (12) ROS directly downregulate proteins of tight junctions and indirectly activate matrix metalloproteinases (MMP) that contribute to open the blood–brain barrier (BBB). (13) Activated microglia produce ROS and cytokines in a perpetual process. (14) Cytochrome P450 produces ROS. (15) Loss of trophic support can activate NADPH oxidase, which increases ROS. (16) The presence of hemoglobin within the neural tissues secondary to spontaneous, iatrogenic, or traumatic causes is neurotoxic. Heme and iron are released and promote ROS. (17) Neuronal mitochondria generate O2. (18) The interaction of NO with superoxide can be implicated also in neuronal degeneration. (19) Neuronal cells are nonreplicating and thus are sensitive to ROS. In comparison with other organs, the neuronal network may be especially vulnerable to ROS-mediated injury because of the following anatomic, physiological, and biochemical properties of the brain.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Carey J, editor. Brain facts: a primer on the brain and nervous system. Washington, DC: The Society for Neuroscience; 2002.

    Google Scholar 

  2. Halliwell B. Oxidative stress and neurodegeneration: where are we now? J Neurochem. 2006;97:1634–58.

    Article  CAS  PubMed  Google Scholar 

  3. Chen CT, Green JT, Orr SK, Bazinet RP. Regulation of brain polyunsaturated fatty acid uptake and turnover. Prostaglandins Leukot Essent Fatty Acids. 2008;79:85–91.

    Article  CAS  PubMed  Google Scholar 

  4. Dyall SC, Michael-Titus AT. Neurological benefits of omega-3 fatty acids. Neuromolecular Med. 2008;10:219–35.

    Article  CAS  PubMed  Google Scholar 

  5. Mailly F, Marin P, Israël M, Glowinski J, Prémont J. Increases in external glutamate and NMDA receptor activation contribute to H2O2-induced neuronal apoptosis. J Neurochem. 1999;73:1181–88.

    Article  CAS  PubMed  Google Scholar 

  6. Phillis JW, Oregan MH. Characterization of modes of release of amino acids in the ischemic/reperfused rat cerebral cortex. Neurochem Int. 2003;43:461–7.

    Article  CAS  PubMed  Google Scholar 

  7. Vannucci RC, Brucklaher RM, Vannucci SJ. Intracellular calcium accumulation during the evolution of hypoxic-ischemic brain damage in the immature rat. Brain Res Dev Brain Res. 2001;126:117–20.

    Article  CAS  PubMed  Google Scholar 

  8. González A, Schmid A, Salido GM, Camello PJ, Pariente JA. XOD-catalyzed ROS generation mobilizes calcium from intracellular stores in mouse pancreatic acinar cells. Cell Signal. 2002;14:153–9.

    Article  PubMed  Google Scholar 

  9. Ameijeiras AH, Alvarez EM, Sanchez S. Autoxidation of MAO-mediated metabolism of dopamine as a potential cause of oxidative stress: role of ferrous and ferric ions. Neurochem Int. 2004;45:103–16.

    Article  Google Scholar 

  10. Troadec JD, Marien M, Darios F, Hartmann A, Ruberg M, Colpaert F, et al. Noradrenaline provides long-term protection to dopaminergic neurons by reducing oxidative stress. J Neurochem. 2001;79:200–10.

    Article  CAS  PubMed  Google Scholar 

  11. Spencer JP, Jenner P, Daniel SE, Lees AJ, Marsden DC, Halliwell B. Conjugates of catecholamines with cysteine and GSH in Parkinson’s disease: possible mechanisms of formation involving reactive oxygen species. J Neurochem. 1998;71:2112–22.

    Article  CAS  PubMed  Google Scholar 

  12. Stankiewicz JM, Brass SD. Role of iron in neurotoxicity: a cause for concern in the elderly? Curr Opin Clin Nutr Metab Care. 2009;12:22–9.

    Article  CAS  PubMed  Google Scholar 

  13. Hider RC, Ma Y, Molina-Holgado F, Gaeta A, Roy S. Iron chelation as a potential therapy for neurodegenerative disease. Biochem Soc Trans. 2008;36:1304–8.

    Article  CAS  PubMed  Google Scholar 

  14. Asha Devi S. Aging brain: prevention of oxidative stress by vitamin E and exercise. ScientificWorldJournal. 2009;9:366–72.

    PubMed  Google Scholar 

  15. Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39:44–84.

    Article  CAS  PubMed  Google Scholar 

  16. Kim GW, Gasche Y, Grzeschik S, Copin JC, Maier CM, Chan PH. Neurodegeneration in striatum induced by the mitochondrial toxin 3-nitropropionic acid: role of matrix metalloproteinase-9 in early blood–brain barrier disruption. J Neurosci. 2003;23:8733–42.

    CAS  PubMed  Google Scholar 

  17. Pun PB, Lu J, Moochhala S. Involvement of ROS in BBB dysfunction. Free Radic Res. 2009;43:348–64.

    Article  CAS  PubMed  Google Scholar 

  18. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science. 2005;308:1314–8.

    Article  CAS  PubMed  Google Scholar 

  19. Duncan AJ, Heales SJ. Nitric oxide and neurological disorders. Mol Aspects Med. 2005;26:67–96.

    Article  CAS  PubMed  Google Scholar 

  20. Miksys S, Tyndale RF. The unique regulation of brain cytochrome P450 2 (CYP2) family enzymes by drugs and genetics. Drug Metab Rev. 2004;36:313–33.

    Article  CAS  PubMed  Google Scholar 

  21. Howard LA, Miksys S, Hoffmann E, Mash D, Tyndale RF. Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol. 2003;138:1376–86.

    Article  CAS  PubMed  Google Scholar 

  22. Puntambekar P, Mukherjea D, Jajoo S, Ramkumar V. Essential role of Rac1/NADPH oxidase in nerve growth factor induction of TRPV1 expression. J Neurochem. 2005;95:1689–703.

    Article  CAS  PubMed  Google Scholar 

  23. Sánchez-Carbente MR, Castro-Obregón S, Covarrubias L, Narváez V. Motoneuronal death during spinal cord development is mediated by oxidative stress. Cell Death Differ. 2005;12:279–91.

    Article  PubMed  Google Scholar 

  24. Phumala N, Porasuphatana S, Unchern S, Pootrakul P, Fucharoen S, Chantharaksri U. Hemin: a possible cause of oxidative stress in blood circulation of beta-thalassemia/hemoglobin E disease. Free Radic Res. 2003;37:129–35.

    Article  CAS  PubMed  Google Scholar 

  25. Alash AI. Oxygen therapeutics: can we tame hemoglobin? Nat Rev Drug Discov. 2004;3:152–9.

    Article  Google Scholar 

  26. Asaeda M, Sakamoto M, Kurosaki M, Tabuchi S, Kamitani H, Yokota M, et al. A non-enzymatic derived arachidonyl peroxide, 8-iso-prostaglandin F2-alpha, in cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage participates in the pathogenesis of delayed cerebral vasospasm. Neurosci Lett. 2005;373:222–5.

    Article  CAS  PubMed  Google Scholar 

  27. Chen-Roetling J, Li Z, Chen M, Awe OO, Regan RF. Heme oxygenase activity and hemoglobin neurotoxicity are attenuated by inhibitors of the MEK/ERK pathway. Neuropharmacology. 2009;56:922–8.

    Article  CAS  PubMed  Google Scholar 

  28. Kudin AP, Debska-Vielhaber G, Kunz WS. Characterization of superoxide production sites in isolated rat brain and skeletal muscle mitochondria. Biomed Pharmacother. 2005;59:163–8.

    Article  CAS  PubMed  Google Scholar 

  29. Fishel ML, Vasko MR, Kelley MR. DNA repair in neurons: so if they don’t divide what’s to repair? Mutat Res. 2007;614:24–36.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Friedman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Friedman, J. (2011). Why Is the Nervous System Vulnerable to Oxidative Stress?. In: Gadoth, N., Göbel, H. (eds) Oxidative Stress and Free Radical Damage in Neurology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60327-514-9_2

Download citation

Publish with us

Policies and ethics