Skip to main content

Genes and Gene–Environment Interactions in the Pathogenesis of Obesity and the Metabolic Syndrome

  • Chapter
  • First Online:
Nutrition and Metabolism

Part of the book series: Nutrition and Health ((NH))

  • 2422 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorensen TI. The genetics of obesity. Metabolism 1995; 44:4–6.

    PubMed  CAS  Google Scholar 

  2. Maes HH, Neale MC, Eaves LJ. Genetic and environmental factors in relative body weight and human adiposity. Behav. Genet. 1997; 27:325–351.

    PubMed  CAS  Google Scholar 

  3. Barsh GS, Farooqi IS, O’Rahilly S. Genetics of body-weight regulation. Nature 2000; 404:644–651.

    PubMed  CAS  Google Scholar 

  4. Bluher M. Transgenic animal models for the study of adipose tissue biology. Best Pract. Res. Clin. Endocrinol. Metabol. 2005; 19:605–623.

    Google Scholar 

  5. Leibel RL, Chung WK, Chua SCJ. The molecular genetics of rodent single gene obesities. J. Biol. Chem 1997; 275:31937–31940.

    Google Scholar 

  6. Chagnon YC, Bouchard C. Genetics of obesity: advances from rodent studies. Trends Genet. 1996; 12:441–444.

    PubMed  CAS  Google Scholar 

  7. Rankinen T, Zuberi A, Chagnon YC, et al. The human obesity map: the 2005 update. Obesity 2006; 14:529–644.

    PubMed  Google Scholar 

  8. Coll AP, Farooqi IS, Challis BG, Yeo S, O’Rahilly S. Proopiomelanocortin and energy balance: insights from human and murine genetics. J. Endocrinol. Metab. 2004; 89:2557–2562.

    CAS  Google Scholar 

  9. Clement K. Genetics of human obesity. Proc. Nutr. Soc. 2005; 64:133–142.

    PubMed  CAS  Google Scholar 

  10. Harrold JA, Williams G. Melanocortin-4 receptors, beta-MSH and leptin: key elements in the satiety pathway. Peptides 2006; 27:365–371.

    PubMed  CAS  Google Scholar 

  11. Strobel A, Issad T, Camoin L, Ozata M, Strosberg AD. A leptin missense mutation associated with hypogonadism and morbid obesity. Nat. Genet. 1998; 18:213–215.

    PubMed  CAS  Google Scholar 

  12. Montague CT, Farooqi IS, Whitehead JP, et al. Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature 1997; 387:903–90.

    PubMed  CAS  Google Scholar 

  13. Ozata M, Ozdemir IC, Licinio J. Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J. Clin. Endocrinol. Metab. 1999; 84:3686–3695.

    PubMed  CAS  Google Scholar 

  14. Clement K, Vaisse C, Lahlou N, et al. A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature 1998; 392:398–401.

    PubMed  CAS  Google Scholar 

  15. Farooqi IS, Wangensteen T, Collins S, et al. Clinical and molecular genetic spectrum of congenital deficiency of the leptin receptor. N. Engl. J. Med. 2007; 356:237–247.

    PubMed  CAS  Google Scholar 

  16. Challis BG, Pritchard LE, Creemers JW, et al. A missense mutation disrupting a dibasic prohormone processing site in pro-opiomelanocortin (POMC) increases susceptibility to early-onset obesity through a novel molecular mechanism. Hum. Mol. Genet. 2002; 11:1997–2004.

    PubMed  CAS  Google Scholar 

  17. Krude H, Biebermann H, Luck W, Horn R, Brabant G, Gruters A. Severe early-onset obesity, adrenal insufficiency and red hair pigmentation caused by POMC mutations in humans. Nat. Genet. 1998; 19:155–157.

    PubMed  CAS  Google Scholar 

  18. Jackson RS, Creemers JW, Ohagi S, et al. Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat. Genet. 1997; 16:303–306.

    PubMed  CAS  Google Scholar 

  19. Yeo GS, Farooqi IS, Aminian S, Halsall DJ, Stanhope RG, O’Rahilly S. A frameshift mutation in MC4R associated with dominantly inherited human obesity. Nat. Genet. 1998; 20:111–112.

    PubMed  CAS  Google Scholar 

  20. Vaisse C, Clement K, Guy-Grand B, Froguel P. A frameshift mutation in human MC4R is associated with a dominant form of obesity. Nat. Genet. 1998; 20:113–114.

    PubMed  CAS  Google Scholar 

  21. Hinney A, Schmidt A, Nottebom K, et al. Several mutations in the melanocortin-4 receptor gene including a nonsense and a frameshift mutation associated with dominantly inherited obesity in humans. J. Clin. Endocrinol. Metab. 1999; 84:1483–1486.

    PubMed  CAS  Google Scholar 

  22. Gu W, Tu Z, Kleyn PW, et al. Identification and functional analysis of novel human melanocortin-4 receptor variants. Diabetes 1999; 48:635–639.

    PubMed  CAS  Google Scholar 

  23. Holder JL, Butte NF, Zinn AR. Profound obesity associated with a balanced translocation that disrupts the SIM1 gene. Hum. Mol. Genet. 2000; 9:101–108.

    PubMed  CAS  Google Scholar 

  24. Yeo GS, Connie Hung CC, Rochford J, et al. A de novo mutation affecting human TrkB associated with severe obesity and developmental delay. Nat. Neurosci. 2004; 7:1187–1189.

    PubMed  CAS  Google Scholar 

  25. Challis BG, Luan J, Keogh J, Wareham NJ, Farooqi IS, O’Rahilly S. Genetic variation in the corticotrophin-releasing factor receptors: identification of single-nucleotide polymorphisms and association studies with obesity in UK Caucasians. Int. J. Obes. Relat. Metab. Disord. 2004; 28:442–446.

    PubMed  CAS  Google Scholar 

  26. Gibson WT, Pissios P, Trombly DJ, et al. Melanin-concentrating hormone receptor mutations and human obesity: functional analysis. Obes. Res. 2004; 12:743–749.

    PubMed  CAS  Google Scholar 

  27. Tao YX. Molecular mechanisms of the neural melanocortin receptor dysfunction in severe early onset obesity. Mol. Cell. Endocrinol. 2005; 239:1–14.

    PubMed  CAS  Google Scholar 

  28. Lee YS, Poh LK, Loke KY. A novel melanocortin 3 receptor gene (MC3R) mutation associated with severe obesity. J. Clin. Endocrinol. Metab. 2002; 87:1423–1326.

    PubMed  CAS  Google Scholar 

  29. Rached M, Buronfosse A, Begeot M, Penhoat A. Inactivation and intracellular retention of the human I183N mutated melanocortin 3 receptor associated with obesity. Biochim. Biophys. Acta. 2004; 1689:229–234.

    PubMed  CAS  Google Scholar 

  30. Bell CG, Walley AJ, Froguel P. The genetics of human obesity. Nat. Rev. Genet. 2005; 6:221–234.

    PubMed  CAS  Google Scholar 

  31. Farooqi IS, O’Rahilly S. Monogenic obesity in humans. Ann. Rev. Med. 2005; 56:443–458.

    PubMed  CAS  Google Scholar 

  32. Hinney A, Bettecken T, Tarnow P, et al. Prevalence, spectrum, and functional characterization of melanocortin-4 receptor gene mutations in a representative population-based sample and obese adults from Germany. J. Clin. Endocrinol. Metab. 2006; 91:1761–1769.

    PubMed  CAS  Google Scholar 

  33. Lubrano-Berthelier C, Cavazos M, Dubern B, et al. Molecular genetics of human obesity-associated MC4R mutations. Ann. N.Y. Acad. Sci. 2003; 994:49–57.

    PubMed  CAS  Google Scholar 

  34. Huszar D, Lynch CA, Fairchild-Huntress V, et al. Targeted disruption of the melanocortin-4 receptor results in obesity in mice. Cell 1997; 88:131–141.

    PubMed  CAS  Google Scholar 

  35. Ho G, MacKenzie RG. Functional characterization of mutations in melanocortin-4 receptor associated with human obesity. J. Biol. Chem. 1999; 274:35816–35822.

    PubMed  CAS  Google Scholar 

  36. Farooqi IS, Matarese G, Lord GM, et al. Beneficial effects of leptin on obesity, T cell hyporesponsiveness and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. J. Clin. Invest. 2002; 110:1093–1103.

    PubMed  CAS  Google Scholar 

  37. Mutch DM, Clement K. Unraveling the genetics of human obesity. PLoS Genet. 2006; 2:1956–1963.

    CAS  Google Scholar 

  38. Chung WK, Leibel RL. Molecular physiology of syndromic obesities in humans. Trends Endocrinol. Metab. 2005; 16:267–272.

    PubMed  CAS  Google Scholar 

  39. Gilhuis HJ, van Ravenswaaij CM, Hamel BJ, Gabreels FJ. Interstitial 6q deletion with a Prader–Willi-like phenotype: a new case and review of the literature. Eur. J. Paediatr. Neurol. 2000; 4:39–43.

    PubMed  CAS  Google Scholar 

  40. Stein CK, Stred SE, Thomson LL, Smith FC, Hoo JJ. Interstitial 6q deletion and Prader–Willi-like phenotype. Clin. Genet. 1996; 49:306–310.

    PubMed  CAS  Google Scholar 

  41. Smith A. The diagnosis of Prader–Willi syndrome. J. Paediatr. Child Health 1999; 35:335–337.

    PubMed  CAS  Google Scholar 

  42. Goldstone AP. Prader–Willi syndrome: advances in genetics and pathophysiology and treatment. Trends Endocrinol. Metab. 2004; 15:12–20.

    PubMed  CAS  Google Scholar 

  43. Cummings DE, Clement K, Purnell JQ, et al. Elevated plasma ghrelin levels in Prader–Willi syndrome. Nat. Med. 2002; 8:643–644.

    PubMed  CAS  Google Scholar 

  44. Green JS, Parfrey PS, Harnett JD, et al. The cardinal manifestations of Bardet-Biedl syndrome, a form of Laurence-Moon-Biedl syndrome. New Eng. J. Med. 1989; 321:1002–1009.

    PubMed  CAS  Google Scholar 

  45. Beales PL, Elcioglu N, Woolf AS, Parker D, Flinter FA. New criteria for improved diagnosis of Bardet-Biedl syndrome: results of a population survey. J. Med. Genet. 1999; 36:437–446.

    PubMed  CAS  Google Scholar 

  46. Fan Y, Esmail MA, Ansley SJ, et al. Mutations in a member of the Ras superfamily of small GTP-binding proteins causes Bardet-Biedl syndrome. Nat. Genet. 2004; 36:989–993.

    PubMed  CAS  Google Scholar 

  47. Mykytyn K, Braun T, Carmi R, et al. Identification of the gene that, when mutated, causes the human obesity syndrome BBS4. Nat. Genet. 2001; 28:188–191.

    PubMed  CAS  Google Scholar 

  48. Mykytyn K, Nishimura DY, Searby CC, et al. Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat. Genet. 2002; 31:435–438.

    PubMed  CAS  Google Scholar 

  49. Nishimura DY, Searby CC, Carmi R, et al. Positional cloning of a novel gene on chromosome 16q causing Bardet-Biedl syndrome (BBS2). Hum. Mol. Genet. 2001; 10:865–874.

    PubMed  CAS  Google Scholar 

  50. Li JB, Gerdes JM, Haycraft CJ, et al. Comparative genomics identifies a flagellar and basal body proteome that includes the BBS5 human disease gene. Cell 2004; 117:541–552.

    PubMed  CAS  Google Scholar 

  51. Katsanis N, Beales PL, Woods MO, et al. Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat. Genet. 2000; 26:67–70.

    PubMed  CAS  Google Scholar 

  52. Nishimura DY, Swiderski RE, Searby CC, et al. Comparative genomics and gene expression analysis identifies BBS9, a new Bardet-Biedl syndrome gene. Am. J. Hum. Genet. 2005; 77:1021–1033.

    PubMed  CAS  Google Scholar 

  53. Badano JL, Ansley SJ, Leitch CC, Lewis RA, Lupski JR, Katsanis N. Identification of a novel Bardet-Biedl syndrome protein, BBS7, that shares structural features with BBS1 and BBS2. Am. J. Hum. Genet. 2003; 72:650–658.

    PubMed  CAS  Google Scholar 

  54. Ansley SJ, Badano JL, Blacque OE, et al. Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature 2003; 425:628–633.

    PubMed  CAS  Google Scholar 

  55. Chiang AP, Beck JS, Yen HJ, et al. Homozygosity mapping with SNP arrays identifies TRIM32, an E3 ubiquitin ligase, as a Bardet-Biedl syndrome gene (BBS11). Proc. Natl. Acad. Sci. USA 2006; 103:6287–6292.

    PubMed  CAS  Google Scholar 

  56. Stoetzel C, Laurier V, Davis EE, et al. BBS10 encodes a vertebrate-specific chaperonin-like protein and is a major BBS locus. Nat. Genet. 2006; 38:521–524.

    PubMed  CAS  Google Scholar 

  57. Stoetzel C, Muller J, Laurier V, et al. Identification of a novel BBS gene (BBS12) highlights the major role of a vertebrate-specific branch of chaperonin-related proteins in Bardet-Biedl syndrome. Am. J. Hum. Genet. 2007; 80:1–11.

    PubMed  CAS  Google Scholar 

  58. Katsanis N. The oligogenic properties of Bardet-Biedl syndrome. Hum. Mol. Genet. 2004; 13(Spec. No. 1):R65–R71.

    PubMed  CAS  Google Scholar 

  59. Yen HJ, Tayeh MK, Mullins RF, Stone EM, Sheffield VC, Slusarski DC. Bardet-Biedl syndrome genes are important in retrograde intracellular trafficking and Kupffer’s vesicle cilia function. Hum. Mol. Genet. 2006; 15:667–677.

    PubMed  CAS  Google Scholar 

  60. Nachury MV, Loktev AV, Zhang Q, et al. A core complex of BBS proteins cooperates with the GTPase Rab8 to promote ciliary membrane biogenesis. Cell 2007; 129:1201–1213.

    PubMed  CAS  Google Scholar 

  61. Russell-Eggitt IM, Clayton PT, Coffey R, Kriss A, Taylor DS, Taylor JF. Alstrom syndrome. Report of 22 cases and literature review. Ophthalmology 1998; 105:1274–1280.

    PubMed  CAS  Google Scholar 

  62. Marshall JD, Bronson RT, Collin GB, et al. New Alstrom syndrome phenotypes based on the evaluation of 182 cases. Arch. Intern. Med. 2005; 165:675–683.

    PubMed  Google Scholar 

  63. Hearn T, Renforth GL, Spalluto C, et al. Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alstrom syndrome. Nat. Genet. 2002; 31:79–83.

    PubMed  CAS  Google Scholar 

  64. Collin GB, Marshall JD, Ikeda A, et al. Mutations in ALMS1 cause obesity, type 2 diabetes and neurosensory degeneration in Alstrom syndrome. Nat. Genet. 2002; 31:74–78.

    PubMed  CAS  Google Scholar 

  65. Marshall JD, Hinman EG, Collin GB, et al. Spectrum of ALMS1 variants and evaluation of genotype–phenotype correlations in Alstrom syndrome. Hum. Mutat. 2007; 28:1114–1123.

    PubMed  CAS  Google Scholar 

  66. Hearn T, Spalluto C, Phillips VJ, et al. Subcellular localization of ALMS1 supports involvement of centrosome and basal body dysfunction in the pathogenesis of obesity, insulin resistance, and type 2 diabetes. Diabetes 2005; 54:1581–1587.

    PubMed  CAS  Google Scholar 

  67. Li G, Vega R, Nelms K, et al. A role for Alstrom syndrome protein, alms1, in kidney ciliogenesis and cellular quiescence. PLoS Genet. 2007; 3:e8.

    PubMed  Google Scholar 

  68. Wuschke S, Dahm S, Schmidt C, Joost HG, Al-Hasani H. A meta-analysis of quantitative trait loci associated with body weight and adiposity in mice. Int. J. Obes. (Lond.) 2007; 31:829–841.

    CAS  Google Scholar 

  69. Sanoudou D, Mantzoros C. Genetics of obesity and diabetes. In: Mantzoros C, ed. Obesity and Diabetes. Totowa: Humana, 2006; 39–67.

    Google Scholar 

  70. Hebebrand J, Friedel S, Schauble N, Geller F, Hinney A. Perspectives: molecular genetic research in human obesity. Obesity Rev. 2003; 4:139–146.

    Google Scholar 

  71. Glazier AM, Nadeau JH, Aitman TJ. Finding genes that underlie complex traits. Science 2002; 298:2345–2349.

    PubMed  CAS  Google Scholar 

  72. Abate N, Chandalia M, Satija P, et al. ENPPI/PC-I K121Q polymorphism and genetic susceptibility to type 2 diabetes. Diabetes 2005; 54:1207–1213.

    PubMed  CAS  Google Scholar 

  73. Boutin P, Dina C, Vasseur F, et al. GAD2 on chromosome 10p12 is a candidate gene for human obesity. PLoS Biol. 2003; 1:361–371.

    CAS  Google Scholar 

  74. Durand E, Boutin P, Meyre D, et al. Polymorphisms in the amino acid transporter solute carrier family 6 (neurotransmitter transporter) member 14 gene contribute to polygenic obesity in French Caucasians. Diabetes 2004; 53:2483–2486.

    Google Scholar 

  75. Dina C, Meyre D, Gallina S, et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 2007; 39:724–726.

    PubMed  CAS  Google Scholar 

  76. Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007; 3:e115.

    PubMed  Google Scholar 

  77. Frayling TM, Timpson NJ, Weedon MN, et al. A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 2007; 316:889–894.

    PubMed  CAS  Google Scholar 

  78. Gerken T, Girard CA, Tung YC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 2007; 318:1469–1472.

    PubMed  CAS  Google Scholar 

  79. Mutch DM, Clement K. Genetics of human obesity. Best. Pract. Res. Clin. Endocrinol. Metab. 2006; 20:647–664.

    PubMed  CAS  Google Scholar 

  80. Jandacek RJ, Woods SC. Pharmaceutical approaches to the treatment of obesity. Drug Discov. Today 2004; 15:874–880.

    Google Scholar 

  81. Wasan KM, Looije NA. Emerging pharmacological approaches to the treatment of obesity. J. Pharmaceut. Sci. 2005; 8:259–271.

    CAS  Google Scholar 

  82. Federation ID. International Diabetes Federation consensus worldwide definition of the metabolic syndrome. International Diabetes Federation, 2005.

    Google Scholar 

  83. Ford ES, Ajani UA, Mokdad AH. The metabolic syndrome and concentrations of C-reactive protein among U.S. youth. Diabetes Care 2005; 28:878–881.

    PubMed  Google Scholar 

  84. Cameron AJ, Shaw JE, Zimmet PZ. The metabolic syndrome: prevalence in worldwide populations. Endocrinol. Metab. Clin. North Am. 2004; 33:351–375; table of contents.

    PubMed  Google Scholar 

  85. Edwards KL, Newman B, Mayer E, Selby JV, Krauss RM, Austin MA. Heritability of factors of the insulin resistance syndrome in women twins. Genet. Epidemiol. 1997; 14:241–253.

    PubMed  CAS  Google Scholar 

  86. Carmelli D, Cardon LR, Fabsitz R. Clustering of hypertension, diabetes, and obesity in adult male twins: same genes or same environments? Am. J. Hum. Genet. 1994; 55:566–573.

    PubMed  CAS  Google Scholar 

  87. Chen W, Srinivasan SR, Elkasabany A, Berenson GS. The association of cardiovascular risk factor clustering related to insulin resistance syndrome (Syndrome X) between young parents and their offspring: the Bogalusa Heart Study. Atherosclerosis 1999; 145:197–205.

    PubMed  CAS  Google Scholar 

  88. Hong Y, Rice T, Gagnon J, et al. Familial clustering of insulin and abdominal visceral fat: the HERITAGE Family Study. J. Clin. Endocrinol. Metab. 1998; 83:4239–4245.

    PubMed  CAS  Google Scholar 

  89. Liese AD, Mayer-Davis EJ, Tyroler HA, et al. Familial components of the multiple metabolic syndrome: the ARIC study. Diabetologia 1997; 40:963–970.

    PubMed  CAS  Google Scholar 

  90. Mayer EJ, Newman B, Austin MA, et al. Genetic and environmental influences on insulin levels and the insulin resistance syndrome: an analysis of women twins. Am. J.Epidemiol. 1996; 143:323–332.

    PubMed  CAS  Google Scholar 

  91. Sweeney L, Brennan A, Mantzoros C. Metabolic syndrome. In: Regensteiner J, Reusc J, Stewart J, Veves A, eds. Diabetes and Exercise. Totowa: Humana, 2007.

    Google Scholar 

  92. Russell JC, Proctor SD. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc. Pathol. 2006; 15:318–330.

    PubMed  CAS  Google Scholar 

  93. Freedman BD, Lee EJ, Park Y, Jameson JL. A dominant negative peroxisome proliferator-activated receptor-gamma knock-in mouse exhibits features of the metabolic syndrome. J. Biol. Chem. 2005; 280:17118–17125.

    PubMed  CAS  Google Scholar 

  94. Ortlepp JR, Kluge R, Giesen K, et al. A metabolic syndrome of hypertension, hyperinsulinaemia and hypercholesterolaemia in the New Zealand obese mouse. Eur. J. Clin. Invest. 2000; 30:195–202.

    PubMed  CAS  Google Scholar 

  95. Yamaguchi Y, Yoshikawa N, Kagota S, Nakamura K, Haginaka J, Kunitomo M. Elevated circulating levels of markers of oxidative-nitrative stress and inflammation in a genetic rat model of metabolic syndrome. Nitric Oxide 2006; 15:380–386.

    PubMed  CAS  Google Scholar 

  96. Qi NR, Wang J, Zidek V, et al. A new transgenic rat model of hepatic steatosis and the metabolic syndrome. Hypertension 2005; 45:1004–1011.

    PubMed  CAS  Google Scholar 

  97. Seda O, Liska F, Krenova D, et al. Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol. Genomics 2005; 21:243–252.

    PubMed  CAS  Google Scholar 

  98. van den Brandt J, Kovacs P, Kloting I. Features of the metabolic syndrome in the spontaneously hypertriglyceridemic Wistar Ottawa Karlsburg W (RT1u Haplotype) rat. Metabolism 2000; 49:1140–1144.

    PubMed  CAS  Google Scholar 

  99. Kloting I, Kovacs P, van den Brandt J. Sex-specific and sex-independent quantitative trait loci for facets of the metabolic syndrome in WOKW rats. Biochem. Biophys. Res. Commun. 2001; 284:150–156.

    PubMed  CAS  Google Scholar 

  100. Strahorn P, Graham D, Charchar FJ, Sattar N, McBride MW, Dominiczak AF. Genetic determinants of metabolic syndrome components in the stroke-prone spontaneously hypertensive rat. J. Hypertens. 2005; 23:2179–2186.

    PubMed  CAS  Google Scholar 

  101. Sale MM, Woods J, Freedman BI. Genetic determinants of the metabolic syndrome. Curr. Hypertens. Rep. 2006; 8:16–22.

    PubMed  CAS  Google Scholar 

  102. McQueen MB, Bertram L, Rimm EB, Blacker D, Santangelo SL. A QTL genome scan of the metabolic syndrome and its component traits. BMC Genet. 2003; 4 (Suppl. 1):S96.

    PubMed  Google Scholar 

  103. Arya R, Blangero J, Williams K, et al. Factors of insulin resistance syndrome-related phenotypes are linked to genetic locations on chromosomes 6 and 7 in nondiabetic Mexican-Americans. Diabetes 2002; 51:841–847.

    PubMed  CAS  Google Scholar 

  104. Langefeld CD, Wagenknecht LE, Rotter JI, et al. Linkage of the metabolic syndrome to 1q23–q31 in Hispanic families: the Insulin Resistance Atherosclerosis Study Family Study. Diabetes 2004; 53:1170–1174.

    PubMed  CAS  Google Scholar 

  105. Hamet P, Merlo E, Seda O, et al. Quantitative founder-effect analysis of French Canadian families identifies specific loci contributing to metabolic phenotypes of hypertension. Am. J. Hum. Genet. 2005; 76:815–832.

    PubMed  CAS  Google Scholar 

  106. Loos RJ, Katzmarzyk PT, Rao DC, et al. Genome-wide linkage scan for the metabolic syndrome in the HERITAGE Family Study. J. Clin. Endocrinol. Metab. 2003; 88:5935–5943.

    PubMed  CAS  Google Scholar 

  107. Stein CM, Song Y, Elston RC, Jun G, Tiwari HK, Iyengar SK. Structural equation model-based genome scan for the metabolic syndrome. BMC Genet. 2003; 4 (Suppl. 1):S99.

    PubMed  Google Scholar 

  108. Olswold C, de Andrade M. Localization of genes involved in the metabolic syndrome using multivariate linkage analysis. BMC Genet. 2003; 4 (Suppl. 1):S57.

    PubMed  Google Scholar 

  109. Ng MC, So WY, Lam VK, et al. Genome-wide scan for metabolic syndrome and related quantitative traits in Hong Kong Chinese and confirmation of a susceptibility locus on chromosome 1q21–q25. Diabetes 2004; 53:2676–2683.

    PubMed  CAS  Google Scholar 

  110. Cai G, Cole SA, Freeland-Graves JH, MacCluer JW, Blangero J, Comuzzie AG. Principal component for metabolic syndrome risk maps to chromosome 4p in Mexican Americans: the San Antonio Family Heart Study. Hum. Biol. 2004; 76:651–665.

    PubMed  Google Scholar 

  111. Tang W, Miller MB, Rich SS, et al. Linkage analysis of a composite factor for the multiple metabolic syndrome: the National Heart, Lung, and Blood Institute Family Heart Study. Diabetes 2003; 52:2840–2847.

    PubMed  CAS  Google Scholar 

  112. Imperatore G, Knowler WC, Pettitt DJ, et al. A locus influencing total serum cholesterol on chromosome 19p: results from an autosomal genomic scan of serum lipid concentrations in Pima Indians. Arterioscler. Thromb. Vasc. Biol. 2000; 20:2651–2656.

    PubMed  CAS  Google Scholar 

  113. Krushkal J, Ferrell R, Mockrin SC, Turner ST, Sing CF, Boerwinkle E. Genome-wide linkage analyses of systolic blood pressure using highly discordant siblings. Circulation 1999; 99:1407–1410.

    PubMed  CAS  Google Scholar 

  114. Cheng LS, Davis RC, Raffel LJ, et al. Coincident linkage of fasting plasma insulin and blood pressure to chromosome 7q in hypertensive Hispanic families. Circulation 2001; 104:1255–1260.

    PubMed  CAS  Google Scholar 

  115. An P, Freedman BI, Hanis CL, et al. Genome-wide linkage scans for fasting glucose, insulin, and insulin resistance in the National Heart, Lung, and Blood Institute Family Blood Pressure Program: evidence of linkages to chromosome 7q36 and 19q13 from meta-analysis. Diabetes 2005; 54:909–914.

    PubMed  CAS  Google Scholar 

  116. Shearman AM, Ordovas JM, Cupples LA, et al. Evidence for a gene influencing the TG/HDL-C ratio on chromosome 7q32.3-qter: a genome-wide scan in the Framingham study. Hum. Mol. Genet. 2000; 9:1315–1320.

    PubMed  CAS  Google Scholar 

  117. Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic association studies. Genet. Med. 2002; 4:45–61.

    PubMed  CAS  Google Scholar 

  118. Pollex RL, Hegele RA. Genetic determinants of the metabolic syndrome. Nat. Clin. Pract. Cardiovasc. Med. 2006; 3:482–489.

    PubMed  CAS  Google Scholar 

  119. Barroso I, Gurnell M, Crowley VE, et al. Dominant negative mutations in human PPARgamma associated with severe insulin resistance, diabetes mellitus and hypertension. Nature 1999; 402:880–883.

    PubMed  CAS  Google Scholar 

  120. Barak Y, Nelson MC, Ong ES, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 1999; 4:585–595.

    PubMed  CAS  Google Scholar 

  121. Gurnell M. PPARgamma and metabolism: insights from the study of human genetic variants. Clin. Endocrinol. (Oxf.) 2003; 59:267–277.

    CAS  Google Scholar 

  122. Frederiksen L, Brodbaek K, Fenger M, et al. Comment: studies of the Pro12Ala polymorphism of the PPAR-gamma gene in the Danish MONICA cohort: homozygosity of the Ala allele confers a decreased risk of the insulin resistance syndrome. J. Clin. Endocrinol. Metab. 2002; 87:3989–3992.

    PubMed  CAS  Google Scholar 

  123. Meirhaeghe A, Cottel D, Amouyel P, Dallongeville J. Association between peroxisome proliferator-activated receptor gamma haplotypes and the metabolic syndrome in French men and women. Diabetes 2005; 54:3043–3048.

    PubMed  CAS  Google Scholar 

  124. Phillips C, Lopez-Miranda J, Perez-Jimenez F, McManus R, Roche HM. Genetic and nutrient determinants of the metabolic syndrome. Curr. Opin. Cardiol. 2006; 21:185–193.

    PubMed  Google Scholar 

  125. Dallongeville J, Helbecque N, Cottel D, Amouyel P, Meirhaeghe A. The Gly16→Arg16 and Gln27→Glu27 polymorphisms of beta2-adrenergic receptor are associated with metabolic syndrome in men. J. Clin. Endocrinol. Metab. 2003; 88:4862–4866.

    PubMed  CAS  Google Scholar 

  126. Fernandez ML, Ruiz R, Gonzalez MA, et al. Association of NOS3 gene with metabolic syndrome in hypertensive patients. Thromb. Haemost. 2004; 92:413–418.

    PubMed  CAS  Google Scholar 

  127. Lee YJ, Tsai JC. ACE gene insertion/deletion polymorphism associated with 1998 World Health Organization definition of metabolic syndrome in Chinese type 2 diabetic patients. Diabetes Care 2002; 25:1002–1008.

    PubMed  CAS  Google Scholar 

  128. Jowett JB, Elliott KS, Curran JE, et al. Genetic variation in BEACON influences quantitative variation in metabolic syndrome-related phenotypes. Diabetes 2004; 53:2467–2472.

    PubMed  CAS  Google Scholar 

  129. Steinle NI, Kazlauskaite R, Imumorin IG, et al. Variation in the lamin A/C gene: associations with metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 2004; 24:1708–1713.

    PubMed  CAS  Google Scholar 

  130. Hamid YH, Rose CS, Urhammer SA, et al. Variations of the interleukin-6 promoter are associated with features of the metabolic syndrome in Caucasian Danes. Diabetologia 2005; 48:251–260.

    PubMed  CAS  Google Scholar 

  131. Shen J, Arnett DK, Peacock JM, et al. Interleukin1beta genetic polymorphisms interact with polyunsaturated fatty acids to modulate risk of the metabolic syndrome. J. Nutr. 2007; 137:1846–1851.

    PubMed  CAS  Google Scholar 

  132. Guettier JM, Georgopoulos A, Tsai MY, et al. Polymorphisms in the fatty acid-binding protein 2 and apolipoprotein C-III genes are associated with the metabolic syndrome and dyslipidemia in a South Indian population. J. Clin. Endocrinol. Metab. 2005; 90:1705–1711.

    PubMed  CAS  Google Scholar 

  133. Acton S, Osgood D, Donoghue M, et al. Association of polymorphisms at the SR-BI gene locus with plasma lipid levels and body mass index in a white population. Arterioscler. Thromb. Vasc. Biol. 1999; 19:1734–1743.

    PubMed  CAS  Google Scholar 

  134. Borggreve SE, Hillege HL, Wolffenbuttel BH, et al. The effect of cholesteryl ester transfer protein -629C→A promoter polymorphism on high-density lipoprotein cholesterol is dependent on serum triglycerides. J. Clin. Endocrinol. Metab. 2005; 90:4198–4204.

    PubMed  CAS  Google Scholar 

  135. Hutter CM, Austin MA, Farin FM, et al. Association of endothelial lipase gene (LIPG) haplotypes with high-density lipoprotein cholesterol subfractions and apolipoprotein AI plasma levels in Japanese Americans. Atherosclerosis 2006; 185:78–86.

    PubMed  CAS  Google Scholar 

  136. Deeb SS, Zambon A, Carr MC, Ayyobi AF, Brunzell JD. Hepatic lipase and dyslipidemia: interactions among genetic variants, obesity, gender, and diet. J. Lipid. Res. 2003; 44:1279–1286.

    PubMed  CAS  Google Scholar 

  137. Srinivasan SR, Li S, Chen W, Boerwinkle E, Berenson GS. R219K polymorphism of the ABCA1 gene and its modulation of the variations in serum high-density lipoprotein cholesterol and triglycerides related to age and adiposity in white versus black young adults. The Bogalusa Heart Study. Metabolism 2003; 52:930–934.

    PubMed  CAS  Google Scholar 

  138. Lai CQ, Demissie S, Cupples LA, et al. Influence of the APOA5 locus on plasma triglyceride, lipoprotein subclasses, and CVD risk in the Framingham Heart Study. J. Lipid Res. 2004; 45:2096–2105.

    PubMed  CAS  Google Scholar 

  139. Lifton RP, Gharavi AG, Geller DS. Molecular mechanisms of human hypertension. Cell 2001; 104:545–556.

    PubMed  CAS  Google Scholar 

  140. Lang F, Capasso G, Schwab M, Waldegger S. Renal tubular transport and the genetic basis of hypertensive disease. Clin. Exp. Nephrol. 2005; 9:91–99.

    PubMed  CAS  Google Scholar 

  141. Jeunemaitre X, Soubrier F, Kotelevtsev YV, et al. Molecular basis of human hypertension: role of angiotensinogen. Cell 1992; 71:169–180.

    PubMed  CAS  Google Scholar 

  142. Nakayama T, Soma M, Takahashi Y, Rehemudula D, Kanmatsuse K, Furuya K. Functional deletion mutation of the 5′-flanking region of type A human natriuretic peptide receptor gene and its association with essential hypertension and left ventricular hypertrophy in the Japanese. Circ. Res. 2000; 86:841–845.

    PubMed  CAS  Google Scholar 

  143. Fornage M, Amos CI, Kardia S, Sing CF, Turner ST, Boerwinkle E. Variation in the region of the angiotensin-converting enzyme gene influences interindividual differences in blood pressure levels in young white males. Circulation 1998; 97:1773–1779.

    PubMed  CAS  Google Scholar 

  144. O’Donnell CJ, Lindpaintner K, Larson MG, et al. Evidence for association and genetic linkage of the angiotensin-converting enzyme locus with hypertension and blood pressure in men but not women in the Framingham Heart Study. Circulation 1998; 97:1766–1772.

    PubMed  Google Scholar 

  145. Hsueh WC, Mitchell BD, Schneider JL, et al. QTL influencing blood pressure maps to the region of PPH1 on chromosome 2q31–34 in Old Order Amish. Circulation 2000; 101:2810–2816.

    PubMed  CAS  Google Scholar 

  146. Izawa H, Yamada Y, Okada T, Tanaka M, Hirayama H, Yokota M. Prediction of genetic risk for hypertension. Hypertension 2003; 41:1035–1040.

    PubMed  CAS  Google Scholar 

  147. Yatsu K, Mizuki N, Hirawa N, et al. High-resolution mapping for essential hypertension using microsatellite markers. Hypertension 2007; 49:446–452.

    PubMed  CAS  Google Scholar 

  148. Chang YP, Liu X, Kim JD, et al. Multiple genes for essential-hypertension susceptibility on chromosome 1q. Am. J. Hum. Genet. 2007; 80:253–264.

    PubMed  CAS  Google Scholar 

  149. Spielman RS, Ewens WJ. The TDT and other family-based tests for linkage disequilibrium and association. Am. J. Hum. Genet. 1996; 59:983–989.

    PubMed  CAS  Google Scholar 

  150. Qian X, Lu Z, Tan M, Liu H, Lu D. A meta-analysis of association between C677T polymorphism in the methylenetetrahydrofolate reductase gene and hypertension. Eur. J. Hum. Genet. 2007; 15:1239–1245.

    PubMed  CAS  Google Scholar 

  151. Rapp JP. Genetic analysis of inherited hypertension in the rat. Physiol. Rev. 2000; 80:135–172.

    PubMed  CAS  Google Scholar 

  152. Woon PY, Kaisaki PJ, Braganca J, et al. Aryl hydrocarbon receptor nuclear translocator-like (BMAL1) is associated with susceptibility to hypertension and type 2 diabetes. Proc. Natl. Acad. Sci. USA 2007; 104:14412–14417.

    PubMed  CAS  Google Scholar 

  153. Printz MP, Jirout M, Jaworski R, Alemayehu A, Kren V. Genetic models in applied physiology. HXB/BXH rat recombinant inbred strain platform: a newly enhanced tool for cardiovascular, behavioral, and developmental genetics and genomics. J. Appl.Physiol. 2003; 94:2510–2522.

    PubMed  CAS  Google Scholar 

  154. Kreutz R, Hubner N. Congenic rat strains are important tools for the genetic dissection of essential hypertension. Semin. Nephrol. 2002; 22:135–147.

    PubMed  CAS  Google Scholar 

  155. Kwitek-Black AE, Jacob HJ. The use of designer rats in the genetic dissection of hypertension. Curr. Hypertens. Rep. 2001; 3:12–18.

    PubMed  CAS  Google Scholar 

  156. Nabika T, Kobayashi Y, Yamori Y. Congenic rats for hypertension: how useful are they for the hunting of hypertension genes? Clin. Exp. Pharmacol. Physiol. 2000; 27:251–256.

    PubMed  CAS  Google Scholar 

  157. Dominiczak AF, Negrin DC, Clark JS, Brosnan MJ, McBride MW, Alexander MY. Genes and hypertension: from gene mapping in experimental models to vascular gene transfer strategies. Hypertension 2000; 35:164–172.

    PubMed  CAS  Google Scholar 

  158. Takahashi N, Smithies O. Gene targeting approaches to analyzing hypertension. J. Am. Soc. Nephrol. 1999; 10:1598–1605.

    PubMed  CAS  Google Scholar 

  159. Kurihara Y, Kurihara H, Suzuki H, et al. Elevated blood pressure and craniofacial abnormalities in mice deficient in endothelin-1. Nature 1994; 368:703–710.

    PubMed  CAS  Google Scholar 

  160. Huang PL, Huang Z, Mashimo H, et al. Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 1995; 377:239–242.

    PubMed  CAS  Google Scholar 

  161. Ohuchi T, Kuwaki T, Ling GY, et al. Elevation of blood pressure by genetic and pharmacological disruption of the ETB receptor in mice. Am. J. Physiol. 1999; 276:R1071–R1077.

    PubMed  CAS  Google Scholar 

  162. Cvetkovic B, Sigmund CD. Understanding hypertension through genetic manipulation in mice. Kidney Int. 2000; 57:863–874.

    PubMed  CAS  Google Scholar 

  163. Rohrer DK, Desai KH, Jasper JR, et al. Targeted disruption of the mouse beta1-adrenergic receptor gene: developmental and cardiovascular effects. Proc. Natl. Acad. Sci. USA 1996; 93:7375–7380.

    PubMed  CAS  Google Scholar 

  164. Association AD. Diagnosis and classification of diabetes mellitus. Diabetes Care 2006; 29:S43–S48.

    Google Scholar 

  165. Freeman H, Cox RD. Type-2 diabetes: a cocktail of genetic discovery. Hum. Mol. Genet. 2006; 15:R202–R209.

    PubMed  CAS  Google Scholar 

  166. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature 2001; 414:782–787.

    PubMed  CAS  Google Scholar 

  167. Gottlieb GS. Diabetes in offspring and siblings of juvenile- and maturity-onset-type diabetes. J. Chronic. Dis. 1980; 33:331–339.

    PubMed  CAS  Google Scholar 

  168. McCarthy MI. Susceptibility gene discovery for common metabolic and endocrine traits. J. Mol. Endocrinol. 2002; 28:1–17.

    PubMed  CAS  Google Scholar 

  169. McCarthy MI, Froguel P. Genetic approaches to the molecular understanding of type 2 diabetes. Am.J. Physiol. Endocrinol. Metab. 2002; 283:E217–E225.

    PubMed  CAS  Google Scholar 

  170. Ueda H, Ikegami H, Yamato E, et al. The NSY mouse: a new animal model of spontaneous NIDDM with moderate obesity. Diabetologia 1995; 38:503–508.

    PubMed  CAS  Google Scholar 

  171. Coleman DL. Lessons from studies with genetic forms of diabetes in the mouse. Metabolism 1983; 32:162–164.

    PubMed  CAS  Google Scholar 

  172. Ikeda H. KK mouse. Diabetes. Res. Clin. Pract. 1994; 24:S313–S316.

    PubMed  Google Scholar 

  173. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T. Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 1992; 41:1422–1428.

    PubMed  CAS  Google Scholar 

  174. Goto Y, Kakizaki M. The spontaneous-diabetes rat: a model of noninsulin-dependent diabetes mellitus. Proc. Jpn Acad. 1981; 57:381–384.

    Google Scholar 

  175. Peterson RG, Shaw WN, Neel M, Little LA, Eichberg J. Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR J.1990; 32:16–19.

    Google Scholar 

  176. Kose H, Moralejo DH, Ogino T, Mizuno A, Yamada T, Matsumoto K. Examination of OLETF-derived non-insulin-dependent diabetes mellitus QTL by construction of a series of congenic rats. Mamm. Genome 2002; 13:558–562.

    PubMed  CAS  Google Scholar 

  177. Moralejo DH, Wei S, Wei K, Yamada T, Matsumoto K. X-linked locus is responsible for non-insulin-dependent diabetes mellitus in the OLETF rat. J. Vet. Med. Sci. 1998; 60:373–375.

    PubMed  CAS  Google Scholar 

  178. Ueda H, Ikegami H, Kawaguchi Y, et al. Genetic analysis of late-onset type 2 diabetes in a mouse model of human complex trait. Diabetes 1999; 48:1168–1174.

    PubMed  CAS  Google Scholar 

  179. Accili D, Drago J, Lee EJ, et al. Early neonatal death in mice homozygous for a null allele of the insulin receptor gene. Nat. Genet. 1996; 12:106–109.

    PubMed  CAS  Google Scholar 

  180. Joshi RL, Lamothe B, Cordonnier N, et al. Targeted disruption of the insulin receptor gene in the mouse results in neonatal lethality. EMBO J. 1996; 15:1542–1547.

    PubMed  CAS  Google Scholar 

  181. Araki E, Lipes MA, Patti ME, et al. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature 1994; 372:186–190.

    PubMed  CAS  Google Scholar 

  182. Withers DJ, Gutierrez JS, Towery H, et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998; 391:900–904.

    PubMed  CAS  Google Scholar 

  183. Liu SC, Wang Q, Lienhard GE, Keller SR. Insulin receptor substrate 3 is not essential for growth or glucose metabolism. J. Biol. Chem. 1999; 274:18093–18099.

    PubMed  CAS  Google Scholar 

  184. Fantin VR, Wang Q, Lienhard GE, Keller SR. Mice lacking insulin receptor substrate 4 exhibit mild defects in growth, reproduction and glucose metabolism. Am. J. Physiol. Endocrinol. Metab. 2000; 278: E127–E133.

    PubMed  CAS  Google Scholar 

  185. Brunning JC, Winnay J, Bonner-Weir S, Taylor SI, Accili D, Kahn CR. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 1997; 88:561–572.

    Google Scholar 

  186. Terauchi Y, Iwamoto K, Tamemoto H, et al. Development of non-insulin-dependent diabetes mellitus in the double knockout mice with disruption of insulin receptor substrate-1 and beta cell glucokinase genes. Genetic reconstitution of diabetes as a polygenic disease. J. Clin. Invest. 1997; 99:861–866.

    PubMed  CAS  Google Scholar 

  187. Bruning JC, Michael MD, Winnay JN, et al. A muscle specific insulin receptor knockout exhibits features of the metabolic syndrome of NIDDM without altering glucose tolerance. Mol. Cell 1998; 2:559–569.

    PubMed  CAS  Google Scholar 

  188. Michael MD, Kulkarni RN, Postic C, Previs SF, Shulman GI, Magnuson MA. Loss of insulin signalling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 2000; 6:87–97.

    PubMed  CAS  Google Scholar 

  189. Kulkarni RN, Bruning JC, Winnay JN, Postic C, Magnuson MA, Kahn CR. Tissue-specific knockout of the insulin receptor in pancreatic beta cells creates an insulin secretory defect similar to that in type 2 diabetes. Cell 1999; 96:329–339.

    PubMed  CAS  Google Scholar 

  190. Gloyn AL, Weedon MN, Owen KR, et al. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes 2003; 52:568–572.

    PubMed  CAS  Google Scholar 

  191. Lohmueller KE, Pearce CL, Pike M, Lander ES, Hirschhorn JN. Meta-analysis of genetic association studies supports a contribution of common variants to susceptibility to common disease. Nat. Genet. 2003; 33:177–182.

    PubMed  CAS  Google Scholar 

  192. Memisoglu A, Hu FB, Hankinson SE, et al. Prospective study of the association between the proline to alanine codon 12 polymorphism in the PPARgamma gene and type 2 diabetes. Diabetes Care 2003; 26:2915–2917.

    PubMed  CAS  Google Scholar 

  193. Deeb SS, Fajas L, Nemoto M, et al. A Pro12Ala substitution in PPARg2 associated with decreased receptor activity, lower body mass index and improved insulin sensitivity. Nat. Genet. 1998; 20:284–287.

    PubMed  CAS  Google Scholar 

  194. Hani EH, Boutin P, Durand E, et al. Missense mutations in the pancreatic islet beta cell inwardly rectifying K+ channel gene (KIR6.2/BIR): a meta-analysis suggests a role in the polygenic basis of type II diabetes mellitus in Caucasians. Diabetologia 1998; 41:1511–1515.

    PubMed  CAS  Google Scholar 

  195. Jellema A, Zeegers MP, Feskents EJ, Dagnelie PC, Mensink RP. Gly972Arg variant in the insulin receptor substrate-1 gene and association with type 2 diabetes: a meta-analysis of 27 studies. Diabetologia 2003; 46:990–995.

    PubMed  CAS  Google Scholar 

  196. Zeggini E, Parkinson JR, Halford S, et al. Association studies of insulin receptor substrate 1 gene (IRS1) variants in type 2 diabetes samples enriched for family history and early age of onset. Diabetes 2004; 53:3319–3322.

    PubMed  CAS  Google Scholar 

  197. Florez JC, Sjogren M, Burtt N, et al. Association testing in 9,000 people fails to confirm the association of the insulin receptor substrate-1 G972R polymorphism with type 2 diabetes. Diabetes 2004; 53:3313–3318.

    PubMed  CAS  Google Scholar 

  198. Rhodes CJ, White MF. Molecular insights into insulin action and secretion. Eur. J. Clin. Invest. 2002; 32:3–13.

    PubMed  CAS  Google Scholar 

  199. Horikawa Y, Oda N, Cox NJ, et al. Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus. Nat. Genet. 2000; 26:163–175.

    PubMed  CAS  Google Scholar 

  200. Weedon MN, Schwarz PEH, Horikawa Y, et al. Meta-analysis confirms the role of calpain-10 variation in type 2 diabetes susceptibility. Am. J. Hum. Genet. 2003; 73:1208–1212.

    PubMed  CAS  Google Scholar 

  201. Baier LJ, Permana PA, Yang X, et al. A calpain-10 gene polymorphism is associated with reduced muscle mRNA levels and insulin resistance. J. Clin. Invest. 2000; 106:R69–R73.

    PubMed  CAS  Google Scholar 

  202. Sreenan SK, Zhou YP, Otani K, et al. Calpains play a role in insulin secretion and action. Diabetes 2001; 50:2013–2020.

    PubMed  CAS  Google Scholar 

  203. Tripathy D, Eriksson KF, Orho-Melander M, Fredriksson J, Ahlqvist G, Groop L. Parallel manifestation of insulin resistance and beta cell decompensation is compatible with a common defect in type 2 diabetes. Diabetologia 2004; 47:782–793.

    PubMed  CAS  Google Scholar 

  204. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 2007; 445:881–885.

    PubMed  CAS  Google Scholar 

  205. Grant SF, Thorleifsson G, Reynisdottir I, et al. Variant of transcription factor 7-like 2 (TCF7L2) gene confers risk of type 2 diabetes. Nat. Genet. 2006; 38:320–323.

    PubMed  CAS  Google Scholar 

  206. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants. Science 2007; 316:1341–1345.

    PubMed  CAS  Google Scholar 

  207. Meyre D, Lecoeur C, Delplanque J, et al. Variants of ENPP1 are associated with childhood and adult obesity and increase the risk of glucose intolerance and type 2 diabetes. Nat. Genet. 2005; 37:863–867.

    PubMed  CAS  Google Scholar 

  208. McCarthy MI, Zeggini E. Genetics of type 2 diabetes. Curr. Diabetes Rep. 2006; 6:147–154.

    CAS  Google Scholar 

  209. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes. Science 2007; 316:1336–1341.

    PubMed  CAS  Google Scholar 

  210. Diabetes Genetics Initiative of Broad Institute of Harvard and MIT, LU and NIoBR: Saxena R, Voight BF, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 2007; 316:1331–1336.

    Google Scholar 

  211. Frayling TM, McCarthy MI. Genetic studies of diabetes following the advent of the genome-wide association study: where do we go from here? Diabetologia 2007; 50:2229–2233.

    PubMed  CAS  Google Scholar 

  212. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 2003; 34:267–273.

    PubMed  CAS  Google Scholar 

  213. Bino RJ, Hall RD, Fiehn O, et al. Potential of metabolomics as a functional genomics tool. Trends Plant Sci. 2004; 9:418–425.

    PubMed  CAS  Google Scholar 

  214. Griffin JL, Nicholls AW. Metabolomics as a functional genomics tool for understanding lipid dysfunction in diabetes, obesity and related disorders. Pharmacogenomics 2006; 7:1095–1107.

    PubMed  CAS  Google Scholar 

  215. Wang C, Kong H, Guan Y, et al. Plasma phospholipid metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem. 2005; 77:4108–4116.

    PubMed  CAS  Google Scholar 

  216. Yang J, Xu G, Hong Q, et al. Discrimination of type 2 diabetic patients from healthy controls by using metabonomics method based on their serum fatty acid profiles. J. Chromatogr. B. Anal. Technol. Biomed. Life. Sci. 2004; 813:53–58.

    CAS  Google Scholar 

  217. Tattersall RB, Fajans SS. A difference between the inheritance of classical juvenile-onset and maturity onset type of diabetes in young people. Diabetes 1975; 24:44–53.

    PubMed  CAS  Google Scholar 

  218. Yamagata K, Furuta H, Oda N, et al. Mutations in the hepatocyte nuclear factor-4α gene in the maturity-onset diabetes of the young (MODY1). Nature 1996; 384:458–460.

    PubMed  CAS  Google Scholar 

  219. Yamagata K, Oda N, Kaisaki PJ, et al. Mutations in the hepatocyte nuclear factor-1α gene in maturity-onset diabetes of the young (MODY3). Nature 1996; 384:455–458.

    PubMed  CAS  Google Scholar 

  220. Vionnet N, Stoffel M, Takeda J, et al. Nonsense mutation in the glucokinase gene causes early-onset non-insulin-dependent diabetes mellitus. Nature 1992; 356:721–722.

    PubMed  CAS  Google Scholar 

  221. Stoffers DA, Ferrer J, Clarke WL, Habener JF. Early onset type-II diabetes mellitus (MODY4) linked to IPF1. Nat. Genet. 1997; 17:138–139.

    PubMed  CAS  Google Scholar 

  222. Malecki MT, Jhala US, Antonellis A, et al. Mutations in NEUROD1 gene are associated with the development of type 2 diabetes mellitus. Nat Genet. 1999; 23:323–328.

    PubMed  CAS  Google Scholar 

  223. Horikawa Y, Iwasaki N, Hara M, et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat. Genet. 1997; 17:384–385.

    PubMed  CAS  Google Scholar 

  224. Barroso I. Genetics of type 2 diabetes. Diabetes 2005; 22:517–535.

    CAS  Google Scholar 

  225. Shih D, Stoffel M. Molecular etiologies of MODY and other early-onset forms of diabetes. Curr. Diabetes. Rep. 2002; 2:125–134.

    Google Scholar 

  226. Velho G, Robert JJ. Maturity-onset diabetes of the young (MODY): genetic and clinical characteristics. Horm. Res. 2002; 57:29–33.

    PubMed  CAS  Google Scholar 

  227. Shimomura H, Sanke T, Hanabusa T, Tsunoda K, Furuta H, Nanjo K. Nonsense mutation of islet-1 gene (Q310X) found in a type 2 diabetic patient with strong family history. Diabetes 2000; 49:1597–1600.

    PubMed  CAS  Google Scholar 

  228. Huopio H, Otonkoski T, Vauhkonen I, Reimann F, Ashcroft FM, Laakso M. A new subtype of autosomal dominant diabetes attributable to a mutation in the gene for sulfonylurea receptor 1. Lancet 2003; 361:301–307.

    PubMed  CAS  Google Scholar 

  229. van den Ouweland JM, Lemkes HH, Ruitenbeek W, et al. Mutation in mitochondrial tRNA(Leu) (UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat. Genet. 1992; 1:368–371.

    Google Scholar 

  230. Maassen JA, Kadowaki T. Maternally inherited diabetes and deafness: a new diabetes subtype. Diabetologia 1996; 39:375–382.

    PubMed  CAS  Google Scholar 

  231. Goto Y, Nonaka I, Horai S. A mutation in the tRNA(-Leu)(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990; 348:651–653.

    PubMed  CAS  Google Scholar 

  232. Malecki MT. Genetics of type 2 diabetes mellitus. Diabetes. Res. Clin. Pract. 2005; 68 (Suppl. 1):S10–S21.

    PubMed  CAS  Google Scholar 

  233. Genuth S, Alberti KG, Bennett P, et al. Follow-up report on the diagnosis of diabetes mellitus. Diabetes Care 2003; 26:3160–3167.

    PubMed  Google Scholar 

  234. Gillespie KM. Type 1 diabetes: pathogenesis and prevention. CMAJ 2006; 175:165–170.

    PubMed  Google Scholar 

  235. Onkamo P, Vaananen S, Karnoven M, Tuomilehto J. Worldwide increase in incidence of type I diabetes – the analysis of the data on published incidence trends. Diabetologia 1999; 42:1395–1403.

    PubMed  CAS  Google Scholar 

  236. Maier LM, Smyth DJ, Vella A, et al. Construction and analysis of tag single nucleotide polymorphism maps for six human-mouse orthologous candidate genes in type 1 diabetes. BMC Genet. 2005; 6:9.

    PubMed  Google Scholar 

  237. Eisenbarth GS. Animal models of type 1 diabetes: genetics and immunological function. In: Eisenbarth GS, ed. Type 1 Diabetes: Molecular, Cellular and Clinical Immunology. New York: Kluwer, 2004, pp. 91–108.

    Google Scholar 

  238. Pugliese A, Eisenbarth GS. Type 1 diabetes mellitus of man: genetic susceptibility and resistance. Adv. Exp. Med. Biol. 2004; 552:170–203.

    PubMed  CAS  Google Scholar 

  239. Smyth DJ, Cooper JD, Bailey R, et al. A genome-wide association study of nonsynonymous SNPs identifies a type 1 diabetes locus in the interferon-induced helicase (IFIH1) region. Nat. Genet. 2006; 38:617–619.

    PubMed  CAS  Google Scholar 

  240. Nerup J, Platz P, Andersen OO, et al. HLA antigens and diabetes mellitus. Lancet 1974; 2:864–866.

    PubMed  CAS  Google Scholar 

  241. Cudworth AG, Woodworth JC. HLA system and diabetes mellitus. Diabetes 1975; 24:345–349.

    PubMed  CAS  Google Scholar 

  242. Nejentsev S, Howson JM, Walker NM, et al. Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 2007; 450:887–892.

    PubMed  CAS  Google Scholar 

  243. Eisenbarth GS, Gottlieb PA. Autoimmune polyendocrine syndromes. N. Engl. J. Med. 2004; 350:2068–2079.

    PubMed  CAS  Google Scholar 

  244. Bell GI, Horita S, Karam JH. A polymorphic locus near the insulin gene is associated with insulin-dependent diabetes mellitus. Diabetes 1984; 33:176–183.

    PubMed  CAS  Google Scholar 

  245. Bennett ST, Lucassen AM, Gough SCL, et al. Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat. Genet. 1995; 9:284–292.

    PubMed  CAS  Google Scholar 

  246. Bottini N, Musumeci L, Alonso A, et al. A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat. Genet. 2004; 36:337–338.

    PubMed  CAS  Google Scholar 

  247. Vella A, Cooper JD, Lowe CE, et al. Localization of a type 1 diabetes locus in the IL2RA/CD25 region by use of tag single-nucleotide polymorphisms. Am. J. Hum. Genet. 2005; 76:773–779.

    PubMed  CAS  Google Scholar 

  248. Ueda H, Howson JM, Esposito L, et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 2003; 423:506–511.

    PubMed  CAS  Google Scholar 

  249. Hakonarson H, Grant SF, Bradfield JP, et al. A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene. Nature 2007; 448:591–594.

    PubMed  CAS  Google Scholar 

  250. Wicker LS, Miller BJ, Coker LZ, et al. Genetic control of diabetes and insulitis in the nonobese diabetic (NOD) mouse. J. Exp. Med. 1987; 165:1639–1654.

    PubMed  CAS  Google Scholar 

  251. Mein CA, Esposito L, Dunn MG, et al. A search for type 1 diabetes susceptibility genes in families from the United Kingdom. Nat. Genet. 1998; 19:297–300.

    PubMed  CAS  Google Scholar 

  252. Concannon P, Erlich HA, Julier C, et al. Evidence for susceptibility loci from four genomic-wide linkage scans in 1,435 multiplex families. Diabetes 2005; 54:2995–3001.

    PubMed  CAS  Google Scholar 

  253. Concannon P, Gogolin-Ewens KJ, Hinds DA, et al. A second-generation screen of the human genome for susceptibility to insulin-dependent diabetes mellitus. Nat. Genet. 1998; 19:292–296.

    PubMed  CAS  Google Scholar 

  254. Todd JA, Walker NM, Cooper JD, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nat. Genet. 2007; 39:857–864.

    PubMed  CAS  Google Scholar 

  255. Smink LJ, Helton EM, Healy BC, et al. T1DBase, a community Web-based resource for type 1 diabetes research. Nucleic Acids Res. 2005; 33:D544–D549.

    PubMed  CAS  Google Scholar 

  256. Hulbert EM, Smink LJ, Adlem EC, et al. T1DBase: integration and presentation of complex data for type 1 diabetes research. Nucleic Acid Res. 2007; 35(Database issue):D742–D746.

    PubMed  CAS  Google Scholar 

  257. Hyoty H. Enterovirus infections and type I diabetes. Ann. Med. 2002; 34:138–147.

    PubMed  Google Scholar 

  258. Honeyman MC, Coulson BS, Stone NL, et al. Association between rotavirus infection and pancreatic islet autoimmunity in children at risk of developing type 1 diabetes. Diabetes 2000; 49:1319–1324.

    PubMed  CAS  Google Scholar 

  259. Tuomi T. Type 1 and type 2 diabetes: what do they have in common? Diabetes 2005; 54:S40–S45.

    PubMed  CAS  Google Scholar 

  260. Wilkin TJ. The accelerator hypothesis: weight gain as the missing link between type I and type II diabetes. Diabetologia 2001; 44:914–922.

    PubMed  CAS  Google Scholar 

  261. Hill JO. Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr. Rev. 2006; 27:750–761.

    PubMed  Google Scholar 

  262. Sharma V, McNeill JH. The etiology of hypertension in the metabolic syndrome part two: the gene–environment interaction. Curr. Vasc. Pharmacol. 2006; 4:305–320.

    PubMed  CAS  Google Scholar 

  263. Wareham NJ, Franks PW, Harding AH. Establishing the role of gene–environment interactions in the etiology of type 2 diabetes. Endocrinol. Metab. Clin. North. Am. 2002; 31:553–566.

    PubMed  CAS  Google Scholar 

  264. Karnehed N, Tynelius P, Heitmann BL, Rasmussen F. Physical activity, diet and gene–environment interactions in relation to body mass index and waist circumference: the Swedish young male twins study. Public Health Nutr. 2006; 9:851–858.

    PubMed  Google Scholar 

  265. Grarup N, Andersen G. Gene–environment interactions in the pathogenesis of type 2 diabetes and metabolism. Curr. Opin. Clin. Nutr Metab. Care 2007; 10:420–426.

    PubMed  CAS  Google Scholar 

  266. Poulsen P, Vaag A, Kyvik K, Beck-Nielsen H. Genetic versus environmental aetiology of the metabolic syndrome among male and female twins. Diabetologia 2001; 44:537–543.

    PubMed  CAS  Google Scholar 

  267. Rankinen T, Church T, Rice T, et al. Effect of endothelin 1 genotype on blood pressure is dependent on physical activity or fitness levels. Hypertension 2007; 50:1120–1125.

    PubMed  CAS  Google Scholar 

  268. Kaput J, Dawson K. Complexity of type 2 diabetes mellitus data sets emerging from nutrigenomic research: a case for dimensionality reduction? Mutat. Res. 2007; 622:19–32.

    CAS  Google Scholar 

  269. Hegele RA, Harris SB, Hanley AJ, Sun F, Connelly PW, Zinman B. Angiotensinogen gene variation associated with variation in blood pressure in aboriginal Canadians. Hypertension 1997; 29:1073–1077.

    PubMed  CAS  Google Scholar 

  270. Luan J, Browne PO, Harding AH, et al. Evidence for gene–nutrient interaction at the PPARgamma locus. Diabetes 2001; 50:686–689.

    PubMed  CAS  Google Scholar 

  271. Lai CQ, Corella D, Demissie S, et al. Dietary intake of n-6 fatty acids modulates effect of apolipoprotein A5 gene on plasma fasting triglycerides, remnant lipoprotein concentrations, and lipoprotein particle size: the Framingham Heart Study. Circulation 2006; 113:2062–2070.

    PubMed  CAS  Google Scholar 

  272. Willer CJ, Speliotes EK, Loos RJ, et al. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat. Genet. 2009; 41:25–34.

    PubMed  CAS  Google Scholar 

  273. Lyssenko V, Nagorny CL, Erdos MR, et al. Common variant in MTNR1B associated with increased risk of type 2 diabetes and impaired early insulin secretion. Nat. Genet. 2009; 41(1):82–88.

    PubMed  CAS  Google Scholar 

  274. Lowe CE, Cooper JD, Brusko T, et al. Large-scale genetic fine mapping and genotype-phenotype associations implicate polymorphism in the IL2RA region in type 1 diabetes. Nat. Genet. 2007; 39:1074–1082.

    PubMed  CAS  Google Scholar 

  275. Wang CY, Podolsky R, She JX. Genetic and functional evidence supporting SUMO4 as a type 1 diabetes susceptibility gene. Ann. N. Y. Acad. Sci. 2006; 1079:257–267.

    PubMed  CAS  Google Scholar 

  276. Guo D, Li M, Zhang Y, et al. A functional variant of SUMO4, a new I kappa B alpha modifier, is associated with type 1 diabetes. Nat. Genet. 2004; 36:837–841.

    PubMed  CAS  Google Scholar 

  277. Concannon P, Chen WM, Julier C, et al. Genome-wide scan for linkage to type 1 diabetes in 2,496 multiplex families from the Type 1 Diabetes Genetics Consortium. Diabetes 2009; Jan 9. [Epub ahead of print]

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sanoudou, D., Vafiadaki, E., Mantzoros, C.S. (2009). Genes and Gene–Environment Interactions in the Pathogenesis of Obesity and the Metabolic Syndrome. In: Mantzoros, C. (eds) Nutrition and Metabolism. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-453-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-453-1_2

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-452-4

  • Online ISBN: 978-1-60327-453-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics