Skip to main content

Prenatal β2-Adrenergic Receptor Signaling and Autism:

Dysmaturation and Retained Fetal Function

  • Chapter
Autism

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

The origins of idiopathic autism are prenatal. During fetal life, the β2-adrenergic receptor (B2AR) is important for growth as well as terminal differentiation of cells. Signaling from this receptor serves different purposes at different times in virtually all tissues during prenatal development, and provides modulation for most organ functions in postnatal life. Because the B2AR is one of the earliest appearing receptors in brain development, interference with it over time during gestation can theoretically affect the development of other neurotransmitter systems, as well as later functioning of the CNS and peripheral organs. Prenatal overstimulation of the B2AR has been linked to autism in dizygotic twins, and a higher prevalence of more active B2AR polymorphisms has been found in autism families.

Animal studies in developmental neurotoxicology show abnormal outcomes for brain and tissue function after prenatal administration of B2AR agonists. These studies have also shown that the fetal B2AR normally does not desensitize, and that several tissues can retain a fetal pattern of signaling after prenatal B2AR overstimulation. This type of dysregulated signaling may also be responsible for the differences in function noted in brain and other tissues of autistic children compared to controls. Results from published studies in many areas of autism research can be related to B2AR second messengers such as cAMP levels or to physiological patterns that are present during fetal life.

Prenatal interference with signaling from the B2AR is not likely to act alone in the development of autism. Downstream pathways stimulated by the B2AR can share components from signaling through other receptors, including those for stress hormones and cytokines. Effects on these shared pathways during gestation may lead to final common mechanisms for the development of autism, and may be a reason that single genes and individual environmental factors have not been identified to explain its causation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bailey A, Luthert P, Dean A, Harding B, Janota I, Montgomery M, Rutter M, Lantos P (1998) A clinicopathological study of autism. Brain 121(Pt 5): 889–905.

    PubMed  Google Scholar 

  2. Casanova MF, van Kooten IA, Switala AE, van Engeland H, Heinsen H, Steinbusch HW, Hof PR, Trippe J, Stone J, Schmitz C (2006) Minicolumnar abnormalities in autism. Acta Neuropathol 112: 287–303.

    PubMed  Google Scholar 

  3. Bauman ML, Kemper TL (2005) Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 23: 183–187.

    PubMed  Google Scholar 

  4. Rodier (2000) The early origins of autism. Sci Am 282: 56–63.

    PubMed  CAS  Google Scholar 

  5. Nelson KB, Grether JK, Croen LA, Dambrosia JM, Dickens BF, Jelliffe LL, Hansen RL, Phillips TM (2001) Neuropeptides and neurotrophins in neonatal blood of children with autism or mental retardation. Ann Neurol 49: 597–606.

    PubMed  CAS  Google Scholar 

  6. Leonard H, de Klerk N, Bourke J, Bower C (2006) Maternal health in pregnancy and intellectual disability in the offspring: a population-based study. Ann Epidemiol 16: 448–454.

    PubMed  Google Scholar 

  7. Robinson PD, Schutz CK, Macciardi F, White BN, Holden JJA (2001) Genetically determined low maternal serum dopamine β-hydroxylase levels and the etiology of autism spectrum disorders. Am J Med Gen 100: 30–36.

    CAS  Google Scholar 

  8. Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, Chugani HT (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45: 287–295.

    PubMed  CAS  Google Scholar 

  9. Blatt GJ, Fitzgerald CM, Guptill JT, Booker AB, Kemper TL, Bauman ML (2001) Density and distribution of hippocampal neurotransmitter receptors in autism: an autoradiographic study. J Autism Dev Disord 31: 537–543.

    PubMed  CAS  Google Scholar 

  10. Martin-Ruiz CM, Lee M, Perry RH, Baumann M, Court JA, Perry EJ (2004) Molecular analysis of nicotinic receptor expression in autism. Brain Res Mol Brain Res 123: 81–90.

    PubMed  CAS  Google Scholar 

  11. Purcell AE, Jeon OH, Zimmerman AW, Blue ME, Pevsner J (2001) Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology 57:1618–1628.

    PubMed  CAS  Google Scholar 

  12. Zimmerman AW, Jyonouchi H, Comi AM, Connors SL, Milstien S, Varsou A, Heyes MP (2005) Cerebrospinal fluid and serum markers of inflammation in autism. Pediatr Neurol 33:195–201.

    PubMed  Google Scholar 

  13. Vargas DL, Nascimbene C, Krishnan C, Zimmerman AW, Pardo CA (2005). Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol 57: 67–81.

    PubMed  CAS  Google Scholar 

  14. Ashwood P, Wills S, Van de Water J (2006) The immune response in autism: a new frontier for autism research. J Leukoc Biol 80: 1–15.

    PubMed  CAS  Google Scholar 

  15. Erickson CA, Stigler KA, Corkins MR, Posey DJ, Fitzgerald JF, McDougle CJ (2005) Gastrointestinal factors in autistic disorder: a critical review. J Autism Dev Disord 35: 713–727.

    PubMed  Google Scholar 

  16. Modahl C, Green L, Fein D, Morris M, Waterhouse L, Feinstein C, Levin H (1998) Plasma oxytocin levels in autistic children. Biol Psychiatry 43: 270–277.

    PubMed  CAS  Google Scholar 

  17. Ylisaukko-oja T, Alarcon M, Cantor RM, Auranen M, Vanhala R, Kempas E, von Wendt L, Jarvela I, Geschwind DH, Peltonen L (2006) Search for autism loci by combined analysis of Autism Genetic Resource Exchange and Finnish families. Ann Neurol 59:145–155.

    PubMed  Google Scholar 

  18. Sykes NH, Lamb JA (2007) Autism: the quest for the genes. Expert Rev Mol Med 9: 1–15.

    PubMed  Google Scholar 

  19. Campbell DB, Sutcliffe JS, Ebert PJ, Militemi R, Bravaccio C, Trillo S, Elia M, Schneider C, Melmed R, Sacco R, Persico AM, Levitt P (2006) A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci USA 103: 16834–16839.

    PubMed  CAS  Google Scholar 

  20. Swackhammer R, Tatum OL, (2006) Survey of candidate genes for autism susceptibility. J Assoc Genet Technol 33: 8–16.

    Google Scholar 

  21. Stone JL, Merriman B, Cantor RM, Geschwind DH, Nelson SF (2007) High density SNP association study of a major autism linkage region on chromosome 17. Hum Mol Genet 16: 704–715.

    PubMed  CAS  Google Scholar 

  22. Zimmerman AW, Connors SL, Pardo-Villamizar CA (2006): Neuroimmunology and neurotransmitters in autism; in Tuchman R, Rapin I (eds): Autism: A Neurological Disorder of Early Brain Development. London, MacKeith Press, pp. 141–159.

    Google Scholar 

  23. Sundström E, Kölare S, Souverbie F, Samuelsson E-B, Pschera H, Lunell N-O, Seiger Å (1993) Neurochemical differentiation of human bulbospinal monoaminergic neurons during the first trimester. Brain Res Dev Brain Res 75: 1–12.

    PubMed  Google Scholar 

  24. Crespo P, Cachero TG, Xu N, Gutkind JS (1995) Dual effect of beta-adrenergic receptors on mitogen-activated protein kinase. Evidence for a beta gamma-dependent activation and a G alpha s-cAMP-mediated inhibition. J Biol Chem 270: 25259–25265.

    PubMed  CAS  Google Scholar 

  25. Schmitt JM, Stork PJ (2000) Beta 2-adrenergic receptor activates extracellular signal-related kinases (ERKs) via the small G protein rap1 and the serine/threonine kinase B-Raf. J Biol Chem 275: 25342–25350.

    PubMed  CAS  Google Scholar 

  26. Kobilka BK, Dixon RA, Frielle T, Dohlman HG, Bolanowski MA, Sigal IS, Yang-Feng TL, Francke U, Caron MG, Lefkowitz RJ (1987) cDNA for the human beta 2-adrenergic receptor: a protein with multiple membrane-spanning domains and encoded by a gene whose chromosomal location is shared with that of the receptor for platelet-derived growth factor. Proc Natl Acad Sci USA 84: 46–50.

    PubMed  CAS  Google Scholar 

  27. Slotkin TA, Lau C, Seidler FJ (1994) Beta-adrenergic receptor overexpression in the fetal rat: distribution, receptor subtypes, and coupling to adenylate cyclase activity via G-proteins. Toxicol Appl Pharmacol 129: 223–234.

    PubMed  CAS  Google Scholar 

  28. Cikos S, Veselá J, Il’ková G, Rehák P, Czikková S, Koppel J (2005) Expression of beta adrenergic receptors in mouse oocytes and preimplantation embryos. Mol Reprod Dev 71: 145–153.

    PubMed  CAS  Google Scholar 

  29. Lai LP, Mitchell J (2008) Beta(2)-adrenergic receptors expressed on murine chondrocytes stimulate cellular growth and inhibit the expression of Indian hedgehog and collagen type X. J Cell Biochem 104: 545–553.

    Google Scholar 

  30. Duncan CP, Seidler FJ, Lappi SE, Slotkin TA (1990) Dual control of DNA synthesis by α- and β-adrenergic mechanisms in normoxic and hypoxic neonatal rat brain. Brain Res Dev Brain Res 55: 29–33.

    PubMed  CAS  Google Scholar 

  31. Kwon JH, Eves EM, Farrell S, Segovia J, Tobin AJ, Wainer BH, Downen M (1996) Beta-adrenergic receptor activation promotes process outgrowth in an embryonic rat basal forebrain cell line and in primary neurons. Eur J Neurosci 8: 2042–2055.

    PubMed  CAS  Google Scholar 

  32. Gu C, Ma YC, Benjamin J, Littman D, Chao MV, Huang XY (2000) Apoptotic signaling through the beta-adrenergic receptor. A new Gs effector pathway. J Biol Chem 275: 20726–20733.

    PubMed  CAS  Google Scholar 

  33. Gharami K, Das S (2000) Thyroid hormone-induced morphological differentiation and maturation of astrocytes are mediated through the beta-adrenergic receptor. J Neurochem 75: 1962–1969.

    PubMed  CAS  Google Scholar 

  34. Burniston JG, Tan LB, Goldspink DF (2005) Beta2-Adrenergic receptor stimulation in vivo induces apoptosis in the rat heart and soleus muscle. J Appl Physiol 98: 1379–1386.

    PubMed  CAS  Google Scholar 

  35. Zhu WZ, Zheng M, Koch WJ, Lefkowitz RJ, Kobilka BK, Xiao RP (2001) Dual modulation of cell survival and cell death by beta(2)-adrenergic signaling in adult mouse cardiac myocytes. Proc Natl Acad Sci USA 98: 1607–1612.

    PubMed  CAS  Google Scholar 

  36. Stewart AG, Harris T, Fernandes DJ, Schachte LC, Koutsoubos V, Guida E, Ravenhall CE, Vadiveloo P, Wilson JW (1999) Beta2-adrenergic receptor agonists and cAMP arrest human cultured airway smooth muscle cells in the G(1) phase of the cell cycle: role of proteasome degradation of cyclin D1. Mol Pharmacol 56: 1079–1086.

    PubMed  CAS  Google Scholar 

  37. Sewing A, Bürger C, Brüsselbach S, Schalk C, Lucibello FC, Müller R (1993) Human cyclin D1 encodes a labile nuclear protein whose synthesis is directly induced by growth factors and suppressed by cyclic AMP. J Cell Sci 104 (Pt 2): 545–555.

    PubMed  CAS  Google Scholar 

  38. Cocks BG, Vairo G, Bodrug SE, Hamilton JA (1992) Suppression of growth factor-induced CYL1 cyclin gene expression by antiproliferative agents. J Biol Chem 267: 12307–12310.

    PubMed  CAS  Google Scholar 

  39. Lidow MS, Rakic P (1994) Unique profiles of the alpha 1-, alpha 2-, and beta-adrenergic receptors in the developing cortical plate and transient embryonic zones of the rhesus monkey. J Neurosci 14: 4064–4078.

    PubMed  CAS  Google Scholar 

  40. Kim YT, Wu CF (1996) Reduced growth cone motility in cultured neurons from Drosophila memory mutants with a defective cAMP cascade. J Neurosci 16: 5593–5602.

    PubMed  CAS  Google Scholar 

  41. Saitow F, Satake S, Yamada J, Konishi S (2000) Beta-adrenergic receptor-mediated presynaptic facilitation of inhibitory GABAergic transmission at cerebellar interneuron-Purkinje cell synapses. J Neurophysiol 84: 2016–2025.

    PubMed  CAS  Google Scholar 

  42. Saitow F, Suzuki H, Konishi S (2005) Beta-Adrenoceptor-mediated long-term up-regulation of the release machinery at rat cerebellar GABAergic synapses. J Physiol 565 (Pt 2): 487–502.

    PubMed  CAS  Google Scholar 

  43. Hoogland TM, Saggau P (2004) Facilitation of l-type Ca2+ channels in dendritic spines by activation of beta2 adrenergic receptors. J Neurosci 24: 8416–8427.

    PubMed  CAS  Google Scholar 

  44. Wang SJ, Cheng LL, Gean PW (1999) Cross-modulation of synaptic plasticity by beta-adrenergic and 5-HT1A receptors in the rat basolateral amygdala. J Neurosci 19: 570–577.

    PubMed  CAS  Google Scholar 

  45. Roozendaal B, Nguyen BT, Power AE, McGaugh JL (1999) Basolateral amygdala noradrenergic influence enables enhancement of memory consolidation induced by hippocampal glucocorticoid receptor activation. Proc Natl Acad Sci USA 96: 11642–11647.

    PubMed  CAS  Google Scholar 

  46. Junker V, Becker A, Hühne R, Zembatov M, Ravati A, Culmsee C, Krieglstein J (2002) Stimulation of beta-adrenoceptors activates astrocytes and provides neuroprotection. Eur J Pharmacol 446: 25–36.

    PubMed  CAS  Google Scholar 

  47. Tomozawa Y, Yabuuchi K, Inoue T, Satoh M (1995) Participation of cAMP and cAMP-dependent protein kinase in beta-adrenoceptor-mediated interleukin-1 beta mRNA induction in cultured microglia. Neurosci Res 22: 399–409.

    PubMed  CAS  Google Scholar 

  48. Prinz M, Hausler KG, Kettenmann H, Hanisch U (2001) beta-adrenergic receptor stimulation selectively inhibits IL-12p40 release in microglia. Brain Res 899: 264–270.

    PubMed  CAS  Google Scholar 

  49. Basta PV, Moore TL, Yokota S, Ting JP (1989) A beta-adrenergic agonist modulates DR alpha gene transcription via enhanced cAMP levels in a glioblastoma multiforme line. J Immunol 142: 2895–2901.

    PubMed  CAS  Google Scholar 

  50. Podojil JR, Sanders VM (2003) Selective regulation of mature IgG1 transcription by CD86 and beta 2-adrenergic receptor stimulation. J Immunol 170: 5143–5151.

    PubMed  CAS  Google Scholar 

  51. Kasprowicz DJ, Kohm AP, Berton MT, Chruscinski AJ, Sharpe A, Sanders VM (2000) Stimulation of the B cell receptor, CD86 (B7–2), and the beta 2-adrenergic receptor intrinsically modulates the level of IgG1 and IgE produced per B cell. J Immunol 165: 680–690.

    PubMed  CAS  Google Scholar 

  52. Nance DM, Sanders VM (2007) Autonomic innervation and regulation of the immune system (1987–2007). Brain Behav Immun 21: 736–745.

    PubMed  CAS  Google Scholar 

  53. Takamoto T, Hori Y, Koga Y, Toshima H, Hara A, Yokoyama MM (1991) Norepinephrine inhibits human natural killer cell activity in vitro. Int J Neurosci 58: 127–131.

    PubMed  CAS  Google Scholar 

  54. D’Eufemia P, Celli M, Finocchiaro R, Pacifico L, Viozzi L, Zaccagnini M, Cardi E, Giardini O (1996) Abnormal intestinal permeability in children with autism. Acta Paediatric 85: 1076–1079.

    Google Scholar 

  55. Horvath K, Papadimitriou JC, Rabsztyn A, Drachenberg C, Tildon JT (1999) Gastrointestinal abnormalities in children with autistic disorder. J Pediatr 135: 559–563.

    PubMed  CAS  Google Scholar 

  56. Kohout TA, Lefkowitz RJ (2003) Regulation of G protein-coupled receptor kinases and arrestins during receptor desensitization. Mol Pharmacol 63: 9–18.

    PubMed  CAS  Google Scholar 

  57. Green SA, Rathz DA, Schuster AJ, Liggett SB (2001) The Ile 164 beta(2)-adrenoceptor polymorphism alters salmeterol exosite binding and conventional agonist coupling to G(s). Eur J Pharmacol 421: 141–147.

    PubMed  CAS  Google Scholar 

  58. Dishy V, Sofowora GG, Xie HG, Kim RB, Byrne DW, Stein CM, Wood AJ (2001) The effect of common polymorphisms of the beta2-adrenergic receptor on agonist-mediated vascular desensitization. N Engl J Med 345: 1030–1035.

    PubMed  CAS  Google Scholar 

  59. Cockcroft JR, Gazis AG, Cross DJ, Wheatley A, Dewar J, Hall IP, Noon JP (2000) Beta(2)-adrenoceptor polymorphism determines vascular reactivity in humans. Hypertension 36: 371–375.

    PubMed  CAS  Google Scholar 

  60. Liggett SB, Wagoner LE, Craft LL, Hornung RW, Hoit BD, McIntosh TC, Walsh RA (1998) The Ile 164 beta2-adrenergic receptor polymorphism adversely affects the outcome of congestive heart failure. J Clin Invest 102: 1534–1539.

    PubMed  CAS  Google Scholar 

  61. Wolk R, Snyder EM, Somers VK, Turner ST, Olson LJ, Johnson BD (2007) Arginine 16 glycine beta2-adrenoceptor polymorphism and cardiovascular structure and function in patients with heart failure. J Am Soc Echocardiogr 20: 290–297.

    PubMed  Google Scholar 

  62. Lee DK, Currie GP, Hall IP, Lima JJ, Lipworth BJ (2004) The arginine-16 beta2-adrenoceptor polymorphism predisposes to bronchoprotective subsensitivity in patients treated with formoterol and salmeterol. Br J Clin Pharmacol 57: 68–75.

    PubMed  CAS  Google Scholar 

  63. Kawaguchi H, Masuo K, Katsuya T, Sugimoto K, Rakugi H, Ogihara T, Tuck ML (2006) Beta2- and beta3-Adrenoceptor polymorphisms relate to subsequent weight gain and blood pressure elevation in obese nornotensive individuals. Hypertens Res 29: 951–959.

    PubMed  CAS  Google Scholar 

  64. Pinelli M, Giacchetti M, Acquaviva F, Cocozza S, Donnarumma G, Lapice E, Riccardi G, Romano G, Vaccaro O, Monticelli A (2006) Beta2-adrenergic receptor and UCP3 variants modulate the relationship between age and type 2 diabetes mellitus. BMC Med Genet 7: 85.

    PubMed  Google Scholar 

  65. Jazdzewski K , Bednarczuk T, Stepnowska M, Liyanarachchi S, Suchecka-Rachon K, Limon J, Narkiewicz K (2007) Beta-2-adrenergic receptor gene polymorphism confers susceptibility to Graves’ disease. Int J Mol Med 19: 181–186.

    PubMed  Google Scholar 

  66. Xu BY, Huang D, Pirskanen R, Lefvert AK (2000) Beta2-adrenergic receptor gene polymorphisms in myasthenia gravis (MG). Clin Exp Immunol 119: 156–160.

    PubMed  CAS  Google Scholar 

  67. Xu B, Arlehag L, Rantapää-Dahlquist SB, Lefvert AK (2004) Beta2-adrenergic receptor gene single-nucleotide polymorphisms are associated with rheumatoid arthritis in northern Sweden. Scand J Rheumatol 33: 395–398.

    PubMed  CAS  Google Scholar 

  68. Busjahn A, Freier K, Faulhaber HD, Li GH, Rosenthal M, Jordan J, Hoehe MR, Timmermann B, Luft FC (2002) Beta-2 adrenergic receptor gene variations and coping styles in twins. Biol Psychol 61: 97–109.

    PubMed  Google Scholar 

  69. Slotkin TA, Saleh JL, Zhang J, Seidler FJ (1996) Ontogeny of beta-adrenoceptor/adenylyl cyclase desensitization mechanisms: the role of neonatal innervation. Brain Res 742: 317–328.

    PubMed  CAS  Google Scholar 

  70. Slotkin TA, Auman JT, Seidler FJ (2003) Ontogenesis of β-adrenoceptor signaling: Implications for perinatal physiology and for fetal effects of tocolytic drugs. J Pharmacol Exp Ther 306: 1–7.

    PubMed  CAS  Google Scholar 

  71. Slotkin TA, Tate CA, Cousins MM, Seidler FJ (2001) Beta-Adrenoceptor signaling in the developing brain: sensitization or desensitization in response to terbutaline. Brain Res Dev Brain Res 131: 113–125.

    PubMed  CAS  Google Scholar 

  72. Auman JT, Seidler FJ, Tate CA, Slotkin TA (2001) Beta-adrenoceptor-mediated cell signaling in the neonatal heart and liver: responses to terbutaline. Am J Physiol Regul Integr Comp Physiol 281: R1895–R1901.

    PubMed  CAS  Google Scholar 

  73. Stein HM, Oyama K, Sapien R, Chappell BA, Padbury JF (1992) Prolonged beta-agonist infusion does not induce desensitization or down-regulation of beta-adrenergic receptors in newborn sheep. Pediatr Res 31: 462–467.

    PubMed  CAS  Google Scholar 

  74. Sun LS (1999) Regulation of myocardial beta-adrenergic receptor function in adult and neonatal rabbits. Biol Neonate 76: 181–192.

    PubMed  CAS  Google Scholar 

  75. Meyer A, Seidler FJ, Aldridge JE, Slotkin TA (2005) Developmental exposure to terbutaline alters cell signaling in mature rat brain regions and augments the effects of subsequent neonatal exposure to the organophosphorus insecticide chlorpyrifos. Toxicol Appl Pharmacol 203: 154–166.

    PubMed  CAS  Google Scholar 

  76. Zeiders JL, Seidler FJ, Iaccarino G, Koch WJ, Slotkin TA (1999) Ontogeny of cardiac beta-adrenoceptor desensitization mechanisms: agonist treatment enhances receptor/G-protein transduction rather than eliciting uncoupling. J Mol Cell Cardiol 31: 413–423.

    PubMed  CAS  Google Scholar 

  77. Zeiders JL, Seidler FJ, Slotkin TA (2000) Ontogeny of G-protein expression: control by beta-adrenoceptors. Brain Res Dev Brain Res 120: 125–134.

    PubMed  CAS  Google Scholar 

  78. Auman JT, Seidler FJ, Slotkin TA (2002) Beta-adrenoceptor control of G protein function in the neonate: determinant of desensitization or sensitization. Am J Physiol Regul Integr Comp Physiol 283: R1236–R1244.

    PubMed  CAS  Google Scholar 

  79. Garofolo MC, Seidler FJ, Auman JT, Slotkin TA (2002) Beta-Adrenergic modulation of muscarinic cholinergic receptor expression and function in developing heart. Am J Phys Reg Integr Comp Physiolo 282: R1356–R1363.

    CAS  Google Scholar 

  80. Owen D, Matthews SG (2007) Repeated maternal glucocorticoid treatment affects activity and hippocampal NMDA receptor expression in juvenile guinea pigs. J Physiol 578: 249–257.

    PubMed  CAS  Google Scholar 

  81. Stanwood GD, Levitt P (2007) Prenatal exposure to cocaine produces unique developmental and long-term adaptive changes in dopamine D1 receptor activity and subcellular distribution. J Neurosci 27: 152–157.

    PubMed  CAS  Google Scholar 

  82. Meyer A, Seidler FJ, Aldridge JE, Tate CA, Cousins MM, Slotkin TA (2004) Critical periods for chlorpyrifos-induced developmental neurotoxicity: alterations in adenylyl cyclase signaling in adult rat brain regions after gestational or neonatal exposure. Environ Health Perspect 112: 295–301.

    PubMed  CAS  Google Scholar 

  83. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108(Suppl 3): 511–533.

    PubMed  Google Scholar 

  84. Lam F, Elliott J, Jones JS, Katz M, Knuppel RA, Morrison J, Newman R, Phelan J, Willcourt R (1998) Clinical issues surrounding the use of terbutaline sulfate for preterm labor. Obstet Gynecol Surv 53(11Suppl): S85–S95.

    PubMed  CAS  Google Scholar 

  85. Connors SL, Crowell DE, Eberhart CG, Copeland J, Newschaffer CJ, Spence SJ, Zimmerman AW (2005) Beta2-adrenergic receptor activation and genetic polymorphisms in autism: data from dizygotic twins. J Child Neurol 20: 876–884.

    PubMed  Google Scholar 

  86. Hadders-Algra M, Touwen BCL, Huisjes HJ (1986) Long-term follow-up of children prenatally exposed to ritodrine. Br J Obstet Gynaecol 93: 156–161.

    PubMed  CAS  Google Scholar 

  87. Pitzer M, Schmidt MH, Esser G, Laucht M (2001) Child development after maternal tocolysis with b-sympathomimetic drugs. Child Psychiatry Hum Dev 31: 165–182.

    PubMed  CAS  Google Scholar 

  88. Bergman B, Bokstrom H, Borga O, Enk L, Hedner T, Wangberg B (1984) Transfer of terbutaline across the human placenta in late pregnancy. Eur J Respir Dis Suppl 134: 81–86.

    PubMed  CAS  Google Scholar 

  89. Hsu CH, Robinson CP, Basmadjian GP (1994) Tissue distribution of 3H-terbutaline in rabbits. Life Sci 54: 1465–1469.

    PubMed  CAS  Google Scholar 

  90. Geschwind DH, Sowinski J, Lord C, Iversen P, Shestack J, Jones P, Ducat L, Spence SJ; AGRE Steering Committee (2001) The autism genetic resource exchange: a resource for the study of autism and related neuropsychiatric conditions. Am J Hum Genet 69: 463–466.

    PubMed  CAS  Google Scholar 

  91. Cheslack-Postava K, Fallin MD, Avramopoulos D, Connors SL, Zimmerman AW, Eberhart CG, Newschaffer CJ (2007) Beta2-Adrenergic receptor gene variants and risk for autism in the AGRE cohort. Mol Psychiatry 12: 283–291.

    PubMed  CAS  Google Scholar 

  92. Fujinaga M, Scott JC (1997) Gene expression of catecholamine synthesizing enzymes and β adrenoceptor subtypes during rat embryogenesis. Neurosci Lett 231: 108–112.

    PubMed  CAS  Google Scholar 

  93. Bauman M, Kemper TL (1985) Histoanatomic observations of the brain in early infantile autism. Neurology 35: 866–874.

    PubMed  CAS  Google Scholar 

  94. Rhodes MC, Seidler FJ, Abdel-Rahman A, Tate CA, Nyska A, Rincavage HL, Slotkin TA (2004) Terbutaline is a neurotoxicant: effects on neuroproteins and morphology in cerebellum, hippocampus, and somatosensory cortex. J Pharmacol Exp Ther 308: 529–537.

    PubMed  CAS  Google Scholar 

  95. Kudlacz EM, Navarro HA, Kavlock RJ, Slotkin TA (1990) Regulation of postnatal beta-adrenergic receptor/adenylate cyclase development by prenatal agonist stimulation and steroids: alterations in rat kidney and lung after exposure to terbutaline or dexamethasone. J Dev Physiol 14: 273–281.

    PubMed  CAS  Google Scholar 

  96. Zerrate MC, Pletnikov M, Connors SL, Vargas DL, Seidler FJ, Zimmerman AW, Slotkin TA, Pardo CA (2007) Neuroinflammation and behavioral abnormalities after neonatal terbutaline treatment in rats: implications for autism. J Pharmacol Exp Ther 322: 16–22.

    PubMed  CAS  Google Scholar 

  97. Meng SZ, Oka A, Takashima S (1999) Developmental expression of monocyte chemoattractant protein-1 in the human cerebellum and brainstem. Brain Dev 21: 30–35.

    PubMed  CAS  Google Scholar 

  98. Dame JB, Juul SE (2000) The distribution of receptors for the pro-inflammatory cytokines interleukin (IL)-6 and IL-8 in the developing human fetus. Early Hum Dev 58: 25–39.

    PubMed  CAS  Google Scholar 

  99. Nishio Y, Kashiwagi A, Takahara N, Hidaka H, Kikkawa R (1997) Cilostazol, a cAMP phosphodiesterase inhibitor, attenuates the production of monocyte chemoattractant protein-1 in response to tumor necrosis factor-alpha in vascular endothelial cells. Horm Metab Res 29: 491–495.

    PubMed  CAS  Google Scholar 

  100. Hannila SS, Filbin MT (2008) The role of cyclic AMP signaling in promoting axonal regeneration after spinal cord injury. Exp Neurol 209: 321–332.

    Google Scholar 

  101. Wierzba-Bobrowicz T, Kosno-Kruszewska E Gwiazda E, Lechowicz W (2000) Major Histocompatibility complex class II (MHC II) expression during the development of human fetal cerebral occipital lobe, cerebellum, and hematopoietic organs. Folia Neuropathol 38: 11–117.

    Google Scholar 

  102. Billiards SS, Haynes RL, Folkerth RD, Trachtenberg FL, Liu LG, Volpe JJ, Kinney HC (2006) Development of microglia in the cerebral white matter of the human fetus and infant. J Comp Neurol 497: 199–208.

    PubMed  Google Scholar 

  103. Basta PV, Moore TL, Yokota S, Ting JP (1989) Beta-adrenergic agonist modulates DR alpha gene transcription via enhanced cAMP levels in a glioblastoma multiforme line. J Immunol 142: 895–2901.

    Google Scholar 

  104. Fujita H, Tanaka J, Maeda N, Sakanaka M (1998) Adrenergic agonists suppress the proliferation of microglia through beta 2-adrenergic receptor. Neurosci Lett 242: 37–40.

    PubMed  CAS  Google Scholar 

  105. Podkletnova I, Rothstein JD, Helén P, Alho H (2001) Microglial response to the neurotoxicity of 6-hydroxydopamine in neonatal rat cerebellum. Int J Dev Neurosci 19: 47–52.

    PubMed  CAS  Google Scholar 

  106. Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M (2004) Microglia promote the death of developing Purkinje cells. Neuron 41: 535–547.

    PubMed  CAS  Google Scholar 

  107. Kemper TL, Bauman ML (2002) Neuropathology of infantile autism. Mol Psychiatry 7(Suppl 2): S12–S13.

    PubMed  Google Scholar 

  108. Ritvo ER, Freeman BJ, Scheibel AB, Duong T, Robinson H, Guthrie D, Ritvo A (1986) Lower Purkinje cell counts in the cerebella of four autistic subjects: initial findings of the UCLA-NSAC Autopsy Research Report. Am J Psychiatry 143: 862–866.

    PubMed  CAS  Google Scholar 

  109. Herbert MR, Ziegler DA, Makris N, Filipek PA, Kemper TL, Normandin JJ, Sanders HA, Kennedy DN, Caviness VS Jr (2004) Localization of white matter volume increase in autism and developmental language disorder. Ann Neurol 55: 530–540.

    PubMed  Google Scholar 

  110. Hamilton SP, Rome LH (1994) Stimulation of in vitro myelin synthesis by microglia. Glia 11: 326–335.

    PubMed  CAS  Google Scholar 

  111. Sato-Bigbee C, Pal S, Chu AK (1999) Different neuroligands and signal transduction pathways stimulate CREB phosphorylation at specific developmental stages along oligodendrocyte differentiation. J Neurochem 72: 139–147.

    PubMed  CAS  Google Scholar 

  112. Afshari FS, Chu AK, Sato-Bigbee C (2001) Effect of cyclic AMP on the expression of myelin basic protein species and myelin proteolipid protein in committed oligodendrocytes: differential involvement of the transcription factor CREB. J Neurosci Res 66:37–45.

    PubMed  CAS  Google Scholar 

  113. Pfenninger KH, Laurino L, Peretti D, Wang X, Rosso S, Morfini G, Cáceres A, Quiroga S (2003) Regulation of membrane expansion at the nerve growth cone. J Cell Sci 116(Pt 7):1209–1217.

    PubMed  CAS  Google Scholar 

  114. Shambaugh G 3rd, Glick R, Radosevich J, Unterman T (1993) Insulin-like growth factor-I and binding protein-1 can modulate fetal brain cell growth during maternal starvation. Ann N Y Acad Sci 692:270–272.

    PubMed  CAS  Google Scholar 

  115. Riikonen R, Makkonen I, Vanhala R, Turpeinen U, Kuikka J, Kokki H (2006) Cerebrospinal fluid insulin-like growth factors IGF-1 and IGF-2 in infantile autism. Dev Med Child Neurol 48:751–755.

    PubMed  Google Scholar 

  116. Wang L, Adamo ML (2001) Cyclic adenosine 3′,5′-monophosphate inhibits insulin-like growth factor 1 gene expression in rat glioma cell lines: evidence for regulation of transcription and messenger ribonucleic acid stability. Endocrinology 142:3041–3050.

    PubMed  CAS  Google Scholar 

  117. Fields RD, Stevens-Graham B (2002) New insights into neuron–glia communication. Science 298:556–562.

    PubMed  CAS  Google Scholar 

  118. Nedergaard M, TakanoT, Hansen AJ (2002) Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 3: 748–755.

    PubMed  CAS  Google Scholar 

  119. Laurence JA, Fatemi SH (2005) Glial fibrillary acidic protein is elevated in superior frontal, parietal and cerebellar cortices of autistic subjects. Cerebellum 4:206–210.

    PubMed  CAS  Google Scholar 

  120. Hodges-Savola C, Rogers SD, Ghilardi JR, Timm DR, Mantyh PW (1996) Beta-adrenergic receptors regulate astrogliosis and cell proliferation in the central nervous system in vivo. Glia 17: 52–62.

    PubMed  CAS  Google Scholar 

  121. Fatemi SH, Halt AR, Stary JM, Realmuto GM, Jalali-Mousavi M (2001) Reduction in anti-apoptotic protein Bcl-2 in autistic cerebellum. Neuroreport 12:929–933.

    PubMed  CAS  Google Scholar 

  122. Fatemi SH, Halt AR, Stary JM, Kanodia R, Schultz SC, Realmuto GR (2002) Glutamic acid decarboxylase 65 and 67 kDa proteins are reduced in autistic parietal and cerebellar cortices. Biol Psychiatry 52:805–810.

    PubMed  CAS  Google Scholar 

  123. Salero-Coca E, Vergara P, Segovia J (1995) Intracellular increases of cAMP induce opposite effects in glutamic acid decarboxylase (GAD 67) distribution and glial fibrillary acidic protein immunoreactivities in C6 cells. Neurosci Lett 191: 9–12.

    PubMed  CAS  Google Scholar 

  124. Kitagawa K (2007) CREB and cAMP response element-mediated gene expression in the ischemic brain. FEBS J 274: 3210–3217.

    PubMed  CAS  Google Scholar 

  125. Freeland K, Boxer LM, Latchman DS (2001) The cyclic AMP response element in the Bcl-2 promoter confers inducibility by hypoxia in neuronal cells. Brain Res Mol Brain Res 92: 98–106.

    PubMed  CAS  Google Scholar 

  126. Tuchman R, Rapin I (2002) Epilepsy in autism. Lancet Neurol 1: 352–358.

    PubMed  Google Scholar 

  127. Szot P, Weinshenker D, White SS, Robbins CA, Rust NC, Schwartzkroin PA, Palmiter RD (1999) Norepinephrine-deficient mice have increased susceptibility to seizure-inducing stimuli. J Neurosci 19: 10985–10992.

    PubMed  CAS  Google Scholar 

  128. Weinshenker D, Szot P, Miller NS, Rust NC, Hohmann JG, Pyati U, White SS, Palmiter RD (2001) Genetic comparison of seizure control by norepinephrine and neuropeptide Y. J Neurosci 21: 7764–7769.

    PubMed  CAS  Google Scholar 

  129. James SJ, Cutler P, Melnyk S, Jernigan S, Janak L, Gaylor DW, Neubrander JA (2004) Metabolic biomarkers of increased oxidative stress and impaired methylation capacity in children with autism. Am J Clin Nutr 80:1611–1617.

    PubMed  CAS  Google Scholar 

  130. Enokido Y, Suzuki E, Iwasawa K, Namekata K, Okazawa H, Kimura H (2005) Cystathione beta-synthase, a key enzyme for homocysteine metabolism, is preferentially expressed in the radial glia/astrocyte lineage of developing mouse CNS. FASEB J 19: 1854–1856.

    PubMed  CAS  Google Scholar 

  131. Heinonen K, Räihä NC (1974) Induction of cystathionase in human foetal liver. Biochem J 144: 607–609.

    PubMed  CAS  Google Scholar 

  132. Kloor D, Danielyan L, Osswald H (2002) Characterization of the cAMP binding site of purified S-adenosyl-homocysteine hydrolase from bovine kidney. Biochem Pharmacol 64: 1201–1206.

    PubMed  CAS  Google Scholar 

  133. de la Haba G, Agostini S, Bozzi A, Merta A, Unson C, Cantoni GL (1986) S-Adenosylhomocysteinase: mechanism of reversible and irreversible inactivation by ATP, cAMP, and 2′-deoxyadenosine. Biochemistry 25: 8337–8342.

    PubMed  Google Scholar 

  134. Renouf JA, Thong YH, Chalmers AH (1987) Activities of purine metabolising enzymes in lymphocytes of neonates and young children: correlates with immune function. Immunol Lett 15:161–166.

    PubMed  CAS  Google Scholar 

  135. Pasşca SP, Nemeş B, Vlase L, Gagyi CE, Dronca E, Miu AC, Dronca M (2006) High levels of homocysteine and low serum paraoxonase 1 arylesterase activity in children with autism. Life Sci 78:2244–2248.

    PubMed  Google Scholar 

  136. Ming X, Stein TP, Brimacombe M, Johnson WG, Lambert GH, Wagner GC (2005) Increased excretion of a lipid peroxidation biomarker in autism. Prostaglandins Leukot Essent Fatty Acids 73: 379–384.

    PubMed  CAS  Google Scholar 

  137. Chauhan A, Chauhan V, Brown WT, Cohen I (2004) Oxidative stress in autism: increased lipid peroxidation and reduced serum levels of ceruloplasmin and transferrin – the antioxidant proteins. Life Sci 75: 2539–2549.

    PubMed  CAS  Google Scholar 

  138. Yorbik O, Sayal A, Akay C, Akbiyik DL, Sohmen T (2002) Investigation of antioxidant enzymes in children with autistic disorder. Prostaglandins Leukot Essent Fatty Acids 67: 341–343.

    PubMed  CAS  Google Scholar 

  139. Söğüt S, Zoroğlu SS, Ozyurt H, Yilmaz HR, Ozuğurlu F, Sivasli E, Yetkin O, Yanik M, Tutkun H, Savaş HA, Tarakçioğlu M, Akyol O (2003) Changes in nitric oxide levels and antioxidant enzyme activities may have a role in the pathophysiological mechanisms involved in autism. Clin Chim Acta 331: 111–117.

    PubMed  Google Scholar 

  140. Zoroglu SS, Armutcu F, Ozen S, Gurel A, Sivasli E, Yetkin O, Meram I (2004) Increased oxidative stress and altered activities of erythrocyte free radical scavenging enzymes in autism. Eur Arch Psychiatry Clin Neurosci 254: 14314–14317.

    Google Scholar 

  141. Folkerth RD, Haynes RL, Borenstein NS, Belliveau RA, Trachtenberg F, Rosenberg PA, Volpe JJ, Kinney HC (2004) Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated human telencephalic white matter. J Neuropathol Exp Neurol 63: 990–999.

    PubMed  CAS  Google Scholar 

  142. Keogh BP, Allen RG, Pignolo R, Horton J, Tresini M, Cristofalo VJ (1996) Expression of hydrogen peroxide and glutathione metabolizing enzymes in human skin fibroblasts derived from donors of different ages. J Cell Physiol 167: 512–522.

    PubMed  CAS  Google Scholar 

  143. Queen LR, Xu B, Horinouchi K, Fisher I, Ferro A (2000) Beta(2)-adrenoceptors activate nitric oxide synthase in human platelets. Circ Res 87: 39–44.

    PubMed  CAS  Google Scholar 

  144. Queen LR, Ji Y, Xu B, Young L, Yao K, Wyatt AW, Rowlands DJ, Siow RC, Mann GE, Ferro A (2006) Mechanisms underlying beta2-adrenoceptor-mediated nitric oxide generation by human umbilical vein endothelial cells. J Physiol 576(Pt 2): 585–594.

    PubMed  CAS  Google Scholar 

  145. Slotkin TA, Oliver CA, Seidler FJ (2005) Critical periods for the role of oxidative stress in the developmental neurotoxicity of chlorpyrifos and terbutaline, alone or in combination. Brain Res Dev Brain Res 157: 172–180.

    PubMed  CAS  Google Scholar 

  146. Vargas D, Bandaru V, Zerrate MC, Zimmerman AW, Haughey N, Pardo CA (2006) Oxidative stress in brain tissues from autistic patients: increased concentration of isoprostanes. IMFAR, June 1–3, PS2.6 Montreal, Canada.

    Google Scholar 

  147. Geier DA, Geier MR (2006) A clinical trial of combined anti-androgen and anti-heavy metal therapy in autistic disorders. Neuro Endocrinol Lett 27: 833–838.

    PubMed  CAS  Google Scholar 

  148. Nataf R, Skorupka C, Amet L, Lam A, Springbett A, Lathe R (2006) Porphyrinuria in childhood autistic disorder: implications for environmental toxicity. Toxicol Appl Pharmacol 214: 99–108.

    PubMed  CAS  Google Scholar 

  149. Woods JS, Kardish RM (1983) Developmental aspects of hepatic heme biosynthetic capability and hematotoxicity-II. Studies on uroporphyrinogen decarboxylase. Biochem Pharmacol 32: 73–78.

    PubMed  CAS  Google Scholar 

  150. Woods JS, Echeverria D, Heyer NJ, Simmonds PL, Wilkerson J, Farin FM (2005) The association between genetic polymorphisms of coproporphyrinogen oxidase and an atypical porphyrinogenic response to mercury exposure in humans. Toxicol Appl Pharmacol 206: 113–120.

    PubMed  CAS  Google Scholar 

  151. De Matteis F, Harvey C, (2005) Inducing coproporphyria in rat hepatocyte cultures using cyclic AMP and cyclic AMP-releasing agents. Arch Toxicol 79: 381–389.

    PubMed  Google Scholar 

  152. Nebes VL, DeFranco D, Morris SM Jr (1988) Cyclic AMP induces metallothionein gene expression in rat hepatocytes but not in rat kidney. Biochem J 255: 741–743.

    PubMed  CAS  Google Scholar 

  153. Dunn MA, Cousins RJ (1989) Kinetics of zinc metabolism in the rat: effect of dibutyryl cAMP. Am J Physiol 256: E420–E430.

    PubMed  CAS  Google Scholar 

  154. Fuller CE, Elmes ME, Jasani B (1990) Age-related changes in metallothionein, copper, copper-associated protein, and lipofuscin in human liver: a histochemical and immunohistochemical study. J Pathol 161: 167–172.

    PubMed  CAS  Google Scholar 

  155. Zlotkin SH, Cherian MG (1988) Hepatic metallothionein as a source of zinc and cysteine during the first year of life. Pediatr Res 24: 326–329.

    PubMed  CAS  Google Scholar 

  156. Leventhal BL, Cook EH Jr, Morford M, Ravitz A, Freedman DX (1990) Relationships of whole blood serotonin and plasma norepinephrine within families. J Autism Dev Disord 20: 499–511.

    PubMed  CAS  Google Scholar 

  157. Anderson GM, Freedman DX, Cohen DJ, Volkmar FR, Hoder EL, McPhedran P, Minderaa RB, Hansen CR, Young JG (1987) Whole blood serotonin in autistic and normal subjects. J Child Psychol Psychiatry 28: 885–900.

    PubMed  CAS  Google Scholar 

  158. Spivak B, Golubchik P, Mozes T, Vered Y, Nechmad A, Weizman A, Strous RD (2004) Low platelet-poor plasma levels of serotonin in adult autistic patients. Neuropsychobiology 50: 157–160.

    PubMed  CAS  Google Scholar 

  159. Racke K, Reimann H, Kilbinger H (1996) Regulation of 5-HT release from enterochromaffin cells. Behav Brain Res 73: 83–87.

    PubMed  CAS  Google Scholar 

  160. Vered Y, Golubchik P, Mozes T, Strous R, Nechmad A, Mester R, Weizman A, Spivak B (2003) The platelet-poor plasma 5-HT response to carbohydrate rich meal administration in adult autistic patients compared with normal controls. Hum Psychopharmacol 18: 395–399.

    PubMed  CAS  Google Scholar 

  161. Stahl SM (1977) The human platelet. A diagnostic and research tool for the study of biogenic amines in psychiatry and neurologic disorders. Arch Gen Psychiatry 34: 509–516.

    PubMed  CAS  Google Scholar 

  162. Heils A, Teufel A, Petri S, Seemann M, Bengel D, Balling U, Riederer P, Lesch KP (1995) Functional promoter and polyadenylation site mapping of the human serotonin (5-HT) transporter gene. J Neural Transm Gen Sect 102: 247–254.

    PubMed  CAS  Google Scholar 

  163. Heils A, Mössner R, Lesch KP (1997) The human serotonin transporter gene polymorphism – basic research and clinical implications. J Neural Transm 104:1005–1014.

    PubMed  CAS  Google Scholar 

  164. Marazziti D, Muratori F, Cesari A, Masala I, Baroni S, Giannaccini G, Dell’OssoL, Cosenza A, Pfanner P, Cassano GB (2000) Increased density of the platelet serotonin transporter in autism. Pharmacopsychiatry 33: 165–168.

    PubMed  CAS  Google Scholar 

  165. Kirsch P, Esslinger C, Chen Q, Mier D, Lis S, Siddhanti S, Gruppe H, Mattay VS, Gallhofer B, Meyer-Lindenberg A (2005) Oxytocin modulates neural circuitry for social cognition and fear in humans. J Neurosci 25: 11489–11493.

    Google Scholar 

  166. Wahl RU (2004) Could oxytocin administration during labor contribute to autism and related behavioral disorders? – A look at the literature. Med Hypotheses 63: 456–460.

    PubMed  CAS  Google Scholar 

  167. Hollander E, Novotny S, Hanratty M, Yaffe R, DeCaria CM, Aronowitz BR, Mosovich S (2003) Oxytocin infusion reduces repetitive behaviors in adults with autistic and Asperger’s disorders. Neuropsychopharmacology 28: 193–198.

    PubMed  CAS  Google Scholar 

  168. Modahl C, Green L, Fein D, Morris M, Waterhouse L, Feinstein C, Levin H (1998) Plasma oxytocin levels in autistic children. Biol Psychiatry 43: 270–277.

    PubMed  CAS  Google Scholar 

  169. Green L, Fein D, Modahl C, Feinstein C, Waterhouse L, Morris M (2001) Oxytocin and autistic disorder: alterations in peptide forms. Biol Psychiatry 50: 609–613.

    PubMed  CAS  Google Scholar 

  170. Morris M, Castro M, Rose JC (1992) Alterations in oxytocin prohormone processing during early development in the fetal sheep. Am J Physiol 263: R738–R740.

    PubMed  CAS  Google Scholar 

  171. Altstein M, Gainer H (1988) Differential biosynthesis and posttranslational processing of vasopressin and oxytocin in rat brain during embryonic and postnatal development. J Neurosci 8: 3967–3977.

    PubMed  CAS  Google Scholar 

  172. Barnette MS, Grous M, Torphy TJ, Ormsbee HS 3rd (1990) Activation of cyclic AMP-dependent protein kinase during canine lower esophageal shincter relaxation. J Pharmacol Exp Ther 252: 1160–1166.

    PubMed  CAS  Google Scholar 

  173. Hagen BM, Bayguinov O, Sanders KM (2006) VIP and PACAP regulate localized Ca2+ transients via cAMP-dependent mechanism. Am J Physiol Cell Physiol 291: C375–C385.

    PubMed  CAS  Google Scholar 

  174. Antonowicz I, Lebenthal E (1977) Developmental pattern of small intestinal enterokinase and disaccharidase activities in the human fetus. Gastroenterology 72: 1299–1303.

    PubMed  CAS  Google Scholar 

  175. Mobassaleh M, Montgomery RK, Biller JA, Grand RJ (1985) Development of carbohydrate absorption in the fetus and neonate. Pediatrics 75: 160–166.

    PubMed  CAS  Google Scholar 

  176. Afzal N, Murch S, Thirrupathy K, Berger L, Fagbemi A, Heuschkel R (2003) Constipation with acquired megarectum in children with autism. Pediatrics 112: 939–942.

    PubMed  Google Scholar 

  177. Molloy CA, Manning-Courtney P (2003) Prevalence of chronic gastrointestinal symptoms in children with autism and autistic spectrum disorders. Autism 7: 165–671.

    PubMed  Google Scholar 

  178. Liu LW, Thuneberg L, Huizinga JD (1994) Selective lesioning of interstitial cells of Cajal by methylene blue and light leads to loss of slow waves. Am J Physiol 266(3 Pt 1): G485–G496.

    PubMed  CAS  Google Scholar 

  179. Thuneberg L (1982) Interstitial cells of Cajal: intestinal pacemaker cells? Adv Anat Embryol Cell Biol 71: 1–130.

    PubMed  CAS  Google Scholar 

  180. Wester T, Eriksson L, Olsson Y, Olsen L (1999) Interstitial cells of Cajal in the human fetal small intestine as shown by c-kit immunohistochemistry. Gut 44: 65–71.

    PubMed  CAS  Google Scholar 

  181. Furlano RI, Anthony A, Day R, Brown A, McGarvey L, Thomson MA, Davies SE, Berelowitz M, Forbes A, Wakefield AJ, Walker-Smith JA, Murch SH (2001) Colonic CD8 and γδ T-cell infiltration with epithelial damage in children with autism. J Pediatr 138: 366–372.

    Google Scholar 

  182. Catassi C, Bonucci A, Coppa GV, Carlucci A, Giorgi PL (1995) Intestinal permeability changes during the first month: effect of natural versus artificial feeding. J Pediatr Gastroenterol Nutr 21: 383–386.

    PubMed  CAS  Google Scholar 

  183. Ballard ST, Hunter JH, Taylor AE (1995) Regulation of tight junction permeability during nutrient absorption across the intestinal epithelium. Annu Rev Nutr 15: 35–55.

    PubMed  CAS  Google Scholar 

  184. Lawrence DW, Comerford KM, Colgan SP (2002) Role of VASP in reestablishment of epithelial tight junction assembly after Ca2+ switch. Am J Physiol Cell Physiol 282: C1235–C1245.

    PubMed  CAS  Google Scholar 

  185. Torrente F, Ashwood P, Day R, Machado N, Furlano RI, Anthony A, Davies SE, Wakefield AJ, Thomson MA, Walker-Smith JA, Murch SH (2002) Small intestinal enteropathy with epithelial IgG and complement deposition in children with regressive autism. Mol Psychiatry 7: 375–382.

    PubMed  CAS  Google Scholar 

  186. Torrente F, Anthony A, Heuschkel RB, Thomson MA, Ashwood P, Murch SH (2004) Focal-enhanced gastritis in regressive autism with features distinct from Crohn’s and Helicobacter pylori gastritis. Am J Gastroenterol 99: 598–605.

    PubMed  Google Scholar 

  187. Nanthakumar NN, Fusunyan RD, Sanderson I, Walker WA (2000) Inflammation in the developing human intestine: A possible pathophysiologic contribution to necrotizing enterocolitis. Proc Natl Acad Sci USA 97: 6043–6048.

    PubMed  CAS  Google Scholar 

  188. Kavelaars A, van de Pol M, Zijlstra J, Heijnen CJ (1997) Beta 2-adrenergic activation enhances interleukin-8 production by human monocytes. J Neuroimmunol 77: 211–216.

    PubMed  CAS  Google Scholar 

  189. DeFelice ML, Ruchelli ED, Markowitz JE, Strogatz M, Reddy KP, Kadivar K, Mulberg AE, Brown KA (2003) Intestinal cytokines in children with pervasive developmental disorders. Am J Gastroenterol 98: 1777–1782.

    PubMed  CAS  Google Scholar 

  190. Gupta S, Aggarwal S, Heads C (1996) Brief report: Dysregulated immune system in children with autism: beneficial effects of intravenous immune globulin on autistic characteristics.J Autism Dev Disord 26: 439–452.

    PubMed  CAS  Google Scholar 

  191. Molloy CA, Morrow AL, Meinzen-Derr J, Schleifer K, Dienger K, Manning-Courtney P, Altaye M, Wills-Karp M (2006) Elevated cytokine levels in children with autism spectrum disorder. J Neuroimmunol 172: 198–205.

    PubMed  CAS  Google Scholar 

  192. Jyonouchi H, Sun S, Itokazu N (2002) Innate immunity associated with inflammatory responses and cytokine production against common dietary proteins in patients with autism spectrum disorder. Neuropsychobiology 46: 76–84.

    PubMed  CAS  Google Scholar 

  193. Stern L, Francoeur MJ, Primeau MN, Sommerville W, Fombonne E, Mazer BD (2005) Immune function in autistic children. Ann Allergy Asthma Immunol 95: 558–565.

    PubMed  Google Scholar 

  194. Denney DR, Frei BW, Gaffney GR (1996) Lymphocyte subsets and interleukin-2 receptors in autistic children.J Autism Dev Disord 26: 87–97.

    PubMed  CAS  Google Scholar 

  195. Warren RP, Yonk J, Burger RW, Odell D, Warren WL (1995) DR-positive T cells in autism: association with decreased plasma levels of the complement C4B protein. Neuropsychobiology 31: 53–57.

    PubMed  CAS  Google Scholar 

  196. Gupta S, Aggarwal S, Rashanravan B, Lee T (1998) Th1- and Th2-like cytokines in CD4+ and CD8+ T cells in autism. J Neuroimmunol 85: 106–109.

    PubMed  CAS  Google Scholar 

  197. Anastassiou ED, Paliogianni F, Balow JP, Yamada H, Boumpas DT (1992) Prostaglandin E2 and other cyclic AMP-elevating agents modulate IL-2 and IL-2R alpha gene expression at multiple levels. J Immunol 148: 2845–2852.

    PubMed  CAS  Google Scholar 

  198. Sanders VM (1998) The role of norepinephrine and beta-2-adrenergic receptor stimulation in the modulation of Th1, Th2, and B lymphocyte function. Adv Exp Med Biol 437: 269–278.

    PubMed  CAS  Google Scholar 

  199. Zola H, Ridings J, Elliott S, Nobbs S, Weedon H, Wheatland L, Haslam R, Robertson D, Macardle PJ (1998) Interleukin 2 receptor regulation and IL-2 function in the human infant. Hum Immunol 59: 615–624.

    PubMed  CAS  Google Scholar 

  200. Macardle PJ, Wheatland L, Zola H (1999) Analysis of the cord blood T lymphocyte response to superantigen. Hum Immunol 60: 127–139.

    PubMed  CAS  Google Scholar 

  201. Gupta AK, Rusterholz C, Holzgreve W, Hahn S (2005) Constant IFN gamma mRNA to protein ratios in cord and adult blood T cells suggests regulation of IFNgamma expression in cord blood T cells occurs at the transcriptional level. Clin Exp Immunol 140: 282–288.

    PubMed  CAS  Google Scholar 

  202. Singh VK, Warren R, Averett R, Ghaziuddin M (1997) Circulating autoantibodies to neuronal and glial filament proteins in autism. Pediatr Neurol 17: 88–90.

    PubMed  CAS  Google Scholar 

  203. Plioplys AV, Greaves A, Yoshida W (1989) Anti-CNS antibodies in childhood neurologic diseases. Neuropediatrics 20: 93–102.

    PubMed  CAS  Google Scholar 

  204. Connolly AM, Chez MG, Pestronk A, Arnold ST, Mehta S, Deuel RK (1999) Serum autoantibodies to brain in Landau-Kleffner variant, autism, and other neurologic disorders. J Pediatr 134: 607–613.

    PubMed  CAS  Google Scholar 

  205. Connolly AM, Chez M, Streif EM, Keeling RM, Golumbek PT, Kwon JM, Riviello JJ, Robinson RG, Neuman RJ, Deuel RM (2006) Brain-derived neurotrophic factor and autoantibodies to neural antigens in sera of children with autistic spectrum disorders, Landau-Kleffner syndrome, and epilepsy. Biol Psychiatry 59: 354–363.

    PubMed  CAS  Google Scholar 

  206. Croonenberghs J, Wauters A, Devreese K, Verkerk R, Scharpe S, Bosmans E, Egyed B, Deboutte D, Maes M (2002) Increased serum albumin, gamma globulin, immunoglobulin IgG, and IgG2 and IgG4 in autism. Psychol Med 32: 1457–1463.

    PubMed  CAS  Google Scholar 

  207. Trajkovski V, Ajdinski L, Spiroski M (2004) Plasma concentration of immunoglobulin classes and subclasses in children with autism in the Republic of Macedonia: retrospective study. Croat Med J 45: 746–749.

    PubMed  Google Scholar 

  208. Singer HS, Morris CM, Williams PN, Yoon DY, Hong JJ, Zimmerman AW (2006) Antibrain antibodies in children with autism and their unaffected siblings. Neuroimmunol 178: 149–155.

    CAS  Google Scholar 

  209. Cabanlit M, Wills S, Goines P, Ashwood P, Van de Water J (2007) Brain-specific autoantibodies in the plasma of subjects with autistic spectrum disorder. Ann N Y Acad Sci 1107: 92–103.

    PubMed  CAS  Google Scholar 

  210. Sanders VM, Powell-Oliver FE (1992) Beta 2-adrenoceptor stimulation increases the number of antigen-specific precursor B lymphocytes that differentiate into IgM-secreting cells without affecting burst size. J Immunol 148: 1822–1828.

    PubMed  CAS  Google Scholar 

  211. Podojil JR, Sanders VM (2003) Selective regulation of mature IgG1 transcription by CD86 and beta 2-adrenergic receptor stimulation. J Immunol 170: 5143–5151.

    PubMed  CAS  Google Scholar 

  212. Pongratz G, McAlees JW, Conrad DH, Erbe RS, Haas KM, Sanders VM (2006) The level of IgE produced by a B cell is regulated by norepinephrine in a p38 MAPK- and CD23-dependent manner. J Immunol 177: 2926–2938.

    PubMed  CAS  Google Scholar 

  213. Hannet I, Erkeller-Yuksel F, Lydyard P, Deneys V, DeBruyère M (1992) Developmental and maturational changes in human blood lymphocyte subpopulations. Immunol Today 13: 215–218.

    PubMed  CAS  Google Scholar 

  214. Chen ZJ, Wheeler CJ, Shi W, Wu AJ, Yarboro CH, Gallagher M, Notkins AL (1998) Polyreactive antigen-binding B cells are the predominant cell type in the newborn B cell repertoire. Eur J Immunol 28: 989–994.

    PubMed  CAS  Google Scholar 

  215. Lydyard PM, Lamour A, MacKenzie LE, Jamin C, Mageed RA, Youinou P (1993) CD5+ B cells and the immune system. Immunol Lett 38: 159–166.

    PubMed  CAS  Google Scholar 

  216. Schelonka RL, Raaphorst FM, Infante D, Kraig E, Teale JM, Infante AJ (1998) T cell receptor repertoire diversity and clonal expansion in human neonates. Pediatr Res 43: 396–402.

    PubMed  CAS  Google Scholar 

  217. Deibel MR Jr, Riley LK, Coleman MS, Cibull ML, Fuller SA, Todd E (1983) Expression of terminal deoxynucleotidyl transferase in human thymus during ontogeny and development. J Immunol 131: 195–200.

    PubMed  CAS  Google Scholar 

  218. Siden EJ, Gifford A, Baltimore D (1985) Cyclic AMP induces terminal deoxynucleotidyl transferase in immature B cell leukemia lines. J Immunol 135:1518–1522.

    PubMed  CAS  Google Scholar 

  219. Palkovitz RJ, Wiesenfeld AR (1980) Differential autonomic responses of autistic and normal children. J Autism Dev Disord 10: 347–360.

    PubMed  CAS  Google Scholar 

  220. Barry RJ, James AL (1988) Coding of stimulus parameters in autistic, retarded, and normal children: evidence for a two-factor theory of autism. Int J Psychophysiol 6: 139–149.

    PubMed  CAS  Google Scholar 

  221. Thirumalai SS, Shubin RA, Robinson R (2002) Rapid eye movement sleep behavior disorder in children with autism. J Child Neurol 17: 173–178.

    PubMed  Google Scholar 

  222. Wakefield AJ, Anthony A, Murch SH, Thomson M, Montgomery SM, Davies S, O’Leary JJ, Phil D, Berelowitz M, Walker-Smith JA (2000) Enterocolitis in children with developmental disorders. Am J Gastroenterol 95: 2285–2295.

    PubMed  CAS  Google Scholar 

  223. Ming X, Julu POO, Brimacombe M, Connor S, Daniels ML (2005) Reduced cardiac parasympathetic activity in children with autism. Brain Dev 27: 509–516.

    PubMed  Google Scholar 

  224. Chauhan V, Chauhan A, Cohen I, Sheikh A (2007) Abnormalities in signal transduction in autism. IMFAR, May 3–5 PS 6.40 Seattle, WA.

    Google Scholar 

  225. Beversdorf DQ, Manning SE, Hillier A, Anderson SL, Nordgren RE, Walters SE, Nagaraja HN, Cooley WC, Gaelic SE, Bauman ML (2005) Timing of prenatal stressors and autism. J Autism Dev Disord 35: 471–478.

    PubMed  CAS  Google Scholar 

  226. Patterson PH (2002) Maternal infection: window on neuroimmune interactions in fetal brain development and mental illness. Curr Opin Neurobiol 12: 115–118.

    PubMed  CAS  Google Scholar 

  227. Shi L, Fatemi SH, Sidwell RW, Patterson PH (2003) Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 23: 297–302.

    PubMed  Google Scholar 

  228. Slotkin TA, Lau C, McCook EC, Lappi SE, Seidler FJ (1994) Glucocorticoids enhance intracellular signaling via adenylate cyclase at three distinct loci in the fetus: a mechanism for heterologous teratogenic sensitization? Toxicol Appl Pharmacol 127: 64–75.

    PubMed  CAS  Google Scholar 

  229. Slotkin TA, McCook EC, Seidler FJ (1993) Glucocorticoids regulate the development of intracellular signaling: enhanced forebrain adenylate cyclase catalytic subunit activity after fetal dexamethasone exposure. Brain Res Bull 32: 359–364.

    PubMed  CAS  Google Scholar 

  230. Liu L, Li A, Matthews SG (2001) Maternal glucocorticoid treatment programs HPA regulation in adult offspring: sex-specific effects. Am J Physiol Endocrinol Metab 280: E729–E739.

    PubMed  CAS  Google Scholar 

  231. Owen D, Matthews SG (2007) Prenatal glucocorticoid exposure alters hypothalamic-pituitary-adrenal function in juvenile guinea pigs. J Neuroendocrinol 19: 172–180.

    PubMed  CAS  Google Scholar 

  232. Kapoor A, Matthews SG (2005) Short periods of prenatal stress affect growth, behaviour and hypothalamo–pituitary–adrenal axis activity in male guinea pig offspring. J Physiol 566(Pt 3): 967–977.

    PubMed  CAS  Google Scholar 

  233. Geier DA, Geier MR (2006) A clinical and laboratory evaluation of methionine cycle-transsulfuration and androgen pathway markers in children with autistic disorders. Horm Res 66: 182–188.

    PubMed  CAS  Google Scholar 

  234. Meyer A, Seidler FJ, Cousins MM, Slotkin TA (2003) Developmental neurotoxicity elicited by gestational exposure to chlorpyrifos: when is adenylyl cyclase a target? Environ Health Perspect 111: 1871–1876.

    PubMed  CAS  Google Scholar 

  235. Aldridge JE, Meyer A, Seidler FJ, Slotkin TA (2005) Developmental exposure to terbutaline and chlorpyrifos: pharmacotherapy of preterm labor and an environmental neurotoxicant converge on serotonergic systems in neonatal rat brain regions. Toxicol Appl Pharmacol 203: 132–144.

    PubMed  CAS  Google Scholar 

  236. Slotkin TA, Seidler FJ (2007) Developmental exposure to terbutaline and chlorpyrifos, separately or sequentially, elicits presynaptic serotonergic hyperactivity in juvenile and adolescent rats. Brain Res Bull 73: 301–309.

    PubMed  CAS  Google Scholar 

  237. Chugani DC, Muzik O, Behen M, Rothermel R, Janisse JJ, Lee J, Chugani HT (1999) Developmental changes in brain serotonin synthesis capacity in autistic and nonautistic children. Ann Neurol 45: 287–295.

    PubMed  CAS  Google Scholar 

  238. Zimmerman AW, Connors SL, Matteson KJ, Lee LC, Singer HS, Castaneda JA, Pearce DA (2007) Maternal antibrain antibodies in autism. Brain Behav Immun 21: 351–357.

    PubMed  CAS  Google Scholar 

  239. Singer HS, Morris CM, Gause CD, Gillin PK, Crawford S, Zimmerman AW (2008) Antibodies against fetal brain in sera of mothers with autistic children. J Neuroimmunol 194: 165–172.

    Google Scholar 

  240. Connors SL, Matteson KJ, Sega GA, Lozzio CB, Carroll RC, Zimmerman AW (2006) Plasma serotonin in autism. Pediatr Neurol 35:182–186.

    PubMed  Google Scholar 

  241. Kapoor A, Petropoulos S, Matthews SG (2008) Fetal programming of hypothalamic-pituitary-adrenal (HPA) axis function and behavior by synthetic glucocorticoids. Brain Res Rev 57: 586–595.

    Google Scholar 

  242. Slotkin TA, Saleh JL, Zhang J, Seidler FJ (1996) Ontogeny of beta-adrenoceptor/adenylyl cyclase desensitization mechanisms: the role of neonatal innervation. Brain Res 742: 317–328.

    PubMed  CAS  Google Scholar 

  243. Hou QC, Seidler FJ, Slotkin TA (1989) Development of the linkage of beta-adrenergic receptors to cardiac hypertrophy and heart rate control: neonatal sympathectomy with 6-hydroxydopamine. J Dev Physiol 11: 305–311.

    PubMed  CAS  Google Scholar 

  244. DeLong GR, Bean SC, Brown FR 3rd (1981) Acquired reversible autistic syndrome in acute encephalopathic illness in children. Arch Neurol 38: 191–194.245.

    PubMed  CAS  Google Scholar 

  245. Lee TP (1980) Virus exposure diminishes beta-adrenergic response in human leukocytes. Res Commun Chem Path Pharmacol 30: 469–476.

    CAS  Google Scholar 

  246. Stanwick TL, Anderson RW, Nahmias AJ (1977) Interaction between cyclic nucleotides and herpes simplex viruses: productive infection. Infect Immun 18: 342–347.

    PubMed  CAS  Google Scholar 

  247. Speiser Z, Gordon I, Rehavi M, Gitter S (1991) Behavioral and biochemical studies in rats following prenatal treatment with beta-adrenoceptor antagonists. Eur J Pharmacol 195: 75–83.

    PubMed  CAS  Google Scholar 

  248. Wagner JP, Seidler FJ, Slotkin TA (1991) Presynaptic input regulates development of β-adrenergic control of rat brain ornithine decarboxylase: effects of 6-hydroxydopamine or propranolol.Brain Res. Bull 26:885–890.

    PubMed  CAS  Google Scholar 

  249. Kudlacz EM, Spencer JR, Slotkin TA (1991) Postnatal alterations in β-adrenergic receptor binding in rat brain regions after continuous prenatal exposure to propranolol via maternal infusion. Res Commun Chem Pathol Pharmacol 71:153–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Connors, S.L. (2008). Prenatal β2-Adrenergic Receptor Signaling and Autism:. In: Autism. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-60327-489-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-489-0_7

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-488-3

  • Online ISBN: 978-1-60327-489-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics