Skip to main content

Possible Incorporation of Free N7-Platinated Guanines in DNA by DNA Polymerases, Relevance for the Cisplatin Mechanism of Action

  • Chapter

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

Cisplatin, cis-diamminedichloroplatinum (II), is one of the most widely used anticancer drugs. The main cellular target of cisplatin is DNA, where the platinum atom is able to form covalent bonds with the N7 of purines. It is commonly accepted that there is a direct attack of cisplatin on DNA. But it should be noted that, inside cells, free purine bases, which can react with cisplatin, are also available. Free bases have many functional roles, not least the constitution of building blocks for the synthesis of new DNA and RNA molecules. For this reason, under physiological conditions, the erroneous insertion of platinated bases in the synthesized nucleic acids could compete with direct DNA/RNA platination. Moreover, due to the lower sterical hindrance offered by single nucleobases with respect to nucleic acids, platination is expected to be even easier for free purines with respect to DNA and RNA. We have recently shown, for the first time, that platinated DNA can be formed in vitro by Taq DNA polymerase promoted incorporation of platinated purines. Cytotoxicity tests with [Pt(dien)(N7-G)], dien = diethylenetriamine, G = 5′-dGTP, 5′-dGDP, 5′-GMP, 5′-dGMP, GUO, dGUO, complexes on HeLa cancer cells support this hypothesis of the relative cytotoxicity of [Pt(dien)(N7-G)] derivatives being clearly related to their bioavailability. In vivo platination of free purines before their incorporation in nucleic acids therefore opens new perspectives in platinum based antitumour drugs, for a better understanding of both the action mechanism and the new molecular design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Rosenberg B, Van Camp L, Krigas T. Inhibition of cell division in Escherichia coli by electrolysis products from a platinum electrode. Nature 1965;205:698–9.

    Article  PubMed  CAS  Google Scholar 

  2. Rosenberg B, Van Camp L, Grimley EB, Thomson AJ. The inhibition of growth or cell division in Escherichia coli by different ionic species of platinum(IV) complexes. J Biol Chem 1967;242:1347–52.

    PubMed  CAS  Google Scholar 

  3. Rosenberg B. Biological effects of platinum compounds. New agents for the control of tumors. Platinum Met Rev 1971;15:42–51.

    CAS  Google Scholar 

  4. Weiss RB, Christian MC. New cisplatin analogues in development. A review. Drugs 1993;46:360–77.

    CAS  Google Scholar 

  5. Wong E, Giandomenico CM. Current status of platinum-based antitumor drugs. Chem Rev 1999;99:2451–66.

    Article  PubMed  CAS  Google Scholar 

  6. Reedijk J. Why does cisplatin reach guanine-N7 with competing S-donor ligands available in the cell? Chem Rev 1999;99:2499–510.

    Article  PubMed  CAS  Google Scholar 

  7. Wang D, Lippard SJ. Cellular processing of platinum anticancer drugs. Nat Rev Drug Disc 2005;4:307–20.

    Article  CAS  Google Scholar 

  8. Lebwohl D, Canetta R. Clinical development of platinum complexes in cancer therapy: an historical perspective and an update. Eur J Cancer 1998;34:1522–34.

    Article  PubMed  CAS  Google Scholar 

  9. Benedetti M, Malina J, Kasparova J, Brabec V, Natile G. Chiral discrimination in platinum anticancer drugs. Environ Health Persp 2002;110:779–82.

    Article  CAS  Google Scholar 

  10. Jamieson ER, Lippard SJ. Structure, recognition, and processing of cisplatin-DNA adducts. Chem Rev 1999;99:2467–98.

    Article  PubMed  CAS  Google Scholar 

  11. Fuertes MA, Alonso C, Pérez JM. Biochemical modulation of cisplatin mechanisms of action: enhancement of antitumor activity and circumvention of drug resistance. Chem Rev 2003;103:645–62.

    Article  PubMed  CAS  Google Scholar 

  12. Hromas RA, North JA, Burns CP. Decreased cisplatin uptake by resistant L1210 leukemia cells. Cancer Lett 1987;36:197–201.

    Article  PubMed  CAS  Google Scholar 

  13. Hambley TW. The influence of structure on the activity and toxicity of Pt anticancer drugs. Coord Chem Rev 1997;166:181–223.

    Article  CAS  Google Scholar 

  14. Reedijk J. Improved understanding in platinum antitumor chemistry. Chem Commun 1996;7:801–6.

    Article  Google Scholar 

  15. Ano SO, Kuklenyik Z, Marzilli LG. In: Lippert B, ed. Cisplatin: Chemistry and Biochemistry of a Leading Anticancer Drug. Weinheim, Germany: Wiley-VCH, 1999:247–91.

    Google Scholar 

  16. Natile G, Marzilli LG. Non-covalent interactions in adducts of platinum drugs with nucleo-bases in nucleotides and DNA as revealed by using chiral substrates. Coord Chem Rev 2006;250:1315–31.

    Article  CAS  Google Scholar 

  17. Isab AA, Marzilli LG. Supermacrochelate complexes containing an artificial nucleic acid backbone and derived from excellent ligands formed by treating platinum anticancer agents with nucleotide triphosphates. Inorg Chem 1998;37:6558–9.

    Article  PubMed  CAS  Google Scholar 

  18. Brabec V, Kasparkova J. DNA interactions of platinum anticancer drugs. Recent advances and mechanisms of action. In: Pérez JM, Fuertes MA, Alonso C, eds. Metal Compounds in Cancer Chemotherapy. Trivandrum, India: Research Signpost, 2005:187–218.

    Google Scholar 

  19. Benedetti M, Saad JS, Marzilli LG, Natile G. Chiral discrimination in the formation reaction and at equilibrium for N,N,N′,N′-tetramethyl-1,2-diaminocyclohexane-PtG2 complexes. Dalton Trans 2003;5:872–9.

    Article  Google Scholar 

  20. Benedetti M, Cini R, Tamasi G, Natile G. Crystal and molecular structure and circular dichroism of [bis-(guanosine-5′-monophosphate (-1) )(N,N,N′,N′-tetramethyl-cyclohexyl-1,2-diamine)platinum(II)] complexes with R,R and S,S configurations of the asymmetric diamine. Chem Eur J 2003;9:6122–32.

    Article  PubMed  CAS  Google Scholar 

  21. Benedetti M, Marzilli LG, Natile G. Rotamer stability in cis-[Pt(diA)G2] complexes (diA = diamine derivative and G = guanine derivative) mediated by carrier-ligand amine stereochemistry as revealed by circular dichroism spectroscopy. Chem Eur J 2005;11:5302–10.

    Article  PubMed  CAS  Google Scholar 

  22. Benedetti M, Tamasi G, Cini R, Marzilli LG, Natile G. The first pure ∧HT rotamer of a complex with a cis-[Metal(nucleotide)2] unit: a cis-[Pt(amine)2(nucleotide)2] ∧HT rotamer with unique molecular structural features. Chem Eur J 2007;13:3131–42.

    Article  Google Scholar 

  23. Van Rompay AR, Johansson M, Karlsson A. Substrate specificity and phosphorylation of antiviral and anticancer nucleoside analogues by human deoxyribonucleoside kinases and ribonucleoside kinases. Pharmacol Ther 2003;100:119–39.

    Article  PubMed  Google Scholar 

  24. Seki S, Hongo A, Zhang B, Akiyama K, Sarker AH, Kudo T. Inhibition of cisplatin-mediated DNA damage in vitro by ribonucleotides. Jpn J Cancer Res 1993;84:462–7.

    Article  PubMed  CAS  Google Scholar 

  25. Benedetti M, Ducani C, Migoni D, et al. Experimental evidence that a DNA polymerase can incorporate N7-platinated guanines to give platinated DNA. Angew Chem Int Ed Engl 2008;47:507–10.

    Article  PubMed  CAS  Google Scholar 

  26. Tasara T, Angerer B, Damond M, et al. Incorporation of reporter molecule-labeled nucle-otides by DNA polymerases. II. High-density labelling of natural DNA. Nucleic Acids Res 2003;31:2636–46.

    Article  PubMed  CAS  Google Scholar 

  27. Holler E, Bauer R, Bernges F. Monofunctional DNA-platinum(II) adducts block frequently DNA polymerase. Nucleic Acids Res 1992;20:2307–12.

    Article  PubMed  CAS  Google Scholar 

  28. Murray V, Motyka H, England PR, et al. The use of Taq DNA polymerase to determine the sequence specificity of DNA damage caused by cis-diamminedichloroplatinum(II), acridine-tethered platinum(II) diammine complexes or two analogues. J Biol Chem 1992;267:18805–9.

    PubMed  CAS  Google Scholar 

  29. Vaisman A, Warren MW, Chaney SG. The effect of DNA structure on the catalytic efficiency and fidelity of human DNA polymerase β on templates with platinum-DNA adducts. J Biol Chem 2001;276:18999–19005.

    Article  PubMed  CAS  Google Scholar 

  30. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63.

    Article  PubMed  CAS  Google Scholar 

  31. Gray JH, Owen RP, Giacomini KM. The concentrative nucleoside transporter family, SLC28. Eur J Physiol 2004;447:728–34.

    Article  CAS  Google Scholar 

  32. Baldwin SA, Beal PR, Yao SYM, King AE, Cass CE, Young JD. The equilibrative nucleoside transporter family, SLC29. Eur J Physiol 2004;447:735–43.

    Article  CAS  Google Scholar 

  33. Rooseboom M, Commandeur JNM, Vermeulen NPE. Enzyme-catalyzed activation of antican-cer prodrugs. Pharmacol Rev 2004;56:53–102.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Benedetti, M. et al. (2009). Possible Incorporation of Free N7-Platinated Guanines in DNA by DNA Polymerases, Relevance for the Cisplatin Mechanism of Action. In: Bonetti, A., Leone, R., Muggia, F.M., Howell, S.B. (eds) Platinum and Other Heavy Metal Compounds in Cancer Chemotherapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-459-3_17

Download citation

Publish with us

Policies and ethics