Skip to main content

Bone Density Data Among Technologies and Manufacturers

  • Chapter
  • First Online:
  • 1428 Accesses

Part of the book series: Current Clinical Practice ((CCP))

Abstract

The extraordinary advances in bone density technology over the last 40 years have enhanced the physician’s ability to detect and manage metabolic bone disease. At the same time, these advances have created a dilemma as physicians have attempted to compare results obtained on early dual-photon (DPA) devices with today’s dual-energy X-ray (DXA) devices. As DXA technology has advanced, data from pencil-beam systems are being compared with data from fan-array systems. Compounding this issue is that data from one manufacturer’s DXA device may need to be compared to data from another manufacturer’s device, which has been calibrated very differently. This situation is not dissimilar to circumstances created during the evolution of other types of quantitative measurement techniques used in clinical medicine. For example, the measurement of some parameter in blood may have initially been performed using one type of assay, only to be later replaced by a different assay. There may be different ranges of normal, depending upon the assay and even depending upon the laboratory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    See Chapter 4 for a discussion of the ESP.

  2. 2.

    Formerly the Committee for Standards in DXA.

  3. 3.

    The terms total hip and total femur are used interchangeably. Neither is exactly correct. Total femur is preferred but total hip is more commonly used.

  4. 4.

    This device is not available in the United States.

  5. 5.

    This device is no longer sold in the United States. It has been replaced by dxr-online™ which utilizes the same technology for analysis of digital X rays sent via the Internet.

  6. 6.

    See Chapter 2 for a discussion of the various regions of interest in the forearm.

  7. 7.

    See Chapter 3 for a discussion of the %CV.

  8. 8.

    See Chapter 9 for a discussion of the World Health Organization criteria for the diagnosis of osteoporosis based on the measurement of BMD.

  9. 9.

    See Chapter 3 for a discussion of the derivation of the T-score.

  10. 10.

    See Chapter 10 for a discussion of predicting fracture risk with bone densitometry.

  11. 11.

    The T-score and young-adult z-score are conceptually identical. At the time of this study, the standard score comparison to the average peak BMD was called the “young-adult z-score” on Lunar devices. The same comparison on Hologic devices was called the T-score. Lunar devices today utilize the T-score terminology.

  12. 12.

    National Health and Nutrition Examination Survey III.

  13. 13.

    This is denoted as the 1998 NHANES III data because of the year in which it was published.

  14. 14.

    This is denoted as the 1995 NHANES III data because of the year in which it was published.

  15. 15.

    See Chapter 10 for a discussion of FRAX™.

  16. 16.

    Area is calculated by multiplying the height x width.

  17. 17.

    Volume is calculated by multiplying the height x width x depth.

References

  1. Kelly TL, Slovik DM, Schoenfeld DA, Neer RM. Quantitative digital radiography versus dual photon absorptiometry of the lumbar spine. J Clin Endocrinol Metab 1988;67:839–844.

    Article  PubMed  CAS  Google Scholar 

  2. Pacifici R, Rupich R, Vered I, Fischer KC, Griffin M, Susman N, Avioli LV. Dual energy radiography (DER): a preliminary comparative study. Calcif Tissue Int 1988;43:189–191.

    Article  PubMed  CAS  Google Scholar 

  3. Holbrook TL, Barrett-Connor E, Klauber M, Sartoris D. A population-based comparison of quantitative dual-energy X-ray absorptiometry with dual-photon absorptiometry of the spine and hip. Calcif Tissue Int 1991;49:305–307.

    Article  PubMed  CAS  Google Scholar 

  4. Mazess RB, Barden HS. Measurement of bone by dual-photon absorptiometry (DPA) and dual-energy X-ray absorptiometry (DEXA). Ann Chir Gynaecol 1988;77:197–203.

    PubMed  CAS  Google Scholar 

  5. Lees B, Stevenson JC. An evaluation of dual-energy X-ray absorptiometry and comparison with dual-photon absorptiometry. Osteoporos Int 1992;2:146–152.

    Article  PubMed  CAS  Google Scholar 

  6. McClung M, Roberts L. Correlation of bone density measurements by 153-Gd and X-ray dual-photon absorptiometry. Abstract. J Bone Miner Res 1989;4:S368.

    Google Scholar 

  7. Arai H, Ito K, Nagao K, Furutachi M. The evaluation of three different bone densitometry systems: XR-26, QDR-1000, and DPX. Image Technol Inf Disp 1990;22:1–6.

    Google Scholar 

  8. Lai KC, Goodsitt MM, Murano R, Chesnut CH. A comparison of two dual-energy X-ray absorptiometry systems for spinal bone mineral measurement. Calcif Tissue Int 1992;50:203–208.

    Article  PubMed  CAS  Google Scholar 

  9. Pocock NA, Sambrook PN, Nguyen T, Kelly P, Freund J, Eisman JA. Assessment of spinal and femoral bone density by dual X-ray absorptiometry: comparison of Lunar and Hologic instruments. J Bone Miner Res 1992;7:1081–1084.

    Article  PubMed  CAS  Google Scholar 

  10. Genant HK, Grampp S, Gluer CC, et al. Universal standardization for dual X-ray absorptiometry: patient and phantom cross-calibration results. J Bone Miner Res 1994;9:1503–1514.

    Article  PubMed  CAS  Google Scholar 

  11. Steiger P. Standardization of spine BMD measurements. J Bone Miner Res 1995;10:1602–1603.

    Article  Google Scholar 

  12. Hanson J. Standardization of femur BMD. J Bone Miner Res 1997;12:1316–1317.

    Article  PubMed  CAS  Google Scholar 

  13. Lu Y, Fuerst T, Hui S, Genant HK. Standardization of bone mineral density at femoral neck, trochanter, and Ward’s triangle. Osteoporos Int 2001;12:438–444.

    Article  PubMed  CAS  Google Scholar 

  14. Shepherd JA, Cheng XG, Lu Y, et al. Universal standardization of forearm bone densitometry. J Bone Miner Res 2002;17:734–745.

    Article  PubMed  Google Scholar 

  15. Economos CD, Nelson ME, Fiatarone MA, et al. A multicenter comparison of dual-energy X-ray absorptiometers: in vivo and in vitro measurements of bone mineral content and density. J Bone Miner Res 1996;11:275–285.

    Article  PubMed  CAS  Google Scholar 

  16. Blake GM, Tong CM, Fogelman I. Inter-site comparison of the Hologic QDR-1000 dual-energy X-ray bone densitometer. Br J Radiol 1991;64:440–446.

    Article  PubMed  CAS  Google Scholar 

  17. Orwoll E, Oviatt SK, and the Nafarelin Bone Study Group. Longitudinal precision of dual-energy X-ray absorptiometry in a multicenter study. J Bone Miner Res 1991;6:191–197.

    Article  PubMed  CAS  Google Scholar 

  18. Kolta S, Ravaud P, Fechtenbaum J, Dougados M, Roux C. Accuracy and precision of 62 bone densitometers using a European spine phantom. Osteoporos Int 1999;10:14–19.

    Article  PubMed  CAS  Google Scholar 

  19. Gaither KW, Faulkner KG, Ostrem EC, Backman JK, Avecilla LS, McClung MR. Variations in calibration among like-manufacturer DXA systems. J Bone Miner Res 1996;11:S119.

    Google Scholar 

  20. Baim S, Leonard MB, Bianchi ML, et al. Official positions of the International Society for Clinical Densitometry and executive summary of the 2007 ISCD pediatric position development conference. J Clin Densitom 2008;11:6–21.

    Article  PubMed  Google Scholar 

  21. Steiger P, von Stetten E, Weiss H, Stein JA. Paired AP and lateral supine dual X-ray absorptiometry of the spine: initial results with a 32-detector system. Osteoporos Int 1991;1:190.

    Google Scholar 

  22. Mazess RB, Hanson JA, Payne R, Nord R, Wilson M. Axial and total body bone densitometry using a narrow-angle fan-beam. Osteoporos Int 2000;11:158–166.

    Article  PubMed  CAS  Google Scholar 

  23. Blake GM, Parker JC, Buxton FMA, Fogelman I. Dual X-ray absorptiometry: a comparison between fan-beam and pencil-beam scans. Br J Radiol 1993;66:902–906.

    Article  PubMed  CAS  Google Scholar 

  24. Pocock NA, Noakes KA, Majerovic Y, Griffiths MR. Magnification error of femoral geometry using fan-beam densitometers. Calcif Tissue Int 1997;60:8–10.

    Article  PubMed  CAS  Google Scholar 

  25. Eiken P, Barenholdt O, Bjorn Jensen L, Gram J, Pors Nielsen S. Switching from DXA pencil-beam to fan-beam. I: studies in vitro at four centers. Bone 1994;15:667–670.

    Article  PubMed  CAS  Google Scholar 

  26. Faulkner KG, Gluer CC, Estilo M, Genant HK. Cross-calibration of DXA equipment: upgrading from a Hologic QDR 1000/W to a QDR 2000. Calcif Tissue Int 1993;52:79–84.

    Article  PubMed  CAS  Google Scholar 

  27. Mazess RB, Barden HS. Evaluation of differences between fan-beam and pencil-beam densitometers. Calcif Tissue Int 2000;67:291–296.

    Article  PubMed  CAS  Google Scholar 

  28. Laskey MA, Crisp AJ, Cole TJ, Compston JE. Comparison of the effect of different reference data on Lunar DPX and Hologic QDR-1000 dual-energy X-ray absorptiometers. Br J Radiol 1992;65:1124–1129.

    Article  PubMed  CAS  Google Scholar 

  29. Faulkner KG, Roberts LA, McClung MR. Discrepancies in normative data between Lunar and Hologic DXA systems. Osteoporos Int 1996;6:432–436.

    Article  PubMed  CAS  Google Scholar 

  30. Looker AC, Wahner HW, Dunn WL, Calvo MS, Harris TB, Heyse SP, Johnston CC, Lindsay RL. Proximal femur bone mineral levels of US adults. Osteoporos Int 1995;5:389–409.

    Article  PubMed  CAS  Google Scholar 

  31. Looker AC, Wahner HW, Dunn WL, et al. Updated data on proximal femur bone mineral levels of US adults. Osteoporos Int 1998;8:468–489.

    Article  PubMed  CAS  Google Scholar 

  32. Greenspan SL, Bouxsein ML, Melton ME, et al. Precision and discriminatory ability of calcaneal bone assessment technologies. J Bone Miner Res 1997;12:1303–1313.

    Article  PubMed  CAS  Google Scholar 

  33. Grigorian M, Shepherd JA, Cheng XG, Njech CF, Toschke JO, Genant HK. Does osteoporosis classification using heel BMD agree across manufacturers? Osteoporos Int 2002;13:613–617.

    Article  PubMed  CAS  Google Scholar 

  34. Carter DR, Bouxsein ML, Marcus R. New approaches for interpreting projected bone densitometry data. J Bone Miner Res 1992;7:137–146.

    Article  PubMed  CAS  Google Scholar 

  35. Jergas M, Breitenseher M, Gluer CC, Yu W, Genant HK. Estimates of volumetric bone density from projectional measurements improve the discriminatory capability of dual X-ray absorptiometry. J Bone Miner Res 1995;10:1101–1110.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sydney Lou Bonnick MD, FACP .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonnick, S.L. (2010). Bone Density Data Among Technologies and Manufacturers. In: Bone Densitometry in Clinical Practice. Current Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-499-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-499-9_6

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-498-2

  • Online ISBN: 978-1-60327-499-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics