Skip to main content

Skeletal Anatomy in Densitometry

  • Chapter
  • First Online:
Bone Densitometry in Clinical Practice

Part of the book series: Current Clinical Practice ((CCP))

Abstract

Densitometry is primarily a quantitative measurement technique rather than a skeletal imaging technique. Nevertheless, there are unique aspects of skeletal anatomy in densitometry that must be appreciated to properly utilize the technology and interpret the quantitative results as well as the skeletal images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Appendix VIII for a list of CPT codes used in bone densitometry.

  2. 2.

    This is not the same grading system as now used to quantify aortic calcification on plain films or lateral DXA images of the spine. See Chapter 13 for a discussion of the 24-point and 8-point grading systems in use today.

  3. 3.

    See Chapter 4 for a discussion of spine phantoms, including the Hologic spine phantom.

  4. 4.

    See Chapter 9 for a discussion of the WHO criteria. They are also found in Appendix IV.

  5. 5.

    Although a mathematical conversion of one-third to a percentage would result in a value of 33.3%, the site when named as a percentage is called the 33% site and is located on the radius or forearm at a location that represents 33%, not 33.3% of the length of the ulna.

  6. 6.

    The Tromsø Study is a population-based study, conducted in Tromsø, Norway, that focuses on lifestyle-related diseases such as osteoporosis.

  7. 7.

    See Chapter 11 for a discussion of precision. Because precision is a measure of variability, an increase in precision is undesirable.

  8. 8.

    The calcaneus is also known as the os calcis or heel.

  9. 9.

    These impurities can replace the phosphate in the hydroxyapatite and may alter its physical properties.

  10. 10.

    Stochastic is an adjective that means random or subject to probabilities.

  11. 11.

    The term basic multicellular unit (BMU) is considered synonymous with bone remodeling unit (BRU).

  12. 12.

    The full name of these peptides is procollagen I carboxy-terminal or nitrogen-terminal extension peptide (PICP or PINP).

  13. 13.

    Osteocalcin is also known as bone GLA protein.

  14. 14.

    See Chapter 11 for a discussion of the importance of precision.

References

  1. Recker RR. Embryology, anatomy, and microstructure of bone. In: Coe FL, Favus MJ, eds. Disorders of bone and mineral metabolism. New York: Raven Press, 1992;219–240.

    Google Scholar 

  2. American Medical Association. Current procedural technology 2007. Professional edition. Chicago, IL: AMA Press, 2006: 314.

    Google Scholar 

  3. Dempster DW. Bone remodeling. In: Coe FL, Favus MJ, eds. Disorders of bone and mineral metabolism. New York: Raven Press, 1992;355–380.

    Google Scholar 

  4. Schlenker RA, Von Seggen WW. The distribution of cortical and trabecular bone mass along the lengths of the radius and ulna and the implications for in vivo bone mass measurements. Calcif Tissue Res 1976;20:41–52.

    Article  PubMed  CAS  Google Scholar 

  5. Johnson LC. Morphologic analysis in pathology: the kinetics of disease and general biology of bone. In Frost HM, ed. Bone biodynamics. Boston: Little, 1964: 543–564.

    Google Scholar 

  6. Rockoff SD, Sweet E. Bleustein J. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res 1969;3:163–175.

    Article  PubMed  CAS  Google Scholar 

  7. Nottestad SY, Baumel JJ, Kemmel DB, Recker RR, Heaney RP. The proportion of trabecular bone in human vertebrae. J Bone Miner Res 1987;2:221–229.

    Article  PubMed  CAS  Google Scholar 

  8. Eastell R, Mosekilde L, Hodgson SF, Riggs BL. Proportion of human vertebral body bone that is cancellous. J Bone Miner Res 1990;5:1237–1241.

    Article  PubMed  CAS  Google Scholar 

  9. Kuiper JW, Van Kuijk C, Grashuis JL. Distribution of trabecular and cortical bone related to geometry: a quantitative computed tomography study of the femoral neck. Invest Radiol 1997;32:83–89.

    Article  PubMed  CAS  Google Scholar 

  10. Werner C, Iversen BF, Therkildsen MH. Contribution of the trabecular component to mechanical strength and bone mineral content to the femoral neck. An experimental study on cadaver bones. Scan J Clin Lab Invest 1988;48:457–460.

    Article  CAS  Google Scholar 

  11. Bonnick SL. Bone densitometry techniques in modern medicine. In Rosen C, ed. Osteoporosis: diagnostic and therapeutic principles. Totowa: Humana Press, 1996:89–112.

    Google Scholar 

  12. Louis O, Van Den Winkel P, Covens P, Schoutens A, Osteaux M. Dual-energy X-ray absorptiometry of lumbar vertebrae: relative contribution of body and posterior elements and accuracy in relation with neutron activation analysis. Bone 1992;13:317–320.

    Article  PubMed  CAS  Google Scholar 

  13. Peel NFA, Johnson A, Barrington NA, Smith TWD, Eastell R. Impact of anomalous vertebral segmentation of measurements of bone mineral density. J Bone Miner Res 1993;8:719–723.

    Article  PubMed  CAS  Google Scholar 

  14. Bornstein PE, Peterson RR. Numerical variation of the presacral vertebral column in three population groups in North America. Am J Phys Anthropo 1996;25:139–146.

    Article  Google Scholar 

  15. Davis JW, Grove JS, Wasnich RD, Ross PD. Spatial relationships between prevalent and incident fractures. Bone 1999;24:261–264.

    Article  PubMed  CAS  Google Scholar 

  16. Nevitt MC, Ross PD, Palermo L, Musliner T, Genant HK, Thompson DE. Association of prevalent vertebral fractures, bone density, and alendronate treatment with incident vertebral fractures: effect of number and spinal location of fractures. Bone 1999;25:613–619.

    Article  PubMed  CAS  Google Scholar 

  17. Krolner B, Berthelsen B, Nielsen SP. Assessment of vertebral osteopenia-comparison of spinal radiography and dual-photon absorptiometry. Acta Radiol Diagn 1982;23:517–521.

    CAS  Google Scholar 

  18. Rand T, Seidl G, Kainberger F, et al. Impact of spinal degenerative changes on the evaluation of bone mineral density with dual energy X-ray absorptiometry (DXA). Calcif Tissue Int 1997;60:430–433.

    Article  PubMed  CAS  Google Scholar 

  19. Cann CE, Rutt BK, Genant HK. Effect of extraosseous calcification on vertebral mineral measurement. Calcif Tissue Int 1983;35:667.

    Google Scholar 

  20. Liu G, Peacock M, Eilam O, Dorulla G, Braunstein E, Johnston CC. Effect of osteoarthritis in the lumbar spine and hip on bone mineral density and diagnosis of osteoporosis in elderly men and women. Osteoporos Int 1997;7:564–569.

    Article  PubMed  CAS  Google Scholar 

  21. Frye MA, Melton LJ, Bryant SC, et al. Osteoporosis and calcification of the aorta. Bone Miner 1992;19:185–194.

    Article  PubMed  CAS  Google Scholar 

  22. Frohn J, Wilken T, Falk S, Stutte HJ, Kollath J, Hor G. Effect of aortic sclerosis on bone mineral measurements by dual-photon absorptiometry. J Nucl Med 1990;32:259–262.

    Google Scholar 

  23. Orwoll ES, Oviatt SK, Mann T. The impact of osteophytic and vascular calcifications on vertebral mineral density measurements in men. J Clin Endocrinol Metab 1990;70:1202–1207.

    Article  PubMed  CAS  Google Scholar 

  24. Reid IR, Evans MC, Ames R, Wattie DJ. The influence of osteophytes and aortic calcification on spinal mineral density in postmenopausal women. J Clin Endocrinol Metab 1991;72:1372–1374.

    Article  PubMed  CAS  Google Scholar 

  25. Banks LM, Lees B, MacSweeney JE, Stevenson JC. Do degenerative changes and aortic calcification influence long-term bone density measurements? Abstract. 8th International Workshop on Bone Densitometry 1991. Bad Reichenhall, Germany.

    Google Scholar 

  26. Drinka PJ, DeSmet AA, Bauwens SF, Rogot A. The effect of overlying calcification on lumbar bone densitometry. Calcif Tissue Int 1992;50:507–510.

    Article  PubMed  CAS  Google Scholar 

  27. Cherney DD, Laymon MS, McNitt A, Yuly S. A study on the influence of calcified intervertebral disk and aorta in determining bone mineral density. J Clin Densitom 2002;5:193–198.

    Article  PubMed  Google Scholar 

  28. Stutzman ME, Yester MV, Dubovsky EV. Technical aspects of dual-photon absorptiometry of the spine. Technique 1997;15:177–181.

    Google Scholar 

  29. Morgan SL, Lopez-Ben R, Nunnally N, et al. The effect of common artifacts lateral to the spine on bone mineral density in the lumbar spine. J Clin Densitom 2008;11:243–249.

    Article  PubMed  Google Scholar 

  30. Morgan SL, Lopez-Ben R, Nunnally N, et al. “Black hole artifacts”—a new potential pitfall for DXA accuracy? J Clin Densitom 2008;11:266–275.

    Article  PubMed  Google Scholar 

  31. Labio ED, Del Rosario DB, Strasser SI, McCaughan GW, Crawford BA. Effect of ascites on bone density measurement in cirrhosis. J Clin Densitom 2007;10:391–394.

    Article  PubMed  Google Scholar 

  32. Girardi FP, Parvataneni HK, Sandhu HS, et al. Correlation between vertebral body rotation and two-dimensional vertebral bone density measurement. Osteoporos Int 2001;12:738–740.

    Article  PubMed  CAS  Google Scholar 

  33. Rupich RC, Griffin MG, Pacifici R, Avioli LV, Susman N. Lateral dual-energy radiography: artifact error from rib and pelvic bone. J Bone Miner Res 1992;7:97–101.

    Article  PubMed  CAS  Google Scholar 

  34. Jergas M, Breitenseher M, Gluer CC, et al. Which vertebrae should be assessed using lateral dual-energy X-ray absorptiometry of the lumbar spine? Osteoporos Int 1995;5:196–204.

    Article  PubMed  CAS  Google Scholar 

  35. Goh JCH, Low SL, Bose K. Effect of femoral rotation on bone mineral density measurements with dual energy X-ray absorptiometry. Calcif Tissue Int 1995;57:340–343.

    Article  PubMed  CAS  Google Scholar 

  36. Cheng XG, Nicholson PH, Boonen S, et al. Effects of anteversion on femoral bone mineral density and geometry measured by dual energy X-ray absorptiometry: a cadaver study. Bone 1997;21:113–117.

    Article  PubMed  CAS  Google Scholar 

  37. Lekamwasam S, Lenora RSJ. Effect of leg rotation on hip bone mineral density measurements. J Clin Densitom 2003;6:331–336.

    Article  PubMed  Google Scholar 

  38. Bonnick SL, Nichols DL, Sanborn CF, Payne SG, Moen SM, Heiss CJ. Right and left proximal femur analyses: is there a need to do both? Calcif Tissue Int 1996;58:307–310.

    PubMed  CAS  Google Scholar 

  39. Faulkner KG, Genant HK, McClung M. Bilateral comparison of femoral bone density and hip axis length from single and fan beam DXA scans. Calcif Tissue Int 1995;56:26–31.

    Article  PubMed  CAS  Google Scholar 

  40. Rao AK, Reddy S, Rao DS. Is there a difference between right and left femoral bone density? J Clin Densitom 2000;3:57–61.

    Article  PubMed  CAS  Google Scholar 

  41. Petley GW, Taylor PA, Murrills AJ, Dennison E, Pearson G, Cooper C. An investigation of the diagnostic value of bilateral femoral neck bone mineral density measurements. Osteoporos Int 2000;11:675–679.

    Article  PubMed  CAS  Google Scholar 

  42. Nevitt MC, Lane NE, Scott JC, et al. Radiographic osteoarthritis of the hip and bone mineral density. Arth Rheum 1995;38:907–916.

    Article  CAS  Google Scholar 

  43. Preidler KW, White LS, Tashkin J, et al. Dual-energy X-ray absorptiometric densitometry in osteoarthritis of the hip. Influence of secondary bone remodeling of the femoral neck. Acta Radiol 1997;38:539–542.

    PubMed  CAS  Google Scholar 

  44. Hans D, Biot B, Schott AM, Meunier PJ. No diffuse osteoporosis in lumbar scoliosis but lower femoral bone density on the convexity. Bone 1996;18:15–17.

    Article  PubMed  CAS  Google Scholar 

  45. Shepherd JA, Fan B, Lu Y, et al. Comparison of BMD precision for Prodigy and Delphi spine and femur scans. Osteoporos Int 2006;17:1303–1308.

    Article  PubMed  CAS  Google Scholar 

  46. Mazess RB, Nord RH, Hanson JA, Barden HS. Bilateral measurement of femoral bone mineral density. J Clin Densitom 2000;3:133–140.

    Article  PubMed  CAS  Google Scholar 

  47. White J, Harris SS, Dallal GE, Dawson-Hughes B. Precision of single vs. bilateral hip bone mineral density scans. J Clin Densitom 2003;6:159–162.

    Article  PubMed  Google Scholar 

  48. Cole RE. Improving clinical decisions for women at risk of osteoporosis: dual-femur bone mineral density testing. J Am Osteopath Assoc 2008;108:289–295.

    PubMed  Google Scholar 

  49. Karjalainen P, Alhava EM. Bone mineral content of the forearm in a healthy population. Acta Radiol Oncol Radiat Phys Biol 1976;16:199–208.

    Article  Google Scholar 

  50. Borg J, Mollgaard A, Riis BJ. Single X-ray absorptiometry: performance characteristics and comparison with single-photon absorptiometry. Osteoporos Int 1995;5:377–381.

    Article  PubMed  CAS  Google Scholar 

  51. Huddleston AL, Rockwell D, Kulund DN, Harrison B. Bone mass in lifetime tennis athletes. JAMA 1980;244:1107–1109.

    Article  PubMed  CAS  Google Scholar 

  52. Kannus P, Haapasalo H, Sievanen H, Oja P, Vuori I. The site-specific effects of long-term unilateral activity on bone mineral density and content. Bone 1994;15:279–284.

    Article  PubMed  CAS  Google Scholar 

  53. Akesson K, Gardsell P, Sernbo I, Johnell O, Obrant KJ. Earlier wrist fracture: a confounding factor in distal forearm bone screening. Osteoporos Int 1992;2:201–204.

    Article  PubMed  CAS  Google Scholar 

  54. Berntsen GKR, Tollan A, Magnus JH, Søgaard AJ, Ringberg T, Fønnebø V. The Tromsø study: artifacts in forearm densitometry-prevalence and effects. Osteoporos Int 1999;10:425–432.

    Article  PubMed  CAS  Google Scholar 

  55. Mussolino ME, Looker AC, Madans JH, et al. Phalangeal bone density and hip fracture risk. Arch Intern Med 1997;157:433–438.

    Article  PubMed  CAS  Google Scholar 

  56. Huang C, Ross PD, Yates AJ, et al. Prediction of fracture risk by radiographic absorptiometry and quantitative ultrasound: a prospective study. Calcif Tissue Int 1998;6:380–384.

    Article  Google Scholar 

  57. Cummings SR, Black DM, Nevitt MC, et al. Bone density at various sites for prediction of hip fractures. Lancet 1993;341:72–75.

    Article  PubMed  CAS  Google Scholar 

  58. Lee CA, Einhorn TA. The bone organ system. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Second edition. San Diego, CA: Academic Press, 2001: 3–20.

    Chapter  Google Scholar 

  59. Parfitt AM. Skeletal heterogeneity and the purposes of bone remodeling. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Second edition. San Diego, CA: Academic Press, 2001:433–447.

    Chapter  Google Scholar 

  60. Eriksen EF, Axelrod DW, Melson F. Bone histomorphometry. New York: Raven Press, 1994:1–59.

    Google Scholar 

  61. Rasch PJ, Burke RK. Kinesiology and applied anatomy. Second edition. Philadelphia: Lee & Febiger, 1963:1–503.

    Google Scholar 

  62. Parfitt AM. Skeletal heterogeneity and the purposes of bone remodeling. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Second edition. San Diego, CA: Academic Press, 2001:433–447.

    Chapter  Google Scholar 

  63. Ross FP, Teitelbaum SL. Osteoclast biology. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Second edition. San Diego, CA: Academic Press, 2001:73–105.

    Chapter  Google Scholar 

  64. Lian JB, Stein GS. Osteoblast biology. In: Marcus R, Feldman D, Kelsey J, eds. Osteoporosis. Second edition. San Diego, CA: Academic Press, 2001:21–71.

    Chapter  Google Scholar 

  65. Bonnick SL, Shulman L. Monitoring osteoporosis therapy: bone mineral density, bone turnover markers, or both? Am J Med 2006;119:S25–S31.

    Article  PubMed  Google Scholar 

  66. Riis BJ, Hansen MA, Jensen AM, Overgaard K, Christiansen C. Low bone mass and fast rate of bone loss at menopause: equal risk factors for future fracture. A 15-year follow-up study. Bone 1996;19:9–12.

    Article  PubMed  CAS  Google Scholar 

  67. Garnero P, Hausherr E, Chapuy M-C, et al. Markers of bone resorption predict hip fracture in elderly women: The EPIDOS Prospective Study. J Bone Miner Res 1996;11:1531–1538.

    Article  PubMed  CAS  Google Scholar 

  68. Melton LJ III, Khosla S, Atkinson EJ, O’Fallon WM, Riggs BL. Relationship of bone turnover to bone density and fractures. J Bone Miner Res 2002;12:1083–1091.

    Article  Google Scholar 

  69. Parfitt AM. Letter to the editor. High bone turnover is intrinsically harmful: two paths to a similar conclusion. The Parfitt view. J Bone Miner Res 2002;17:1558–1559.

    Article  PubMed  Google Scholar 

  70. Riggs BL, Melton LJ, III. In reply. High bone turnover. The Riggs/Melton view. J Bone Miner Res 2002;17:1560.

    Article  Google Scholar 

  71. Riggs BL, Melton LJ III. Editorial. Bone turnover matters: the raloxifene treatment paradox of dramatic decreases in vertebral fractures without commensurate increases in bone density. J Bone Miner Res 2002;17:11–14.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sydney Lou Bonnick MD, FACP .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bonnick, S.L. (2010). Skeletal Anatomy in Densitometry. In: Bone Densitometry in Clinical Practice. Current Clinical Practice. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-499-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-499-9_2

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-498-2

  • Online ISBN: 978-1-60327-499-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics