Microvascular Disease

  • Ronald A. Codario
Part of the Current Clinical Practice book series (CCP)


Both the Diabetes Control and Complication Trial (DCCT) and the United Kingdom Prospective Diabetes Study (UKPDS) have shown the importance of tight glycemic control in preventing microvascular disease and that the benefits of treatment were not a threshold at 6.5%, but a continuum, where further reductions in A1C levels below 6.5 continue to demonstrate benefit [1].

Key Words

Diabetic retinopathy Diabetic neuropathy Diabetic nephropathy Diabetes Control and Complication Trial (DCCT) United Kingdom Prospective Diabetes Study (UKPDS) A1C levels 


  1. 1.
    UK Prospective Diabetes Study Group. Tight blood pressure control and risk of macrovascular and microvascular complications in type 2 diabetes: UKPDS 38. BMJ 1998;317:703–713.CrossRefGoogle Scholar
  2. 2.
    Davis MD, Blodi BA. Proliferative diabetic retinopathy. In: Ryan SJ, Schachat AP, eds. Retina. Vol 2, 4th ed. St. Louis: Mosby, 2006:1285–1322.Google Scholar
  3. 3.
    Geslain Biquez C, Vol S, Tichet J, Caradec A, D’Hour A, Balkou B. The metabolic syndrome in smokers (The DESIR study). Diabetes Metab 2003;29(3):226–234.PubMedCrossRefGoogle Scholar
  4. 4.
    American Diabetes Association. Diabetic retinopathy. Diabetes Care 2002;26 (suppl 1):S99–S102.Google Scholar
  5. 5.
    Boulton AJ. Treatment of symptomatic diabetic retinopathy. Diabetes Metab Res Rev 2003;29 (suppl 1):S16–S21.CrossRefGoogle Scholar
  6. 6.
    Chaturvedi N, Porta M, Klein R, Orchard T, Fuller J, Parvin HH, Bilous R. Effect of candesartan on prevention (DIRECT-Prevent 1) and progression (DIRECT-Protect 1) of retinopathy in type-1 diabetes. Lancet 2008;372:1394–1402.PubMedCrossRefGoogle Scholar
  7. 7.
    Chaturvedi N, Sjolie AK, Stephenson JM. Effect of lisinopril on progression of retinopathy in normotensive people with type-1 diabetes. The EUCLID Study group. EURODIAB controlled trial of lisinopril in insulin dependent diabetes mellitus. Lancet 1998;351:28–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Sjolie AK, Klein R, Porta M. Effect of candesartan on progression and regression of retinopathy in type-2 diabetes (DIRECT-Protect 2). Lancet 2008;372:1385–1392.PubMedCrossRefGoogle Scholar
  9. 9.
    Early Treatment Diabetic Retinopathy Study Research Group. Early photocoagulation for diabetic retinopathy. Ophthalmology 1991;98:766–785.Google Scholar
  10. 10.
    Aiello LP, Gardner TW, King GL, et al. Diabetic retinopathy. Diabetes Care 1998;21:143–156.PubMedGoogle Scholar
  11. 11.
    Klein BD, Moss SE, Klein R, Surawicz TS. The Wisconsin Epidemiologic Study of Diabetic Retinopathy XIII. Ophthalmology 1991;98:1261–1265.PubMedGoogle Scholar
  12. 12.
    The Diabetes Control and Complications Trial Research Group. Four risk factors for severe visual loss in diabetic retinopathy: the third report of the Diabetic Retinopathy Study. Arch Ophthalmol 1979;97:654–655.CrossRefGoogle Scholar
  13. 13.
    Wolfe GI, Baroh RJ, et al. Painful neuropathy. Curr Treat Options Neurol 2002;4:177–188.PubMedCrossRefGoogle Scholar
  14. 14.
    Vinik A. Diagnosis and management of diabetic neuropathy. Clin Geriatr Med 1999;15:293–320.PubMedGoogle Scholar
  15. 15.
    Costa LA, Canani LH, Lisboa HR, Tres GS, Gross JL. Aggregation of features of the metabolic syndrome is associated with increased prevalence of chronic complications in type-2 diabetes. Diabet Med 2004;21;252–255.PubMedCrossRefGoogle Scholar
  16. 16.
    Sumner CJ, Sheth S, Griffin JW, Cornblath DR, Polydefkis M. The spectrum of neuropathy in diabetes and impaired glucose tolerance. Neurology 2003;60:108–111.PubMedCrossRefGoogle Scholar
  17. 17.
    Vinik AI, Park TS, Stransberry KB, Pittenger GL. Diabetic neuropathies. Diabetologia 2000;43:957–973.PubMedCrossRefGoogle Scholar
  18. 18.
    Spruce MC, Potter J, et al. The pathogenesis and management of painful diabetic neuropathy: a review. Diabet Med 2003;20:88–98.PubMedCrossRefGoogle Scholar
  19. 19.
    American Diabetes Association American Academy of Neurology. Consensus statement: report and recommendations of the San Antonio conference on diabetic neuropathy. Diabetes Care 1988;11:592–597.Google Scholar
  20. 20.
    Ewing DJ, Campbell IW, et al. The natural history of diabetic autonomic neuropathy. Q J Med 1980;49:95–108.PubMedGoogle Scholar
  21. 21.
    Verne GN, Snisky CA. Diabetes and the gastrointestinal tract. Gastroenterol Clin North Am 1998;27:861–874.PubMedCrossRefGoogle Scholar
  22. 22.
    Maser RE, Pfeifer MA, Dorman JS, Kuller LH, Becker DJ, Orchard TJ. Diabetic autonomic neuropathy and cardiovascular risk. Pittsburgh epidemiology of diabetes complications study. Arch Intern Med 1990;150(6):1218–1222.PubMedCrossRefGoogle Scholar
  23. 23.
    Locatelli F, Del Vecchio L. How long can dialysis be postponed by low protein diet and ACE inhibitors. Nephrol Dial Transplant 1999;14:1360–1364.PubMedCrossRefGoogle Scholar
  24. 24.
    American Diabetes Association. Diabetic nephropathy. Diabetes Care 2003;26 (suppl 1):S94–S98.Google Scholar
  25. 25.
    Kidney Disease Outcome Quality Initiative. Clinical practice guidelines for chronic kidney disease: evaluation, classification and stratification. Am J Kidney Dis 2002;39 (suppl 2):S1–S246.Google Scholar
  26. 26.
    Adler AI, Stevens RJ, Manley SE, Bilous RW, Cull CA, Holman RR. Development and progression of nephropathy in type-2 diabetes. BMJ 2004;328:1105–1108.CrossRefGoogle Scholar
  27. 27.
    Mogensen CE, et al. Microalbuminuria and potential confounders. A review and some observations on variability of urinary albumin excretion. Diabetes Care 1995;18:572.PubMedGoogle Scholar
  28. 28.
    Nambi V, Hoogwerf B, Sprecher D. Clev Clin J Med. 2002;9(12):985–989.Google Scholar
  29. 29.
    National Kidney Foundation. K/DOQI clinical practice guidelines for chronic kidney disease: evaluation, classification, and stratification. Am J Kidney Dis 2002;39 (suppl 1):S1–S266.Google Scholar
  30. 30.
    Mattock MB, Morrish NJ, et al. Prospective study of microalbuminuria as a predictor of mortality in NIDDM. Diabetes 1992;41:736–741.PubMedCrossRefGoogle Scholar
  31. 31.
    Sharma K, Ziyadeh FN. Hyperglycemia and diabetic kidney disease: the case for TGF-beta as a key mediator. Diabetes 1995;94:1139–1146.CrossRefGoogle Scholar
  32. 32.
    Bakris GL. Microalbuminuria: prognostic implications. Curr Opin Nephrol Hypertens 1996;5:219–223.PubMedCrossRefGoogle Scholar
  33. 33.
    Keane WF, Lyle PA. Recent advances in the management of type 2 diabetes and nephropathy: lessons from the RENAAL study. Am J Kidney Dis 2003;41 (3 suppl 1)S22–S25.PubMedCrossRefGoogle Scholar
  34. 34.
    Brenner BM, Cooper ME, de Zeeuw D. Effects of losartan on renal and cardiovascular outcomes in patients with type-2 diabetes and nephropathy. The RENAAL Trial. N Engl J Med 2001;345:861–869.PubMedCrossRefGoogle Scholar
  35. 35.
    Coats AJ. Angiotensin receptor blockers – finally the evidence is coming in: IDNT and RENAAL. Int J Cardiol 2001;79:99–102.PubMedCrossRefGoogle Scholar
  36. 36.
    Lewis EJ, Hunsicker LG, Clarke WR. Renoprotective effect of the angiotensin receptor antagonist irbesartan in patients with nephropathy due to type-2 diabetes. N Engl J Med 2001;345:851–860.PubMedCrossRefGoogle Scholar
  37. 37.
    Lewis EJ, Hunsicker LG, et al. Renoprotective effect of the angiotensin-receptor antagonist irbesartan in patients with nephropathy due to type 2 diabetes. N Engl J Med 2001;345:851–860.PubMedCrossRefGoogle Scholar
  38. 38.
    Malacco E, Santonastaso M, Vari N, Gargiulo A, Spagnuolo V, Bertocci F, Palodini P. Comparison of valsartan with lisinopril for the treatment of hypertension: the PREVAIL study. Clin Ther 2004;26(6):855–865.PubMedCrossRefGoogle Scholar
  39. 39.
    Brenner BM, Cooper ME, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med 2001;345:861–869.PubMedCrossRefGoogle Scholar
  40. 40.
    Pedrini MT, et al. The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal disease: a meta-analysis. Ann Intern Med 1996:124:627–632.PubMedCrossRefGoogle Scholar
  41. 41.
    Anavekar NS, McMurray JJ, Velasquez EJ. Relation between renal dysfunction and cardiovascular outcomes after myocardial infarction. N Engl J Med 2004;351(13):1285–1295.PubMedCrossRefGoogle Scholar
  42. 42.
    American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care 2002;25 (suppl 1):S33–S49.Google Scholar

Supplementary Readings

  1. Benjamin L. Glucose, VEGF-A, and diabetic complications. Am J Pathol 2001;158:1181–1184.PubMedCrossRefGoogle Scholar
  2. Eddy A. Interstitial nephritis induced by protein overload proteinuria. Am J Pathol 1989;135:719–733.PubMedGoogle Scholar
  3. Kendall DM, Harmel AP. The metabolic syndrome, type 2 diabetes, and cardiovascular disease: understanding the role of insulin resistance. Am J Manag Care 2002;8 (20 suppl):S635–S653.PubMedGoogle Scholar
  4. Lovestam-Adrian M, et al. Diabetic retinopathy, visual acuity, and medical risk indicators. J Diabetes Complications 2001;15:287–294.PubMedCrossRefGoogle Scholar
  5. Morgensen CE. Natural history of cardiovascular and renal disease in patients with type 2 diabetes: Effect of therapeutic interventions and risk modifications. Am J Cardiol 1998;82:4R–8R.CrossRefGoogle Scholar
  6. Valmadred CT, et al. The risk of cardiovascular disease mortality associated with microalbuminuria and gross proteinuria with older onset diabetes mellitus. Arch Intern Med 2000;160:1093–1099.CrossRefGoogle Scholar
  7. Ziegler D, et al. Effects of treatment with the antioxidant alpha-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. Diabetes Care 1997;20:369–373.PubMedCrossRefGoogle Scholar
  8. Zucchelli P, Zuccala A, et al. Comparison of the effects of ACE inhibitors and calcium channel blockers on the progression of renal failure. Nephrol Dial Transplant 1995;10 (suppl 9):46–51.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Ronald A. Codario
    • 1
  1. 1.University of Pennsylvania Health System Thomas Jefferson University HospitalPhiladelphiaUSA

Personalised recommendations