Skip to main content

Teratogenic Alleles in Autism and Other Neurodevelopmental Disorders

  • Chapter
Autism

Part of the book series: Current Clinical Neurology ((CCNEU))

Abstract

Genes for neurodevelopmental disorders have proven difficult to find. In the case of autism, even though a number of genes associated with the disorder have been identified, the cause of the disorder is far from clear. We discuss here a new category of genetic contribution to human disorders, i.e., gene variants (alleles) that act in mothers during pregnancy to contribute to the neurodevelopmental disorder in her offspring. We have termed these maternally acting alleles “teratogenic alleles” because they act in the fetus in a way somewhat analogous to chemical teratogens or drug teratogens ingested by a mother during pregnancy that act to damage her fetus. Although two examples of this mechanism have been known for some time, new examples have been found and since 2003 the number of examples has more than doubled. Even though this number is growing rapidly, the present number, 33, is not large. It is not clear whether this is so because teratogenic alleles are not yet well known and therefore not looked for, whether the possibility of a teratogenic allele is not considered when studies are designed, or whether there are in fact very few teratogenic alleles in comparison with alleles that act in the fetus. All of the teratogenic alleles reported so far have been in neurodevelopmental and developmental disorders. Again it is not clear whether this is simply because these are the disorders that happen to have been studied so far by suitable study designs, or whether teratogenic alleles are actually more commonly encountered in these disorders, perhaps as a regular feature or even as a characteristic feature of these disorders.

In autism, some of the brain abnormalities are known to occur very early in pregnancy. A number of teratogenic alleles have already been reported in autism and more will be reported. Demonstration of the action of teratogenic alleles in autism opens up new opportunities for therapy and prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnson WG. Teratogenic alleles and neurodevelopmental disorders. BioEssays 2003; 25: 464–477.

    Article  PubMed  CAS  Google Scholar 

  2. Johnson WG. The DNA polymorphism–diet–cofactor–development hypothesis and the gene-teratogen model for schizophrenia and other developmental disorders. Am J Med Genet B (Neuropsychiatr Genet) 1999; 88: 311–323.

    Article  CAS  Google Scholar 

  3. Mitchell LE. Differentiating between fetal and maternal genotypic effects, using the transmission test for linkage disequilibrium. Am J Hum Genet 1997; 60: 1006–1007.

    PubMed  CAS  Google Scholar 

  4. Doolin MT, Barbaux S, McDonnell M, Hoess K, Whitehead AS, Mitchell LE. Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Genet 2002; 71(5): 1222–1226.

    Article  PubMed  CAS  Google Scholar 

  5. Williams TA, Mars AE, Buyske SG, Stenroos ES, Wang R, Factura-Santiago MF et al. Risk of autistic disorder in affected offspring of mothers with a glutathione S-transferase P1 haplotype. Arch Pediatr Adolesc Med 2007; 161(4): 356–361.

    Article  PubMed  Google Scholar 

  6. Weinberg CR, Wilcox AJ, Lie RT. A log-linear approach to case-parent-triad data: Assessing effects of disease genes that act either directly or through maternal effects and that may be subject to parental imprinting. Am J Hum Genet 1998; 62(4): 969–978.

    Article  PubMed  CAS  Google Scholar 

  7. Wilcox AJ, Weinberg CR, Lie RT. Distinguishing the effects of maternal and offspring genes through studies of “case-parent triads”. Am J Epidemiol 1998; 148(9): 893–901.

    PubMed  CAS  Google Scholar 

  8. Weinberg CR, Wilcox AJ. Re: “Distinguishing the effects of maternal and offspring genes through studies of 'case-parent triads' ” and “a new method for estimating the risk ratio in studies using case-parental control design”. Am J Epidemiol 1999; 150(4): 428–429.

    PubMed  CAS  Google Scholar 

  9. Weinberg CR. Methods for detection of parent-of-origin effects in genetic studies of case-parents triads. Am J Hum Genet 1999; 65(1): 229–235.

    Article  PubMed  CAS  Google Scholar 

  10. Starr JR, Hsu L, Schwartz SM. Assessing maternal genetic associations: A comparison of the log-linear approach to case-parent triad data and a case–control approach. Epidemiol 2005; 16(3): 294–303.

    Article  Google Scholar 

  11. Mitchell LE, Weinberg CR. Evaluation of offspring and maternal genetic effects on disease risk using a family-based approach: The “pent” design. Am J Epidemiol 2005; 162(7): 676–685.

    Article  PubMed  Google Scholar 

  12. Mitchell LE, Starr JR, Weinberg CR, Sinsheimer JS, Mitchell LE, Murray JC. Maternal Genetic Effects. Concurrent Invited Sessions I, #14, American Society of Human Genetics, Annual Meeting, Wed Oct 26 8–10 pm, Salt Lake City, UT, 2005.

    Google Scholar 

  13. Doolin MT, Barbaux S, McDonnell M, Hoess K, Whitehead AS, Mitchell LE. Maternal genetic effects, exerted by genes involved in homocysteine remethylation, influence the risk of spina bifida. Am J Hum Genet 2002; 71(5): 1222–1226.

    Article  PubMed  CAS  Google Scholar 

  14. Koch R, Levy HL, Matalon R, Rouse B, Hanley WB, Trefz F et al. The international collaborative study of maternal phenylketonuria: Status report 1994. Acta Paediatr Suppl 1994; 407: 111–119.

    Article  PubMed  CAS  Google Scholar 

  15. Allen RJ, Brunberg J, Schwartz E, Schaefer AM, Jackson G. MRI characterization of cerebral dysgenesis in maternal PKU. Acta Paediatr Suppl 1994; 407: 83–85.

    Article  PubMed  CAS  Google Scholar 

  16. Abadie V, Depondt E, Farriaux JP, Lepercq J, Lyonnet S, Maurin N et al. [Pregnancy and the child of a mother with phenylketonuria]. Archives Pediatr 1996; 3: 489–486.

    Article  CAS  Google Scholar 

  17. Menkes JH Textbook of Child Neurology. 4 ed. Philadelphia: Lea & Febiger 1990.

    Google Scholar 

  18. Westgren M, Ek S, Remberger M, Ringden O, Stangenberg M. Cytokines in fetal blood and amniotic fluid in Rh-immunized pregnancies. Obstet Gynecol 1995; 86(2): 209–213.

    Article  PubMed  CAS  Google Scholar 

  19. Hollister JM, Laing P, Mednick SA. Rhesus incompatibility as a risk factor for schizophrenia in male adults. Arch Gen Psychiatry 1996; 53: 19–24.

    PubMed  CAS  Google Scholar 

  20. Zandi PP, Kalaydjian A, Avramopoulos D, Shao H, Fallin MD, Newschaffer CJ. Rh and ABO maternal-fetal incompatibility and risk of autism. Am J Med Genet B Neuropsychiatr Genet 2006; 141(6): 643–647.

    Google Scholar 

  21. Brody LC, Conley M, Cox C, Kirke PN, McKeever MP, Mills JL et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: Report of the Birth Defects Research Group. Am J Hum Genet 2002; 71(5): 1207–1215.

    Article  PubMed  CAS  Google Scholar 

  22. Chen D, Hu Y, Yang F, Li Z, Wu B, Fang Z et al. Cytochrome P450 gene polymorphisms and risk of low birth weight. Genet Epidemiol 2005; 28(4): 368–375.

    Article  PubMed  Google Scholar 

  23. Jensen LE, Hoess K, Mitchell LE, Whitehead AS. Loss of function polymorphisms in NAT1 protect against spina bifida. Hum Genet 2006; 120(1): 52–57.

    Article  PubMed  CAS  Google Scholar 

  24. Jensen LE, Etheredge AJ, Brown KS, Mitchell LE, Whitehead AS. Maternal genotype for the monocyte chemoattractant protein 1 A(-2518)G promoter polymorphism is associated with the risk of spina bifida in offspring. Am J Med Genet A 2006; 140(10): 1114–1118.

    PubMed  Google Scholar 

  25. Descamps OS, Bruniaux M, Guilmot PF, Tonglet R, Heller FR. Lipoprotein concentrations in newborns are associated with allelic variations in their mothers. Atherosclerosis 2004; 172(2): 287–298.

    Article  PubMed  CAS  Google Scholar 

  26. Carroll WD, Lenney W, Child F, Strange RC, Jones PW, Fryer AA. Maternal glutathione S-transferase GSTP1 genotype is a specific predictor of phenotype in children with asthma. Pediatr Allergy Immunol 2005; 16(1): 32–39.

    Article  PubMed  CAS  Google Scholar 

  27. Martinelli M, Scapoli L, Pezzetti F, Carinci F, Carinci P, Stabellini G et al. C677T variant form at the MTHFR gene and CL/P: A risk factor for mothers? Am J Med Genet 2001; 98(4): 357–360.

    Article  PubMed  CAS  Google Scholar 

  28. van Beynum IM, Kapusta L, den Heijer M, Vermeulen SH, Kouwenberg M, Daniels O et al. Maternal MTHFR 677C>T is a risk factor for congenital heart defects: Effect modification by periconceptional folate supplementation. Eur Heart J 2006; 27(8): 981–987.

    Article  PubMed  Google Scholar 

  29. Rai AK, Singh S, Mehta S, Kumar A, Pandey LK, Raman R. MTHFR C677T and A1298C polymorphisms are risk factors for down's syndrome in Indian mothers. J Hum Genet 2006; 51(4): 278–283.

    Article  PubMed  CAS  Google Scholar 

  30. Lee LC, Zachary AA, Leffell MS, Newschaffer CJ, Matteson KJ, Tyler JD et al. HLA-DR4 in families with autism. Pediatr Neurol 2006; 35(5): 303–307.

    Article  PubMed  Google Scholar 

  31. Warren RP, Singh VK, Cole P, Odell JD, Pingree CB, Warren WL et al. Increased frequency of the null allele at the complement C4b locus in autism. Clin Exp Immunol 1991; 83: 438–440.

    Article  PubMed  CAS  Google Scholar 

  32. Warren RP, Singh VK, Cole P, Odell JD, Pingree CB, Warren WL et al. Possible association of the extended MHC haplotype B44-SC30-DR4 with autism. Immunogenetics 1992; 36: 203–207.

    Article  PubMed  CAS  Google Scholar 

  33. Daniels WW, Warren RP, Odell JD, Maciulis A, Burger RA, Warren WL et al. Increased frequency of the extended or ancestral haplotype B44- SC30-DR4 in autism. Neuropsychobiology 1995; 32: 120–123.

    Article  PubMed  CAS  Google Scholar 

  34. Warren RP, Odell JD, Warren WL, Burger RA, Maciulis A, Daniels WW et al. Strong association of the third hypervariable region of HLA-DR beta 1 with autism. J Neuroimmunol 1996; 67: 97–102.

    Article  PubMed  CAS  Google Scholar 

  35. Odell D, Maciulis A, Cutler A, Warren L, McMahon WM, Coon H et al. Confirmation of the association of the C4B null allelle in autism. Hum Immunol 2005; 66(2): 140–145.

    Article  PubMed  CAS  Google Scholar 

  36. Torres AR, Maciulis A, Stubbs EG, Cutler A, Odell D. The transmission disequilibrium test suggests that HLA-DR4 and DR13 are linked to autism spectrum disorder. Hum Immunol 2002; 63(4): 311–316.

    Article  PubMed  CAS  Google Scholar 

  37. Zusterzeel PL, Nelen WL, Roelofs HM, Peters WH, Blom HJ, Steegers EA. Polymorphisms in biotransformation enzymes and the risk for recurrent early pregnancy loss. Mol Hum Reprod 2000; 6(5): 474–478.

    Article  PubMed  CAS  Google Scholar 

  38. De Marco P, Calevo MG, Moroni A, Arata L, Merello E, Cama A et al. Polymorphisms in genes involved in folate metabolism as risk factors for NTDs. Eur J Pediatr Surg 2001; 11(Suppl 1): S14–S17.

    Article  PubMed  Google Scholar 

  39. O’Leary VB, Parle-McDermott A, Molloy AM, Kirke PN, Johnson Z, Conley M et al. MTRR and MTHFR polymorphism: Link to down syndrome? Am J Med Genet 2002; 107(2): 151–155.

    Article  PubMed  Google Scholar 

  40. van Rooij IA, Wegerif MJ, Roelofs HM, Peters WH, Kuijpers-Jagtman AM, Zielhuis GA et al. Smoking, genetic polymorphisms in biotransformation enzymes, and nonsyndromic oral clefting: A gene–environment interaction. Epidemiology 2001; 12(5): 502–507.

    Article  PubMed  Google Scholar 

  41. Buyske S, Williams TA, Mars AE, Stenroos ES, Wong R, Ming X et al. Analysis of case–parent trios at a locus with a deletion allele: Association of GSTM1 with autism. BMC Genet 2006; 7: 8.

    Article  PubMed  Google Scholar 

  42. Gonzalez-Herrera LJ, Flores-Machado MP, Castillo-Zapata IC, Garcia-Escalante MG, Pinto-Escalante D, Gonzalez-Del Angel A. Interaction of C677T and A1298C polymorphisms in the MTHFR gene in association with neural tube defects in the State of Yucatan, Mexico. Am J Hum Genet 2002; 71(4): 367.

    Google Scholar 

  43. Sata F, Yamada H, Kondo T, Gong Y, Tozaki S, Kobashi G et al. Glutathione S-transferase M1 and T1 polymorphisms and the risk of recurrent pregnancy loss. Mol Hum Reprod 2003; 9(3): 165–169.

    Article  PubMed  CAS  Google Scholar 

  44. Johnson WG, Stenroos ES, Spychala J, Buyske S, Chatkupt S, Ming X. A new 19 bp deletion polymorphism in intron-1 of dihydrofolate reductase (DHFR)―A risk factor for spina bifida acting in mothers during pregnancy? Am J Med Genet 2004; 124A(4): 339–345.

    Article  PubMed  Google Scholar 

  45. Suryanarayana V, Deenadayal M, Singh L. Association of CYP1A1 gene polymorphism with recurrent pregnancy loss in the south Indian population. Hum Reprod 2004; 19(11): 2648–2652.

    Article  PubMed  CAS  Google Scholar 

  46. Johnson WG, Scholl TO, Spychala JR, Buyske S, Stenroos ES, Chen X. Common dihydrofolate reductase 19 bp deletion allele: A novel risk factor for preterm delivery. Am J Clin Nutr 2005; 81: 664–668.

    PubMed  CAS  Google Scholar 

  47. Anderson GM, Jacobs-Stannard A, Chawarska K, Volkmar FR, Kliman HJ. Placental trophoblast inclusions in autism spectrum disorder. Biol Psychiatry 2007; 61(4): 487–491.

    Article  PubMed  Google Scholar 

  48. Rouse B, Azen C. Effect of high maternal blood phenylalanine on offspring congenital anomalies and developmental outcome at ages 4 and 6 years: The importance of strict dietary control preconception and throughout pregnancy. J Pediatr 2004; 144(2): 235–239.

    Article  PubMed  CAS  Google Scholar 

  49. Palmer CG, Turunen JA, Sinsheimer JS, Minassian S, Paunio T, Lonnqvist J et al. RHD maternal-fetal genotype incompatibility increases schizophrenia susceptibility. Am J Hum Genet 2002; 71(6): 1312–1319.

    Article  PubMed  CAS  Google Scholar 

  50. Scala I, Granese B, Sellitto M, Salome S, Sammartino A, Pepe A et al. Analysis of seven maternal polymorphisms of genes involved in homocysteine/folate metabolism and risk of Down syndrome offspring. Genet Med 2006; 8(7): 409–416.

    Article  PubMed  CAS  Google Scholar 

  51. Buyske S. Maternal genotype effects can alias case genotype effects in case–control studies. Submitted. 2007.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Johnson, W.G., Sreenath, M., Buyske, S., Stenroos, E.S. (2008). Teratogenic Alleles in Autism and Other Neurodevelopmental Disorders. In: Autism. Current Clinical Neurology. Humana Press. https://doi.org/10.1007/978-1-60327-489-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-489-0_2

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-488-3

  • Online ISBN: 978-1-60327-489-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics