Skip to main content

Concentrating, Storing, and Detoxifying Iron: The Ferritins and Hemosiderin

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Abstract

Ferritins are important in both iron and oxygen metabolism, based on patterns of gene regulation and protein function. The DNA is regulated by oxidants and is coordinated with other antioxidant response genes [1]. The mRNA function regulated by iron and oxygen [2–4] with direct sensing of ferrous ion in the repressor (IRP) complex [5], is coordinated with iron trafficking and oxygen metabolism mRNAs [6]. Ferritin protein converts both cytoplasmic iron (Fe2+) and oxygen (O2), into catalytic product, and mineral precursors in ∼2:1 ratio [7]. A mineral with 2,000 Fe has consumed almost 1,500 dioxygen molecules in mineral formation, decreasing, at least locally, both iron and oxygen in the cytoplasm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hintze KJ, Theil EC. Cellular regulation and molecular interactions of the ferritins. Cell Mol Life Sci. 2006;63:591–600.

    PubMed  CAS  Google Scholar 

  2. Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostasis by iron regulatory proteins. Biochim Biophys Acta. 2006;1763:668–89.

    PubMed  CAS  Google Scholar 

  3. Rouault TA. The role of iron regulatory proteins in mammalian iron homeostasis and disease. Nat Chem Biol. 2006;2:406–14.

    PubMed  CAS  Google Scholar 

  4. Hentze MW, Muckenthaler MU, Andrews NC. Balancing acts: molecular control of mammalian iron metabolism. Cell. 2004;117:285–97.

    PubMed  CAS  Google Scholar 

  5. Khan MA, Walden WE, Goss DJ, Theil EC. Direct Fe2+ sensing by iron-responsive messenger RNA: repressor complexes weakens binding. J Biol Chem. 2009;284:30122–8.

    PubMed  CAS  Google Scholar 

  6. Theil EC, Goss DJ. Living with iron (and oxygen): questions and answers about iron homeostasis. Chem Rev. 2009;109:4568–79.

    PubMed  CAS  Google Scholar 

  7. Liu X, Theil EC. Ferritin: dynamic management of biological iron and oxygen chemistry. Acc Chem Res. 2005;38:167–75.

    PubMed  CAS  Google Scholar 

  8. Chiancone E, Ceci P, Ilari A, Ribacchi F, Stefanini S. Iron and proteins for iron storage and detoxification. Biometals. 2004;17:197–202.

    PubMed  CAS  Google Scholar 

  9. Hintze KJ, Theil EC. DNA and mRNA elements with complementary responses to hemin, antioxidant inducers, and iron control ferritin-L expression. Proc Natl Acad Sci USA. 2005;102:15048–52.

    PubMed  CAS  Google Scholar 

  10. Harrison PM, Arosio P. The ferritins: molecular properties, iron storage function and cellular regulation. Biochim Biophys Acta. 1996;1275:161–203.

    PubMed  Google Scholar 

  11. Drysdale J, Arosio P, Invernizzi R, et al. Mitochondrial ferritin: a new player in iron metabolism. Blood Cells Mol Dis. 2002;29:376–83.

    PubMed  CAS  Google Scholar 

  12. Levi S, Arosio P. Mitochondrial ferritin. Int J Biochem Cell Biol. 2004;36:1887–9.

    PubMed  CAS  Google Scholar 

  13. Drysdale JW, Adelman TG, Arosio P, et al. Human isoferritins in normal and disease states. Semin Hematol. 1977;14:71–88.

    PubMed  CAS  Google Scholar 

  14. Collawn Jr JF, Donato Jr H, Upshur JK, Fish WW. A comparison by HPLC of ferritin subunit types in human tissues. Comp Biochem Physiol. 1985;81B:901–4.

    CAS  Google Scholar 

  15. Beaumont C, Torti SV, Torti FM, Massover WH. Novel properties of L-type polypeptide subunits in mouse ferritin molecules. J Biol Chem. 1996;271:7923–6.

    PubMed  CAS  Google Scholar 

  16. Dickey LF, Sreedharan S, Theil EC, Didsbury JR, Wang Y-H, Kaufman RE. Differences in the regulation of messenger RNA for housekeeping and specialized-cell ferritin: a comparison of three distinct ferritin complementary DNAs, the corresponding subunits, and identification of the first processed in amphibia. J Biol Chem. 1987;262:7901–7.

    PubMed  Google Scholar 

  17. Powell LW, Alpert E, Isselbacher KJ, Drysdale JW. Human isoferritins: organ specific iron and apoferritin distribution. Br J Haematol. 1975;30:47–55.

    PubMed  CAS  Google Scholar 

  18. Arosio P, Adelman TG, Drysdale JW. On ferritin heterogeneity. Further evidence for heteropolymers. J Biol Chem. 1978;253:4451–8.

    PubMed  CAS  Google Scholar 

  19. Lavoie DJ, Ishikawa K, Listowsky I. Correlations between subunit distribution, microheterogeneity, and iron content of human liver ferritin. Biochemistry. 1978;17:5448–54.

    PubMed  CAS  Google Scholar 

  20. Konijn AM, Glickstein H, Vaisman B, Meyron-Holtz EG, Slotki IN, Cabantchik ZI. The cellular labile iron pool and intracellular ferritin in K562 cells. Blood. 1999;94:2128–34.

    PubMed  CAS  Google Scholar 

  21. Vaisman B, Meyron-Holtz EG, Fibach E, Krichevsky AM, Konijn AM. Ferritin expression in maturing normal human erythroid precursors. Br J Haematol. 2000;110:394–401.

    PubMed  CAS  Google Scholar 

  22. Girelli D, Corrocher R, Bisceglia L, et al. Molecular basis for the recently described hereditary hyperferritinemia-cataract syndrome: a mutation in the iron-responsive element of ferritin L-subunit gene (the “Verona mutation”). Blood. 1995;86:4050–3.

    PubMed  CAS  Google Scholar 

  23. Cazzola M, Skoda RC. Translational pathophysiology: a novel molecular mechanism of human disease. Blood. 2000;95:3280–8.

    PubMed  CAS  Google Scholar 

  24. Roetto A, Bosio S, Gramaglia E, Barilaro MR, Zecchina G, Camaschella C. Pathogenesis of hyperferritinemia cataract syndrome. Blood Cells Mol Dis. 2002;29:532–5.

    PubMed  CAS  Google Scholar 

  25. Curtis AR, Fey C, Morris CM, et al. Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat Genet. 2001;28:350–4.

    PubMed  CAS  Google Scholar 

  26. Levi S, Cozzi A, Arosio P. Neuroferritinopathy: a neurodegenerative disorder associated with L-ferritin mutation. Best Pract Res Clin Haematol. 2005;18:265–76.

    PubMed  CAS  Google Scholar 

  27. Cozzi A, Santambrogio P, Corsi B, Campanella A, Arosio P, Levi S. Characterization of the l-ferritin variant 460InsA responsible of a hereditary ferritinopathy disorder. Neurobiol Dis. 2006;23:644–52.

    PubMed  CAS  Google Scholar 

  28. Cozzi A, Corsi B, Levi S, Santambrogio P, Biasiotto G, Arosio P. Analysis of the biologic functions of H- and L-ferritins in HeLa cells by transfection with siRNAs and cDNAs: evidence for a proliferative role of L-ferritin. Blood. 2004;103:2377–83.

    PubMed  CAS  Google Scholar 

  29. Hasan MR, Koikawa S, Kotani S, Miyamoto S, Nakagawa H. Ferritin forms dynamic oligomers to associate with microtubules in vivo: implication for the role of microtubules in iron metabolism. Exp Cell Res. 2006;312:1950–60.

    PubMed  CAS  Google Scholar 

  30. White K, Munro HN. Induction of ferritin subunit synthesis by iron is regulated at both the transcriptional and translational levels. J Biol Chem. 1988;263:8938–42.

    PubMed  CAS  Google Scholar 

  31. Leggett BA, Fletcher LM, Ramm GA, Powell LW, Halliday JW. Differential regulation of ferritin H and L subunit mRNA during inflammation and long-term iron overload. J Gastroenterol Hepatol. 1993;8:21–7.

    PubMed  CAS  Google Scholar 

  32. Jenkins ZA, Hagar W, Bowlus CL, et al. Iron homeostasis during transfusional iron overload in β-thalassemia and sickle cell disease: changes in iron regulatory protein and ferritin expression. Pediatr Hematol Oncol. 2007;24:237–43.

    PubMed  CAS  Google Scholar 

  33. Rohrer JS, Joo M-S, Dartyge E, Sayers DE, Fontaine A, Theil EC. Stabilization of iron in a ferrous form by ferritin: a study using dispersive and conventional X-ray absorption spectroscopy. J Biol Chem. 1987;262:11385–7.

    Google Scholar 

  34. Waldo GS, Theil EC. Ferritin and iron biomineralization. In: Suslick KS, editor. Comprehensive supramolecular chemistry, bioinorganic systems. Oxford: Pergamon; 1996. p. 65–89.

    Google Scholar 

  35. Sun S, Chasteen ND. Ferroxidase kinetics of horse spleen apoferritin. J Biol Chem. 1992;267:25160–6.

    PubMed  CAS  Google Scholar 

  36. Turano P, Lalli D, Felli I, Theil E, Bertini I. NMR reveals pathway for ferric mineral precursors to the central cavity of ferritin. Proc Natl Acad Sci USA. 2010;107:545–50.

    PubMed  CAS  Google Scholar 

  37. Rohrer JS, Islam QT, Watt GD, Sayers DE, Theil EC. Iron environment in ferritin with large amounts of phosphate, from Azotobacter vinelandii and horse spleen, analyzed using extended X-ray absorption fine structure (EXAFS). Biochemistry. 1990;29:259–64.

    PubMed  CAS  Google Scholar 

  38. Waldo GS, Wright E, Whang ZH, Briat JF, Theil EC, Sayers DE. Formation of the ferritin iron mineral occurs in plastids. Plant Physiol. 1995;109:797–802.

    PubMed  CAS  Google Scholar 

  39. Le Brun NE, Crow A, Murphy ME, Mauk AG, Moore GR. Iron core mineralisation in prokaryotic ferritins. Biochim Biophys Acta. 2010;1800:732–44.

    PubMed  Google Scholar 

  40. Chiancone E, Ceci P. The multifaceted capacity of Dps proteins to combat bacterial stress conditions: detoxification of iron and hydrogen peroxide and DNA binding. Biochim Biophys Acta. 2010;1800:798–805.

    PubMed  CAS  Google Scholar 

  41. Liu X, Kim K, Leighton T, Theil EC. Paired Bacillus anthracis Dps (mini-ferritin) have different reactivities with peroxide. J Biol Chem. 2006;281:27827–35.

    PubMed  CAS  Google Scholar 

  42. Bellapadrona G, Stefanini S, Zamparelli C, Theil EC, Chiancone E. Iron translocation into and out of Listeria innocua Dps and size distribution of the protein-enclosed nanomineral are modulated by the electrostatic gradient at the 3-fold “ferritin-like” pores. J Biol Chem. 2009;284:19101–9.

    PubMed  CAS  Google Scholar 

  43. Jameson GN, Jin W, Krebs C, et al. Stoichiometric production of hydrogen peroxide and parallel formation of ferric multimers through decay of the diferric-peroxo complex, the first detectable intermediate in ferritin mineralization. Biochemistry. 2002;41:13435–43.

    PubMed  CAS  Google Scholar 

  44. Jameson GNL, Walters EM, Manieri W, Schurmann P, Johnson MK, Huynh BH. Spectroscopic evidence for site specific chemistry at a unique iron site of the [4Fe–4S] cluster in ferredoxin:thioredoxin reductase. J Am Chem Soc. 2003;125:1146–7.

    PubMed  CAS  Google Scholar 

  45. Zhao G, Bou-Abdallah F, Arosio P, Levi S, Janus-Chandler C, Chasteen ND. Multiple pathways for mineral core formation in mammalian apoferritin. The role of hydrogen peroxide. Biochemistry. 2003;42:3142–50.

    PubMed  CAS  Google Scholar 

  46. Waldo GS, Theil EC. Formation of iron(III)-tyrosinate is the fastest reaction observed in ferritin. Biochemistry. 1993;32:13262–9.

    PubMed  CAS  Google Scholar 

  47. Liu X, Theil EC. Ferritin reactions: direct identification of the site for the diferric peroxide reaction intermediate. Proc Natl Acad Sci USA. 2004;101:8557–62.

    PubMed  CAS  Google Scholar 

  48. Trikha J, Theil EC, Allewell NM. High resolution crystal structures of amphibian red-cell L ferritin: potential roles for structural plasticity and solvation in function. J Mol Biol. 1995;248:949–67.

    PubMed  CAS  Google Scholar 

  49. Granier T, Langlois d’Estaintot B, Gallois B, et al. Structural description of the active sites of mouse L-chain ferritin at 1.2 A resolution. J Biol Inorg Chem. 2003;8:105–11.

    PubMed  CAS  Google Scholar 

  50. Hempstead PD, Yewdall SJ, Fernie AR, et al. Comparison of the three-dimensional structures of recombinant human H and horse L ferritins at high resolution. J Mol Biol. 1997;268:424–48.

    PubMed  CAS  Google Scholar 

  51. Otsuka S, Listowsky I, Niitsu Y, Urushizaki I. Assembly of intra- and interspecies hybrid apoferritins. J Biol Chem. 1980;255:6234–7.

    PubMed  CAS  Google Scholar 

  52. Rhee SG, Kang SW, Jeong W, Chang TS, Yang KS, Woo HA. Intracellular messenger function of hydrogen peroxide and its regulation by peroxiredoxins. Curr Opin Cell Biol. 2005;17:183–9.

    PubMed  CAS  Google Scholar 

  53. Giorgio M, Trinei M, Migliaccio E, Pelicci PG. Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nat Rev Mol Cell Biol. 2007;8:722–8.

    PubMed  CAS  Google Scholar 

  54. St Pierre T, Tran KC, Webb J, Macey DJ, Heywood BR, Sparks NH, et al. Organ-specific crystalline structures of ferritin cores in beta-thalassemia/hemoglobin E. Biol Met. 1991;4:162–5.

    Google Scholar 

  55. Tosha T, Hasan MR, Theil EC. The ferritin Fe2 site at the diiron catalytic center controls the reaction with O2 in the rapid mineralization pathway. Proc Natl Acad Sci USA. 2008;105:18182–7.

    PubMed  CAS  Google Scholar 

  56. Ambe S, Ambe F, Nozuki T. Mossbauer study of iron in soybean seeds. J Agric Food Chem. 1987;35:292–6.

    CAS  Google Scholar 

  57. National Nutrient Database for Standard Reference, Release 17. Nutrient Data Laboratory Home Page, http://www.nal.usda.gov/fnic/foodcomp. US Department of Agriculture, Agricultural Research Service; 2004.

  58. San Martin CD, Garri C, Pizarro F, Walter T, Theil EC, Núñez M. Caco-2 intestinal epithelial cells absorb soybean ferritin by mu2 (AP2)-dependent endocytosis. J Nutr. 2008;138:659–66.

    PubMed  CAS  Google Scholar 

  59. Meyron-Holtz EG, Vaisman B, Cabantchik ZI, et al. Regulation of intracellular iron metabolism in human erythroid precursors by internalized extracellular ferritin. Blood. 1999;94:3205–11.

    PubMed  CAS  Google Scholar 

  60. Chen TT, Li L, Chung DH, et al. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med. 2005;202:955–65.

    PubMed  CAS  Google Scholar 

  61. Liao QK, Kong PA, Gao J, Li FY, Qian ZM. Expression of ferritin receptor in placental microvilli membrane in pregnant women with different iron status at mid-term gestation. Eur J Clin Nutr. 2001;55:651–6.

    PubMed  CAS  Google Scholar 

  62. Ramm GA, Britton RS, O’Neill R, Bacon BR. Identification and characterization of a receptor for tissue ferritin on activated rat lipocytes. J Clin Invest. 1994;94:9–15.

    PubMed  CAS  Google Scholar 

  63. Beard JL, Burton JW, Theil EC. Purified ferritin and soybean meal can be sources of iron for treating iron deficiency in rats. J Nutr. 1996;126:154–60.

    PubMed  CAS  Google Scholar 

  64. Murray-Kolb LE, Welch R, Theil EC, Beard JL. Women with low iron stores absorb iron from soybeans. Am J Clin Nutr. 2003;77:180–4.

    PubMed  CAS  Google Scholar 

  65. Davila-Hicks P, Theil EC, Lonnerdal B. Iron in ferritin or in salts (ferrous sulfate) is equally bioavailable in nonanemic women. Am J Clin Nutr. 2004;80:936–40.

    PubMed  CAS  Google Scholar 

  66. Lonnerdal B, Bryant A, Liu X, Theil EC. Iron absorption from soybean ferritin in nonanemic women. Am J Clin Nutr. 2006;83:103–7.

    PubMed  CAS  Google Scholar 

  67. Sayers MH, Lynch SR, Jacobs P, et al. The effects of ascorbic acid supplementation on the absorption of iron in maize, wheat and soya. Br J Haematol. 1973;24:209–18.

    PubMed  CAS  Google Scholar 

  68. Layrisse M, Martínez-Torres C, Renzy M, Leets I. Ferritin iron absorption in man. Blood. 1975;45:689–98.

    PubMed  CAS  Google Scholar 

  69. Martínez-Torres C, Renzi M, Layrisse M. Iron absorption by humans from hemosiderin and ferritin, further studies. J Nutr. 1976;106:128–35.

    PubMed  Google Scholar 

  70. Lynch SR, Dassenko SA, Beard JL, Cook JD. Iron absorption from legumes in humans. Am J Clin Nutr. 1984;40:42–7.

    PubMed  CAS  Google Scholar 

  71. Skikne B, Fonzo D, Lynch SR, Cook JD. Bovine ferritin iron bioavailability in man. Eur J Clin Invest. 1997;27:228–33.

    PubMed  CAS  Google Scholar 

  72. Theil EC, Burton JW, Beard JL. A sustainable solution for dietary iron deficiency through plant biotechnology and breeding to increase seed ferritin control. Eur J Clin Nutr. 1997;51:S28–31.

    PubMed  Google Scholar 

  73. Lonnerdal B, Lonnerdal B, Theil EC. Rebuttal to J. Hunt letter to the editor. Am J Clin Nutr. 2005;81:1179–80.

    Google Scholar 

  74. Burton JW, Harlow C, Theil EC. Evidence for reutilization of nodule iron in soybean seed development. J Plant Nutr. 1998;21:913–27.

    CAS  Google Scholar 

  75. Kusumi E, Shoji M, Endou S, et al. Prevalence of anemia among healthy women in 2 metropolitan areas of Japan. Int J Hematol. 2006;84:217–9.

    PubMed  Google Scholar 

  76. Killip S, Bennett JM, Chambers MD. Iron deficiency anemia. Am Fam Physician. 2007;75:671–8.

    PubMed  Google Scholar 

  77. Sanchez M, Galy B, Muckenthaler MU, Hentze MW. Iron-regulatory proteins limit hypoxia-inducible factor-2alpha expression in iron deficiency. Nat Struct Mol Biol. 2007;14:420–6.

    PubMed  CAS  Google Scholar 

  78. Sanchez M, Galy B, Dandekar T, et al. Iron regulation and the cell cycle: identification of an iron-responsive element in the 3′-untranslated region of human cell division cycle 14A mRNA by a refined microarray-based screening strategy. J Biol Chem. 2006;281:22865–74.

    PubMed  CAS  Google Scholar 

  79. Tsuji Y, Torti SV, Torti FM. Activation of the ferritin H enhancer, FER-1, by the cooperative action of members of the AP1 and Sp1 transcription factor families. J Biol Chem. 1998;273:2984–92.

    PubMed  CAS  Google Scholar 

  80. Iwasaki K, Mackenzie EL, Hailemariam K, Sakamoto K, Tsuji Y. Hemin-mediated regulation of an antioxidant-responsive element of the human ferritin H gene and role of Ref-1 during erythroid differentiation of K562 cells. Mol Cell Biol. 2006;26:2845–56.

    PubMed  CAS  Google Scholar 

  81. Igarashi K, Sun J. The heme-Bach1 pathway in the regulation of oxidative stress response and erythroid differentiation. Antioxid Redox Signal. 2006;8:107–18.

    PubMed  CAS  Google Scholar 

  82. Giudice A, Montella M. Activation of the Nrf2-ARE signaling pathway: a promising strategy in cancer prevention. Bioessays. 2006;28:169–81.

    PubMed  CAS  Google Scholar 

  83. De Gregorio E, Preiss T, Hentze MW. Translation driven by an eIF4G core domain in vivo. EMBO J. 1999;18:4865–74.

    PubMed  Google Scholar 

  84. Zahringer J, Baliga BS, Munro HN. Subcellular distribution of total poly(A)-containing RNA and ferritin-mRNA in the cytoplasm of rat liver. Biochem Biophys Res Commun. 1976;68:1088–93.

    PubMed  CAS  Google Scholar 

  85. Dickey LF, Wang YH, Shull GE, Wortman III IA, Theil EC. The importance of the 3′-untranslated region in the translational control of ferritin mRNA. J Biol Chem. 1988;263:3071–4.

    PubMed  CAS  Google Scholar 

  86. Ke Y, Wu J, Leibold EA, Walden WE, Theil EC. Loops and bulge/loops in iron-responsive element isoforms influence iron regulatory protein binding: fine-tuning of mRNA regulation? J Biol Chem. 1998;273:23637–40.

    PubMed  CAS  Google Scholar 

  87. Gunshin H, Allerson CR, Polycarpou-Schwarz M, et al. Iron-dependent regulation of the divalent metal ion transporter. FEBS Lett. 2001;509:309–16.

    PubMed  CAS  Google Scholar 

  88. Leipuviene R, Theil EC. The family of iron responsive RNA structures (IRE) regulated by changes in cellular iron and oxygen. Cell Mol Life Sci. 2007;64:2945–55.

    PubMed  CAS  Google Scholar 

  89. Goforth JB, Anderson SA, Nizzi CP, Eisenstein RS. Multiple determinants within iron-responsive elements dictate iron regulatory protein binding and regulatory hierarchy. RNA. 2010;16:154–69.

    PubMed  CAS  Google Scholar 

  90. Brazzolotto X, Timmins P, Dupont Y, Moulis JM. Structural changes associated with switching activities of human iron regulatory protein 1. J Biol Chem. 2002;277:11995–2000.

    PubMed  CAS  Google Scholar 

  91. Yikilmaz E, Rouault TA, Schuck P. Self-association and ligand-induced conformational changes of iron regulatory proteins 1 and 2. Biochemistry. 2006;44:8470–8.

    Google Scholar 

  92. Dupuy J, Volbeda A, Carpentier P, Darnault C, Moulis JM, Fontecilla-Camps JC. Crystal structure of human iron regulatory protein 1 as cytosolic aconitase. Structure. 2006;14:129–39.

    PubMed  CAS  Google Scholar 

  93. Walden WE, Selezneva AI, Dupuy J, et al. Structure of dual function iron regulatory protein 1 complexed with ferritin IRE-RNA. Science. 2006;314:1903–8.

    PubMed  CAS  Google Scholar 

  94. Goessling LS, Mascotti DP, Thach RE. Involvement of heme in the degradation of iron-regulatory protein 2. J Biol Chem. 1998;273:12555–7.

    PubMed  CAS  Google Scholar 

  95. Jeong J, Rouault TA, Levine RL. Identification of a heme-sensing domain in iron regulatory protein 2. J Biol Chem. 2004;279:45450–4.

    PubMed  CAS  Google Scholar 

  96. Schalinske KL, Eisenstein RS. Phosphorylation and activation of both iron regulatory protein 1 (IRP1) and IRP2 in HL60 cells. J Biol Chem. 1996;271:7168–76.

    PubMed  CAS  Google Scholar 

  97. Fillebeen C, Chahine D, Caltagirone A, Segal P, Pantopoulos K. A phosphomimetic mutation at Ser-138 renders iron regulatory protein 1 sensitive to iron-dependent degradation. Mol Cell Biol. 2003;23:6973–81.

    PubMed  CAS  Google Scholar 

  98. Clarke SL, Vasanthakumar A, Anderson SA, et al. Iron-responsive degradation of iron-regulatory protein 1 does not require the Fe–S cluster. EMBO J. 2006;25:544–53.

    PubMed  CAS  Google Scholar 

  99. Theil EC. Ferritin: structure, gene regulation, and cellular function in animals, plants, and microorganisms. Annu Rev Biochem. 1987;56:289–315.

    PubMed  CAS  Google Scholar 

  100. Shoden A, Gabrio BW, Finch CA. The relationship between ferritin and hemosiderin in rabbits and man. J Biol Chem. 1953;204:823–30.

    PubMed  CAS  Google Scholar 

  101. Matioli GT, Baker RF. Denaturation of ferritin and its relationship with hemosiderin. J Ultrastruct Res. 1963;8:477–90.

    PubMed  CAS  Google Scholar 

  102. Marton PF. Ultrastructural study of erythrophagocytosis in the rat bone marrow. I. Red cell engulfment by reticulum cells. II. Iron metabolism in reticulum cells following red cell digestion. Scand J Haematol. 1975;23:1–26.

    CAS  Google Scholar 

  103. Mann S, Wade VJ, Dickson DPE, et al. Structural specificity of haemosiderin iron cores in iron-overload diseases. FEBS Lett. 1988;234:69–72.

    PubMed  CAS  Google Scholar 

  104. Iancu TC, Deugnier Y, Halliday JW, Powell LW, Brissot P. Ultrastructural sequences during liver iron overload in genetic hemochromatosis. J Hepatol. 1997;27:628–38.

    PubMed  CAS  Google Scholar 

  105. St. Pierre TG, Webb J, Mann S. Ferritin and hemosiderin: structural and magnetic studies of the iron core. In: Mann S, Webb J, Williams JP, editors. Biomineralization: chemical and biochemical perspectives. New York: VCH; 1989. p. 295–344.

    Google Scholar 

  106. Miyazaki E, Kato J, Kobune M, et al. Denatured H-ferritin subunit is a major constituent of haemosiderin in the liver of patients with iron overload. Gut. 2002;50:413–9.

    PubMed  CAS  Google Scholar 

  107. Curie C, Briat JF. Iron transport and signaling in plants. Annu Rev Plant Biol. 2003;2003:183–206.

    Google Scholar 

  108. Orvedahl A, Levine B. Viral evasion of autophagy. Autophagy. 2008;4:1–6.

    Google Scholar 

  109. Richter GW. The iron-loaded cell – the cytopathology of iron storage: a review. Am J Pathol. 1978;91:363–96.

    Google Scholar 

  110. Kurz T, Terman A, Brunk UT. Autophagy, ageing and apoptosis: the role of oxidative stress and lysosomal iron. Arch Biochem Biophys. 2007;462:220–30.

    PubMed  CAS  Google Scholar 

  111. De Domenico I, Vaughn MB, Li L, et al. Ferroportin-mediated mobilization of ferritin iron precedes ferritin degradation by the proteasome. EMBO J. 2006;25:5396–404.

    PubMed  Google Scholar 

  112. Kidane TZ, Sauble E, Linder MC. Release of iron from ferritin requires lysosomal activity. Am J Physiol Cell Physiol. 2006;291:C445–55.

    PubMed  CAS  Google Scholar 

  113. Bonifacino JS, Traub LM. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu Rev Biochem. 2003;72:395–447.

    PubMed  CAS  Google Scholar 

  114. De Domenico I, Ward DM, Kaplan J. Specific iron chelators determine the route of ferritin degradation. Blood. 2009;114:4546–51.

    PubMed  Google Scholar 

  115. Takagi H, Shi D, Ha Y, Allewell NM, Theil EC. Localized unfolding at the junction of three ferritin subunits: a mechanism for iron release? J Biol Chem. 1998;273:18685–8.

    PubMed  CAS  Google Scholar 

  116. Listowsky I, Blauer G, Enlard S, Betheil JJ. Denaturation of horse spleen ferritin in aqueous guanidinium chloride solutions. Biochemistry. 1972;11:2176–82.

    PubMed  CAS  Google Scholar 

  117. Santambrogio P, Levi S, Arosio P, et al. Evidence that a salt bridge in the light chain contributes to the physical stability difference between heavy and light human ferritins. J Biol Chem. 1992;267:14077–83.

    PubMed  CAS  Google Scholar 

  118. Liu X, Jin W, Theil EC. Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral. Proc Natl Acad Sci USA. 2003;100:3653–8.

    PubMed  CAS  Google Scholar 

  119. Crichton RR, Roman F, Roland F. Iron mobilization from ferritin by chelating agents. J Inorg Biochem. 1980;13:305–16.

    PubMed  CAS  Google Scholar 

  120. Liu XS, Patterson LD, Miller MJ, Theil EC. Peptides selected for the protein nanocage pores change the rate of iron recovery from the ferritin mineral. J Biol Chem. 2007;282:31821–3185.

    PubMed  CAS  Google Scholar 

  121. Vichinsky EP. Current issues with blood transfusions in sickle cell disease. Semin Hematol. 2001;38:14–22.

    PubMed  CAS  Google Scholar 

  122. Jin W, Takagi H, Pancorbo NM, Theil EC. “Opening” the ferritin pore for iron release by mutation of conserved amino acids at interhelix and loop sites. Biochemistry. 2001;40:7525–32.

    PubMed  CAS  Google Scholar 

  123. Worwood M, Dawkins S, Wagstaff M, Jacobs A. The purification and properties of ferritin from human serum. Biochem J. 1976;157:97–103.

    PubMed  CAS  Google Scholar 

  124. Herbert V, Jayatilleke E, Shaw S, et al. Serum ferritin iron, a new test, measures human body iron stores unconfounded by inflammation. Stem Cells. 1997;15:291–6.

    PubMed  CAS  Google Scholar 

  125. Hasan MR, Tosha T, Theil EC. Ferritin contains less iron (59Fe) in cells when the protein pores are unfolded by mutation. J Biol Chem. 2008;283:31394–400.

    PubMed  CAS  Google Scholar 

  126. Tosha T, Ng HL, Bhattasali O, Alber T, Theil EC. Moving metal ions through ferritin-protein nanocages from three-fold pores to catalytic sites. J Am Chem Soc. 2010;132:14562–9.

    PubMed  CAS  Google Scholar 

  127. Theil EC. Ferritin protein nanocages use ion channels, catalytic sites, and nucleation channels to manage iron/oxygen chemistry. Curr Opin Chem Biol. 2011;15:304–11.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work of the author that is included here results from fruitful and satisfying interactions with collaborators, predoctoral students, and postdoctoral trainees, and for which the author is very grateful. Financial support to the author has been from NIH grant DK20251, CHORI, and the Cooley’s Anemia Foundation, and for studies on ferritin as a nutritional iron source from NIH grant HL56169, the NCARS, and Condycet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth C. Theil Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Theil, E.C. (2012). Concentrating, Storing, and Detoxifying Iron: The Ferritins and Hemosiderin. In: Anderson, G., McLaren, G. (eds) Iron Physiology and Pathophysiology in Humans. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-485-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-485-2_4

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-484-5

  • Online ISBN: 978-1-60327-485-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics