Skip to main content

Total Energy Expenditure of Exercise and Recovery

  • Chapter
A Primer for the Exercise and Nutrition Sciences
  • 2265 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sjodin AM, Forslund AH, Westerterp KR, et al. The influence of physical activity on BMR. Med Sci Sports Exerc. 1996;28:85–91.

    Article  CAS  Google Scholar 

  2. Myers J, Walsh D, Sullivan M, et al. Effect of sampling variability and plateau in oxygen uptake. J Appl Physiol. 1990;68:404–410.

    Article  CAS  Google Scholar 

  3. Scott CB. Estimating energy expenditure for brief bouts of exercise with acute recovery. Appl Physiol Nutr Metab. 2006;31:144–149.

    Article  CAS  Google Scholar 

  4. Scott CB. Contribution of blood lactate to the energy expenditure of weight training. J Strength Cond Res. 2006;20:404–411.

    Google Scholar 

  5. di Prampero PE, Ferretti G. The energetics of anaerobic muscle metabolism: a reappraisal of older and recent concepts. Resp Physiol. 1999;118: 103–115.

    Article  Google Scholar 

  6. Margaria R, Cerretelli P, Mangili F. Balance and kinetics of anaerobic energy release during strenuous exercise in man. J Appl Physiol. 1964;19:623–628.

    CAS  Google Scholar 

  7. Pahud P, Ravussin E, Acheson KJ, et al. Energy expenditure during oxygen deficit of submaximal concentric and eccentric exercise. J Appl Physiol. 1980;49:16–21.

    CAS  Google Scholar 

  8. di Prampero PE, Meyer M, Cerretelli P, et al. Energetics of anaerobic glycolysis in dog gastrocnemius. Pflugers Arch. 1978;377:1–8.

    Article  Google Scholar 

  9. Kushmerick MJ, Paul RJ. Relationship between initial chemical reactions and oxidative recovery metabolism for single isometric contractions of frog Sartorius at 0°C. J Physiol. 1976;254:711–727.

    CAS  Google Scholar 

  10. Bahr R. Excess postexercise oxygen consumption — magnitude, mechanisms and practical implications. Acta Physiol Scand. 1992;144 (Suppl. 605):1–70.

    Google Scholar 

  11. McMahon S, Jenkins D. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. Sports Med. 2002;32:761–784.

    Article  Google Scholar 

  12. Gaesser GA, Brooks GA. Metabolic bases of excess post-exercise oxygen consumption: a review. Med Sci Sports Exerc. 1984;16:29–43.

    CAS  Google Scholar 

  13. Gnaiger E, Kemp RB. Anaerobic metabolism in aerobic mammalian cells: information from the ratio of calorimetric heat flux and respirometric oxygen flux. Biochim Biophys Acta. 1990;1016:328–332.

    Article  CAS  Google Scholar 

  14. Scott CB, Kemp RB. Direct and indirect calorimetry of lactate oxidation: implications for whole-body energy expenditure. J Sports Sci. 2005;23:15–19.

    Article  Google Scholar 

  15. Scott CB. Continuous versus intermittent work: a quantitative approach to energy expenditure. Physiologist. 1992;35:208.

    Google Scholar 

  16. Scott CB. Interpreting anaerobic energy expenditure for anaerobic exercise and recovery: an anaerobic hypothesis. J Sports Med Phys Fit. 1997;37:18–23.

    CAS  Google Scholar 

  17. Scott CB. Re-interpreting anaerobic metabolism: an argument for the application of both anaerobic glycolysis and excess post-exercise oxygen consumption (EPOC) as independent sources of energy expenditure. Eur J Appl Physiol. 1998;77:200–215.

    Article  CAS  Google Scholar 

  18. Scott CB. Energy expenditure of heavy to severe exercise and recovery. J Theor Biol. 2000;207:293–297.

    Article  CAS  Google Scholar 

  19. Scott CB. Contribution of anaerobic energy expenditure to whole body thermogenesis. Nutr Metab. 2005;2:14.

    Article  Google Scholar 

  20. Gleeson TT, Hancock TV. Metabolic implications of a ‘run now, pay later’ strategy in lizards: an analysis of post-exercise oxygen consumption. Comp Biochem Physiol A. 2002;133:259– 267.

    Article  Google Scholar 

  21. DiPietro L. Physical activity, body weight and adiposity: an epidemiological perspective. In: Holloszy, J.O., Ed., Exercise and sports science reviews. Baltimore: Williams & Wilkins, 1995.

    Google Scholar 

  22. Mougios V, Kazaki M, Christoulas K, et al. Does the intensity of an exercise programme modulate body composition changes? Int J Sports Med. 2006;27:178–181.

    Article  CAS  Google Scholar 

  23. Slentz CA, Duscha BD, Johnson JL, et al. Effects of the amount of exercise on body weight, body composition and measures of central obesity. Arch Intern Med. 2004;164:31–39.

    Article  Google Scholar 

  24. Essen B, Hagenfeldt L, Kaijser L. Utilization of blood-borne and intramuscular substrates during continuous and intermittent exercise in man. J Physiol. 1977;265:489–506.

    CAS  Google Scholar 

  25. Christmass MA, Dawson B, Goodman C, et al. Brief intense exercise followed by passive recovery modifies the pattern of fuel use in humans during subsequent sustained intermittent exercise. Acta Physiol Scand. 2001;172:39–52.

    Article  CAS  Google Scholar 

  26. Goto K, Ishii N, Mizuno A, et al. Enhancement of fat metabolism by repeated bouts of moderate endurance exercise. J Appl Physiol. 2007;102:2158–2164.

    Article  CAS  Google Scholar 

  27. Tremblay A, Simoneau J-A, Bouchard C. Impact of exercise intensity on body fatness and skeletal muscle metabolism. Metabolism. 1994;43:814–818.

    Article  CAS  Google Scholar 

  28. Tucker LA, Peterson TR. Objectively measured intensity of physical activity and adiposity in middle-aged women. Obesity Res. 2003;11:1581–1587.

    Article  Google Scholar 

  29. Tremblay A, Despres JP, Leblanc C, et al. Effect of physical activity on body fatness and fat distribution. Am J Clin Nutr. 1990;51:153–157.

    CAS  Google Scholar 

  30. Bryner RW, Toffle RC, Ullrich IH, et al. The effects of exercise intensity on body composition, weight loss, and dietary composition in women. J Am Coll Nutr. 1997;16:68–73.

    CAS  Google Scholar 

  31. Pacheco-Sanchez M, Grunewald KK. Body fat deposition: effects of dietary fat and two exercise protocols. J Am Coll Nutr. 1994;13:601–607.

    CAS  Google Scholar 

  32. Marra C, Bottaro M, Oliveira RJ, et al. Effect of moderate and high intensity aerobic exercise on the body composition of overweight men. J Exer Physiol (online). 2005;8:39–45.

    Google Scholar 

  33. Jakicic JM, Marcu BH, Gallagher KI, et al. Effect of exercise duration and intensity on weight loss in overweight, sedentary women. J Am Med Assoc. 2003;290:1323–1330.

    Article  CAS  Google Scholar 

  34. Ballor DL, McCarthy JP, Wilterdink EJ. Exercise intensity does not affect the composition of diet- and exercise-induced body mass loss. Am J Clin Nutr. 1990;51:142–146.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Scott, C.B. (2008). Total Energy Expenditure of Exercise and Recovery. In: A Primer for the Exercise and Nutrition Sciences. Humana Press. https://doi.org/10.1007/978-1-60327-383-1_16

Download citation

Publish with us

Policies and ethics