Advertisement

Choroid Plexus–Cerebrospinal Fluid Circulatory Dynamics: Impact on Brain Growth, Metabolism, and Repair

  • Conrad E. Johanson

Structural and Functional Components of the Cerebrospinal Fluid

Cerebrospinal fluid (CSF) has a major impact on the fluid environment of neurons. Choroid plexus (CP) tissue in the four ventricles generates 70% to 80% of actively secreted CSF that derives from the carotid and vertebral systems. Upon flowing from choroidal origins to distal sites, CSF contacts other membranes that encompass the hemispheres: the ependyma of the ventricles and the pia/arachnoid of the subarachnoid space (SAS). Consequently, the composition of flowing CSF and adjacent brain interstitium is progressively modified by bidirectional exchanges of water, ions, and proteins (1, 2).

The CSF, then, is a dynamic system working in parallel with cerebral capillary transporters to optimize the neuronal environment. Disrupted transport at the blood-CSF interface (choroid plexuses mainly) and blood-brain barrier (BBB) compromises cerebral function. Although long known that stable brain fluid volume and composition vitally...

Keywords

Choroid Plexus Fourth Ventricle Bulk Flow Normal Pressure Hydrocephalus Arachnoid Villus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Johanson C. The choroid plexus and volume transmission. In: Adelman G, ed. Encyclopedia for Neuroscience, Volume I. 3rd electronic edition. Boston: Birkhauser; 2004.Google Scholar
  2. 2.
    Davson H, Welch K, Segal MB, eds. The Physiology and Pathophysiology of the Cerebrospinal Fluid. London: Churchill Livingstone, 1987.Google Scholar
  3. 3.
    Johanson CE, Duncan JA, Klinge PM, Brinker T, Stopa EG, Silverberg GD. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res 2008; 5: 10.Google Scholar
  4. 4.
    Spector R, Johanson CE. Micronutrient and urate transport in choroid plexus and kidney: Implications for drug therapy. Pharm Res 2006; 23: 2515–24.CrossRefGoogle Scholar
  5. 5.
    Redzic ZB, Preston JE, Duncan JA, Chodobski A, Szmydynger-Chodobska J. The choroid plexus-cerebrospinal fluid system: from development to aging. Curr Top Dev Biol 2005; 71: 1–52.PubMedCrossRefGoogle Scholar
  6. 6.
    Johanson CE, Duncan JA, Stopa EG, Baird A: Enhanced prospects for drug delivery and brain targeting by the choroid plexus-CSF route. Pharm Res 2005; 22: 1011–37.PubMedCrossRefGoogle Scholar
  7. 7.
    Chodobski A, Szmydynger-Chodobska J. Choroid plexus: target for polypeptides and site of their synthesis. Microsc Res Tech 2001; 52: 65–82.PubMedCrossRefGoogle Scholar
  8. 8.
    Spector R, Johanson CE. The origin of deoxynucleosides in brain: Implications for the study of neurogenesis and stem cell therapy. Pharm Res 2007; 24: 859–67.PubMedCrossRefGoogle Scholar
  9. 9.
    Spector R, Johanson CE. Vitamin transport and homeostasis in mammalian brain: focus on vitamins B and E. J Neurochem 2007; 103: 425–38.Google Scholar
  10. 10.
    Chodobski A, Szmydynger-Chodobska J, Epstein MH, Johanson CE. The role of angiotensin II in the regulation of blood flow to choroid plexuses and cerebrospinal fluid formation in the rat. J Cereb Blood Flow Metabol 1995; 15: 143–51.CrossRefGoogle Scholar
  11. 11.
    Johanson CE, Preston JE, Chodobski A, Stopa EG, Szmydynger-Chodobska J, McMillan PN. Arginine vasopressin V1-receptor-induced decrease in Cl transport and increase in dark cell frequency in choroid plexus. Am J Physiol (Cell) 1999; 276: C82–C90.Google Scholar
  12. 12.
    Johanson CE, Donahue JE, Spangenberger A, Stopa EG, Duncan JA, Sharma HS. Atrial natriuretic peptide: Its putative role in modulating the choroid plexus-CSF system for intracranial pressure regulation. Acta Neurochir 2006; 96: 481–6.Google Scholar
  13. 13.
    Johanson CE, Palm DE, Primiano MJ, McMillan PN, Chan P, Knuckey NW, Stopa EG. Choroid plexus recovery after transient forebrain ischemia: Role of growth factors and other repair mechanisms. Cell Mol Neurobiol 2000; 20: 197–216.PubMedCrossRefGoogle Scholar
  14. 14.
    Schreiber G, Aldred AR, Jaworowski A, Nilsson C, Achen MG, Segal MB. Thyroxine transport from blood to brain via transthyretin synthesis in choroid plexus. Am J Physiol 1990; 258: R338–R345.PubMedGoogle Scholar
  15. 15.
    Chen RL, Athauda SB, Kassem NA, Zhang Y, Segal MB, Preston JE. Decrease of transthyretin synthesis at the blood-cerebrospinal fluid barrier of old sheep. J Gerontol A Biol Sci Med Sci 2005; 60: 852–8.PubMedCrossRefGoogle Scholar
  16. 16.
    Johanson CE, Silverberg GD, Donahue JE, Duncan JA, Stopa EG. Choroid plexus and CSF in Alzheimer’s disease: Altered expression and transport of proteins and peptides. In: Zheng W, Chodobski A, eds. The Blood-Cerebrospinal Fluid Barrier. Boca Raton, FL: CRC Press, 2005: 307–339.Google Scholar
  17. 17.
    Pullen RG, DePasquale M, Cserr HF. Bulk flow of cerebrospinal fluid into brain in response to acute hyperosmolality. Am J Physiol 1987; 253: F538–45.PubMedGoogle Scholar
  18. 18.
    Husted RF, Reed DJ. Regulation of cerebrospinal fluid bicarbonate by the cat choroid plexus. J Physiol 1977; 267: 411–28.PubMedGoogle Scholar
  19. 19.
    Keep RF, Xiang J. Choroid plexus potassium cotransport: modulation by osmotic stress and external potassium. J Neurochem 1995; 64: 2747–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Egnor M, Zheng L, Rosiello A, Gutman F, Davis R. A model of pulsations in communicating hydrocephalus. Pediatr Neurosurg 2002; 36: 281–303.PubMedCrossRefGoogle Scholar
  21. 21.
    Wijnholds J, deLange EC, Scheffer GL, van den Berg DJ, Mol CA, van der Valk M, Schinkel AH, et al. Multidrug resistance protein 1 protects the choroid plexus epithelium and contributes to the blood-cerebrospinal fluid barrier. J Clin Invest 2000; 105: 279–85.PubMedCrossRefGoogle Scholar
  22. 22.
    James WG, Hutchinson P, Bullard DC, Hickey MJ. Cerebral leucocyte infiltration in lupus-prone MRL/MpJ-fas lpr mice—roles of intercellular adhesion molecule-1 and P-selectin. Clin Exp Immunol 2006; 144: 299–308.PubMedCrossRefGoogle Scholar
  23. 23.
    Fujikawa T, Soya H, Yoshizato H, Sakaguchi K, Doh-Ura K, Tanaka M, Nakashima K. Restraint stress enhances the gene expression of prolactin receptor long form at the choroid plexus. Endocrinology 1995; 136: 5608–13.PubMedCrossRefGoogle Scholar
  24. 24.
    Spector R, Johanson C. The mammalian choroid plexus. Sci Am 1989; 260: 68–74.CrossRefGoogle Scholar
  25. 25.
    Gross PM, ed. Circumventricular Organs and Body Fluids. Boca Raton, FL: CRC Press, 1987.Google Scholar
  26. 26.
    Williams JL, Thebert MM, Schalk KA, Heistad DD. Stimulation of area postrema decreases blood flow to choroid plexus. Am J Physiol 1991; 260: H902–H908.PubMedGoogle Scholar
  27. 27.
    Allen DD, Yokel RA. Dissimilar aluminum and gallium permeation of the blood-brain barrier demonstrated by in vivo microdialysis. J Neurochem 1992; 58: 903–8.PubMedCrossRefGoogle Scholar
  28. 28.
    Faraci FM, Mayhan WG, Farrell WJ, Heistad DD. Humoral regulation of blood flow to choroid plexus: role of arginine vasopressin. Circ Res 1988; 63: 373–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Rapoport SI, ed. Blood-Brain Barrier in Physiology and Medicine. New York: Raven Press, 1976.Google Scholar
  30. 30.
    Grzybowski DM, Herderick EE, Kapoor KG, Holman DW, Katz SE. Human arachnoid granulations. Part I: A technique for quantifying area and distribution on the superior surface of the cerebral cortex. Cerebrospinal Fluid Res 2007; 4: 6.Google Scholar
  31. 31.
    Nagra G, Koh L, Zakharov A, Armstrong D, Johnston M. Quantification of cerebrospinal fluid transport across the cribriform plate into lymphatics in rats. Am J Physiol 2006; 291: R1383–9.Google Scholar
  32. 32.
    Bradbury MW, Cserr HF, Westrop RJ. Drainage of cerebral interstitial fluid into deep cervical lymph of the rabbit. Am J Physiol 1981; 240: F329–36.PubMedGoogle Scholar
  33. 33.
    Luedemann W, Kondziella D, Tienken K, Klinge P, Brinker T, Berens von Rautenfeld D. Spinal cerebrospinal fluid pathways and their significance for the compensation of kaolin-hydrocephalus. Acta Neurochir Suppl. 2002; 81: 271–3.PubMedGoogle Scholar
  34. 34.
    Kivisäkk P, Mahad DJ, Callahan MK, Trebst C, Tucky B, Wei T, Wu L, Baekkevold ES, Lassmann H, Staugaitis SM, Campbell JJ, Ransohoff RM. Human cerebrospinal fluid central memory CD4+ T cells: evidence for trafficking through choroid plexus and meninges via P-selectin. Proc Natl Acad Sci U S A 2003; 100: 8389–94.PubMedCrossRefGoogle Scholar
  35. 35.
    Owen-Lynch PJ, Draper CE, Mashayekhi F, Bannister CM, Miyan JA. Defective cell cycle control underlies abnormal cortical development in the hydrocephalic Texas rat. Brain 2003; 126: 623–31.PubMedCrossRefGoogle Scholar
  36. 36.
    Skinner SJ, Geaney MS, Rush R, Rogers ML, Emerich DF, Thanos CG, Vasconcellos AV, Tan PL, Elliott RB. Choroid plexus transplants in the treatment of brain diseases. Xenotransplantation 2006; 13: 284–8.PubMedCrossRefGoogle Scholar
  37. 37.
    Walter HJ, Berry M, Hill DJ, Cwyfan-Hughes S, Holly JM, Logan A. Distinct sites of insulin-like growth factor (IGF)-II expression and localization in lesioned rat brain: possible roles of IGF binding proteins (IGFBPs) in the mediation of IGF-II activity. Endocrinology 1999; 140: 520–32.PubMedCrossRefGoogle Scholar
  38. 38.
    Johanson CE, McMillan PN, Palm DE, Stopa EG, Doberstein CE, Duncan JA. Volume transmission-mediated protective impact of choroid plexus-CSF growth factors on forebrain ischemic injury. In: Sharma HS and Westman J, eds. Blood-Spinal Cord and Brain Barriers in Health and Disease. San Diego: Academic Press, 2003: 361–384.Google Scholar
  39. 39.
    Sharma HS, Johanson CE. Intracerebroventricularly administered neurotrophins attenuate blood cerebrospinal fluid barrier breakdown and brain pathology following whole-body hyperthermia: an experimental study in the rat using biochemical and morphological approaches. Ann N Y Acad Sci 2007; 1122: 112–29.Google Scholar
  40. 40.
    Sagare A, Deane R, Bell RD, Johnson B, Hamm K, Pendu R, Marky A, Lenting PJ, Wu Z, Zarcone T, Goate A, Mayo K, Perlmutter D, Coma M, Zhong Z, Zlokovic BV. Clearance of amyloid-beta by circulating lipoprotein receptors. Nat Med 2007; 13: 1029–31.Google Scholar
  41. 41.
    Silverberg GD, Mayo M, Saul T, Rubenstein E, McGuire D. Alzheimer's disease, normal-pressure hydrocephalus, and senescent changes in CSF circulatory physiology: a hypothesis. Lancet Neurol 2003; 2: 506–11.PubMedCrossRefGoogle Scholar
  42. 42.
    Preston JE. Ageing choroid plexus-cerebrospinal fluid system. Microsc Res Tech 2001; 52: 31–7.PubMedCrossRefGoogle Scholar
  43. 43.
    Rubenstein E. Relationship of senescence of cerebrospinal fluid circulatory system to dementias of the aged. Lancet 1998; 351: 283–5.PubMedCrossRefGoogle Scholar
  44. 44.
    Parandoosh Z, Johanson CE. Ontogeny of blood-brain barrier permeability to, and cerebrospinal fluid sink action on, [14C]urea. Am J Physiol 1982; 243: R400–7.PubMedGoogle Scholar
  45. 45.
    McCormack EJ, Egnor MR, Wagshul ME. Improved cerebrospinal fluid flow measurements using phase contrast balanced steady-state free precession. Magn Reson Imaging 2007; 25: 172–82.PubMedCrossRefGoogle Scholar
  46. 46.
    Smith DE, Johanson CE, Keep RF. Peptide and peptide analog transport systems at the blood-CSF barrier. Adv Drug Deliv Rev 2004; 56: 1765–91.PubMedCrossRefGoogle Scholar
  47. 47.
    Nilsson C, Lindvall-Axelsson M, Owman C. Neuroendocrine regulatory mechanisms in the choroid plexus-cerebrospinal fluid system. Brain Res Rev 1992; 17: 109–138.PubMedCrossRefGoogle Scholar
  48. 48.
    Stopa EG, Berzin TM, Kim S, Song P, Kuo-LeBlanc V, Rodriguez-Wolf M, Baird A, Johanson CE. Human choroid plexus growth factors: What are the implications for CSF dynamics in Alzheimer's disease? Exp Neurol 2001; 167: 40–7.PubMedCrossRefGoogle Scholar
  49. 49.
    Mehta BC, Holman DW, Grzybowski DM, Chalmers JJ. Characterization of arachnoidal cells cultured on three-dimensional nonwoven PET matrix. Tissue Eng 2007; 13: 1269–79.PubMedCrossRefGoogle Scholar
  50. 50.
    Johnston M, Armstrong D, Koh L. Possible role of the cavernous sinus veins in cerebrospinal fluid absorption. Cerebrospinal Fluid Res 2007; 4: 3PubMedCrossRefGoogle Scholar

Copyright information

© Humana Press, Totowa, NJ 2008

Authors and Affiliations

  • Conrad E. Johanson
    • 1
  1. 1.Program in Neurosurgery, Department of Clinical Neurosciences, Warren Alpert Medical SchoolBrown UniversityProvidenceUSA

Personalised recommendations