Skip to main content

Apoptosis in Cardiovascular Pathogenesis

  • Chapter
  • First Online:
Essentials of Apoptosis

Abstract

The loss of cardiomyocytes in the human myocardium results in overloading of the heart, causing structural remodeling of the heart and deterioration of the cardiac function, eventually leading to heart failure. Cellular suicide or apoptosis of cardiac muscle cells has been identified as an essential process in the progression to heart failure. This process entails a highly structured series of events that gradually shuts down cellular functions, leading to removal of the cardiac muscle cell, with minimal consequences to the surrounding tissue. Because of the impact of apoptosis on cardiac function, cardiomyocyte resuscitation by preventing programmed cell death holds a highly interesting potential as a therapeutic target. For future rational drug design aimed at limiting cardiac cellular loss, it is necessary to have a full understanding of the apoptotic pathways that are functional in the cardiac muscle. This chapter summarizes the apoptotic pathways operative in cardiac muscle and discusses therapeutic options related to apoptosis for the future treatment of human heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cleland JG, Khand A, Clark A. The heart failure epidemic: Exactly how big is it? Eur Heart J 2001;22 (8):623–6.

    CAS  Google Scholar 

  2. Ding B, Price RL, Goldsmith EC, et al. Left ventricular hypertrophy in ascending aortic stenosis mice: Anoikis and the progression to early failure. Circulation 2000;101 (24):2854–62.

    Article  PubMed  CAS  Google Scholar 

  3. Narula J, Hajjar RJ, Dec GW. Apoptosis in the failing heart. Cardiol Clin 1998;16 (4):691–710, ix.

    Article  PubMed  CAS  Google Scholar 

  4. Wencker D, Chandra M, Nguyen K, et al. A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 2003;111 (10):1497–504.

    PubMed  CAS  Google Scholar 

  5. Ottaviani G, Lavezzi AM, Rossi L, Matturri L. Proliferating cell nuclear antigen (PCNA) and apoptosis in hyperacute and acute myocardial infarction. Eur J Histochem 1999;43 (1):7–14.

    PubMed  CAS  Google Scholar 

  6. Olivetti G, Quaini F, Sala R, et al. Acute myocardial infarction in humans is associated with activation of programmed myocyte cell death in the surviving portion of the heart. J Mol Cell Cardiol 1996;28 (9):2005–16.

    Article  PubMed  CAS  Google Scholar 

  7. Saraste A, Pulkki K, Kallajoki M, et al. Cardiomyocyte apoptosis and progression of heart failure to transplantation. Eur J Clin Invest 1999;29 (5):380–6.

    Article  PubMed  CAS  Google Scholar 

  8. Kang PM, Izumo S. Apoptosis and heart failure: A critical review of the literature. Circ Res 2000;86 (11):1107–13.

    Article  PubMed  CAS  Google Scholar 

  9. Olivetti G, Abbi R, Quaini F, et al. Apoptosis in the failing human heart. N Engl J Med 1997;336 (16):1131–41.

    Article  PubMed  CAS  Google Scholar 

  10. Guerra S, Leri A, Wang X, et al. Myocyte death in the failing human heart is gender dependent. Circ Res 1999;85 (9):856–66.

    Article  PubMed  CAS  Google Scholar 

  11. Narula J, Haider N, Virmani R, et al. Apoptosis in myocytes in end-stage heart failure. N Engl J Med 1996;335 (16):1182–9.

    Article  PubMed  CAS  Google Scholar 

  12. Rayment NB, Haven AJ, Madden B, et al. Myocyte loss in chronic heart failure. J Pathol 1999;188 (2):213–9.

    Article  PubMed  CAS  Google Scholar 

  13. Knaapen MW, Davies MJ, De Bie M, Haven AJ, Martinet W, Kockx MM. Apoptotic versus autophagic cell death in heart failure. Cardiovasc Res 2001;51 (2):304–12.

    Article  PubMed  CAS  Google Scholar 

  14. Latif N, Khan MA, Birks E, et al. Upregulation of the Bcl-2 family of proteins in end stage heart failure. J Am Coll Cardiol 2000;35 (7):1769–77.

    Article  PubMed  CAS  Google Scholar 

  15. van Empel VP, Bertrand AT, Hofstra L, Crijns HJ, Doevendans PA, De Windt LJ. Myocyte apoptosis in heart failure. Cardiovasc Res 2005;67 (1):21–9.

    Article  PubMed  Google Scholar 

  16. Zhang D, Gaussin V, Taffet GE, et al. TAK1 is activated in the myocardium after pressure overload and is sufficient to provoke heart failure in transgenic mice. Nat Med 2000;6(5):556–63.

    Article  PubMed  CAS  Google Scholar 

  17. Sadoshima J, Montagne O, Wang Q, et al. The MEKK1-JNK pathway plays a protective role in pressure overload but does not mediate cardiac hypertrophy. J Clin Invest 2002;110 (2):271–9.

    PubMed  CAS  Google Scholar 

  18. Regula KM, Kirshenbaum LA. Apoptosis of ventricular myocytes: A means to an end. J Mol Cell Cardiol 2005;38 (1):3–13.

    Article  PubMed  CAS  Google Scholar 

  19. Crow MT, Mani K, Nam YJ, Kitsis RN. The mitochondrial death pathway and cardiac myocyte apoptosis. Circ Res 2004;95 (10):957–70.

    Article  PubMed  CAS  Google Scholar 

  20. Wolf BB, Green DR. Suicidal tendencies: Apoptotic cell death by caspase family proteinases. J Biol Chem 1999;274 (29):20049–52.

    Article  PubMed  CAS  Google Scholar 

  21. Communal C, Sumandea M, de Tombe P, Narula J, Solaro RJ, Hajjar RJ. Functional consequences of caspase activation in cardiac myocytes. Proc Natl Acad Sci USA 2002;99 (9):6252–6.

    Article  PubMed  CAS  Google Scholar 

  22. Crompton M, Barksby E, Johnson N, Capano M. Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 2002;84 (2–3):143–52.

    Article  PubMed  CAS  Google Scholar 

  23. Weiss JN, Korge P, Honda HM, Ping P. Role of the mitochondrial permeability transition in myocardial disease. Circ Res 2003;93 (4):292–301.

    Article  PubMed  CAS  Google Scholar 

  24. Zamzami N, Kroemer G. The mitochondrion in apoptosis: How Pandora's box opens. Nat Rev Mol Cell Biol 2001;2 (1):67–71.

    Article  PubMed  CAS  Google Scholar 

  25. Adrain C, Martin SJ. The mitochondrial apoptosome: A killer unleashed by the cytochrome seas. Trends Biochem Sci 2001;26 (6):390–7.

    Article  PubMed  CAS  Google Scholar 

  26. Verhagen AM, Vaux DL. Cell death regulation by the mammalian IAP antagonist Diablo/Smac. Apoptosis 2002;7 (2):163–6.

    Article  PubMed  CAS  Google Scholar 

  27. Cande C, Cohen I, Daugas E, et al. Apoptosis-inducing factor (AIF): A novel caspase-independent death effector released from mitochondria. Biochimie 2002;84 (2–3):215–22.

    Article  PubMed  CAS  Google Scholar 

  28. Hengartner MO. The biochemistry of apoptosis. Nature 2000;407 (6805):770–6.

    Article  PubMed  CAS  Google Scholar 

  29. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem 1998;273 (5):2926–30.

    Article  PubMed  CAS  Google Scholar 

  30. Takemura G, Kato S, Aoyama T, et al. Characterization of ultrastructure and its relation with DNA fragmentation in Fas-induced apoptosis of cultured cardiac myocytes. J Pathol 2001;193 (4):546–56.

    Article  PubMed  CAS  Google Scholar 

  31. Lee P, Sata M, Lefer DJ, Factor SM, Walsh K, Kitsis RN. Fas pathway is a critical mediator of cardiac myocyte death and MI during ischemia-reperfusion in vivo. Am J Physiol Heart Circ Physiol 2003;284 (2):H456–63.

    PubMed  CAS  Google Scholar 

  32. Yamaguchi S, Yamaoka M, Okuyama M, et al. Elevated circulating levels and cardiac secretion of soluble Fas ligand in patients with congestive heart failure. Am J Cardiol 1999;83 (10):1500–3, A8.

    Article  PubMed  CAS  Google Scholar 

  33. Wang J, Lenardo MJ. Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J Cell Sci 2000;113 (Pt 5):753–7.

    PubMed  CAS  Google Scholar 

  34. Hitomi J, Katayama T, Taniguchi M, Honda A, Imaizumi K, Tohyama M. Apoptosis induced by endoplasmic reticulum stress depends on activation of caspase-3 via caspase-12. Neurosci Lett 2004;357 (2):127–30.

    Article  PubMed  CAS  Google Scholar 

  35. Okada K, Minamino T, Tsukamoto Y, et al. Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: Possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation 2004;110 (6):705–12.

    Article  PubMed  Google Scholar 

  36. Adams JM, Cory S. Life-or-death decisions by the Bcl-2 protein family. Trends Biochem Sci 2001;26 (1):61–6.

    Article  PubMed  CAS  Google Scholar 

  37. Antonsson B, Montessuit S, Sanchez B, Martinou JC. Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 2001;276 (15):11615–23.

    Article  PubMed  CAS  Google Scholar 

  38. Ryan KM, Phillips AC, Vousden KH. Regulation and function of the p53 tumor suppressor protein. Curr Opin Cell Biol 2001;13 (3):332–7.

    Article  PubMed  CAS  Google Scholar 

  39. Chen Z, Chua CC, Ho YS, Hamdy RC, Chua BH. Overexpression of Bcl-2 attenuates apoptosis and protects against myocardial I/R injury in transgenic mice. Am J Physiol Heart Circ Physiol 2001;280 (5):H2313–20.

    PubMed  CAS  Google Scholar 

  40. Kang PM, Haunstetter A, Aoki H, Usheva A, Izumo S. Morphological and molecular characterization of adult cardiomyocyte apoptosis during hypoxia and reoxygenation. Circ Res 2000;87 (2):118–25.

    Article  PubMed  CAS  Google Scholar 

  41. Chen G, Ray R, Dubik D, et al. The E1B 19 K/Bcl-2-binding protein Nip3 is a dimeric mitochondrial protein that activates apoptosis. J Exp Med 1997;186 (12):1975–83.

    Article  PubMed  CAS  Google Scholar 

  42. Yussman MG, Toyokawa T, Odley A, et al. Mitochondrial death protein Nix is induced in cardiac hypertrophy and triggers apoptotic cardiomyopathy. Nat Med 2002;8 (7):725–30.

    PubMed  CAS  Google Scholar 

  43. Syed F, Odley A, Hahn HS, et al. Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circ Res 2004;95 (12):1200–6.

    Article  PubMed  CAS  Google Scholar 

  44. Diwan A, Krenz M, Syed FM, et al. Inhibition of ischemic cardiomyocyte apoptosis through targeted ablation of Bnip3 restrains postinfarction remodeling in mice. J Clin Invest 2007;117 (10):2825–33.

    Article  PubMed  CAS  Google Scholar 

  45. Galvez AS, Brunskill EW, Marreez Y, et al. Distinct pathways regulate proapoptotic Nix and BNip3 in cardiac stress. J Biol Chem 2006;281 (3):1442–8.

    Article  PubMed  CAS  Google Scholar 

  46. Deveraux QL, Roy N, Stennicke HR, et al. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J 1998;17 (8):2215–23.

    Article  PubMed  CAS  Google Scholar 

  47. Scheubel RJ, Bartling B, Simm A, et al. Apoptotic pathway activation from mitochondria and death receptors without caspase-3 cleavage in failing human myocardium: Fragile balance of myocyte survival? J Am Coll Cardiol 2002;39 (3):481–8.

    CAS  Google Scholar 

  48. Verhagen AM, Ekert PG, Pakusch M, et al. Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 2000;102 (1):43–53.

    Article  PubMed  CAS  Google Scholar 

  49. Du C, Fang M, Li Y, Li L, Wang X. Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 2000;102 (1):33–42.

    Article  PubMed  CAS  Google Scholar 

  50. Wu G, Chai J, Suber TL, et al. Structural basis of IAP recognition by Smac/DIABLO. Nature 2000;408 (6815):1008–12.

    Article  PubMed  CAS  Google Scholar 

  51. Scarabelli TM, Stephanou A, Pasini E, et al. Minocycline inhibits caspase activation and reactivation, increases the ratio of XIAP to smac/DIABLO, and reduces the mitochondrial leakage of cytochrome C and smac/DIABLO. J Am Coll Cardiol 2004;43 (5):865–74.

    Article  PubMed  CAS  Google Scholar 

  52. Yang QH, Church-Hajduk R, Ren J, Newton ML, Du C. Omi/HtrA2 catalytic cleavage of inhibitor of apoptosis (IAP) irreversibly inactivates IAPs and facilitates caspase activity in apoptosis. Genes Dev 2003;17 (12):1487–96.

    Article  PubMed  CAS  Google Scholar 

  53. Cilenti L, Lee Y, Hess S, et al. Characterization of a novel and specific inhibitor for the pro-apoptotic protease Omi/HtrA2. J Biol Chem 2003;278 (13):11489–94.

    Article  PubMed  CAS  Google Scholar 

  54. Liu HR, Gao E, Hu A, et al. Role of Omi/HtrA2 in apoptotic cell death after myocardial ischemia and reperfusion. Circulation 2005;111 (1):90–6.

    Article  PubMed  CAS  Google Scholar 

  55. Liston P, Fong WG, Kelly NL, et al. Identification of XAF1 as an antagonist of XIAP anti-caspase activity. Nat Cell Biol 2001;3 (2):128–33.

    Article  PubMed  CAS  Google Scholar 

  56. Faleiro L, Lazebnik Y. Caspases disrupt the nuclear-cytoplasmic barrier. J Cell Biol 2000;151 (5):951–9.

    Article  PubMed  CAS  Google Scholar 

  57. Koseki T, Inohara N, Chen S, Nunez G. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with caspases. Proc Natl Acad Sci USA 1998;95 (9):5156–60.

    Article  PubMed  CAS  Google Scholar 

  58. Ekhterae D, Lin Z, Lundberg MS, Crow MT, Brosius FC, 3rd, Nunez G. ARC inhibits cytochrome c release from mitochondria and protects against hypoxia-induced apoptosis in heart-derived H9c2 cells. Circ Res 1999;85 (12):e70–7.

    Article  PubMed  CAS  Google Scholar 

  59. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part II: Animal and human studies. Circulation 2003;108 (17):2034–40.

    Article  PubMed  Google Scholar 

  60. Griendling KK, FitzGerald GA. Oxidative stress and cardiovascular injury: Part I: Basic mechanisms and in vivo monitoring of ROS. Circulation 2003;108 (16):1912–6.

    Article  PubMed  Google Scholar 

  61. Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC. Mitochondrial disease in mouse results in increased oxidative stress. Proc Natl Acad Sci USA 1999;96 (9):4820–5.

    Article  PubMed  CAS  Google Scholar 

  62. Daugas E, Susin SA, Zamzami N, et al. Mitochondrio-nuclear translocation of AIF in apoptosis and necrosis. FASEB J 2000;14 (5):729–39.

    PubMed  CAS  Google Scholar 

  63. Joza N, Kroemer G, Penninger JM. Genetic analysis of the mammalian cell death machinery. Trends Genet 2002;18 (3):142–9.

    Article  PubMed  CAS  Google Scholar 

  64. Klein JA, Longo-Guess CM, Rossmann MP, et al. The harlequin mouse mutation downregulates apoptosis-inducing factor. Nature 2002;419 (6905):367–74.

    Article  PubMed  CAS  Google Scholar 

  65. van Empel VP, Bertrand AT, van der Nagel R, et al. Downregulation of apoptosis-inducing factor in harlequin mutant mice sensitizes the myocardium to oxidative stress-related cell death and pressure overload-induced decompensation. Circ Res 2005;96 (12):e92–e101.

    Article  PubMed  Google Scholar 

  66. Miller RA. “Accelerated aging”: A primrose path to insight? Aging Cell 2004;3 (2):47–51.

    Article  PubMed  CAS  Google Scholar 

  67. Edwards MG, Sarkar D, Klopp R, Morrow JD, Weindruch R, Prolla TA. Age-related impairment of the transcriptional responses to oxidative stress in the mouse heart. Physiol Genomics 2003;13 (2):119–27.

    PubMed  CAS  Google Scholar 

  68. Lucas DT, Szweda LI. Cardiac reperfusion injury: Aging, lipid peroxidation, and mitochondrial dysfunction. Proc Natl Acad Sci USA 1998;95 (2):510–4.

    Article  PubMed  CAS  Google Scholar 

  69. Heymes C, Bendall JK, Ratajczak P, et al. Increased myocardial NADPH oxidase activity in human heart failure. J Am Coll Cardiol 2003;41 (12):2164–71.

    Article  PubMed  CAS  Google Scholar 

  70. Lenaz G, D'Aurelio M, Merlo PichM, et al. Mitochondrial bioenergetics in aging. Biochim Biophys Acta 2000;1459 (2–3):397–404.

    PubMed  CAS  Google Scholar 

  71. Baumer AT, Flesch M, Wang X, Shen Q, Feuerstein GZ, Bohm M. Antioxidative enzymes in human hearts with idiopathic dilated cardiomyopathy. J Mol Cell Cardiol 2000;32 (1):121–30.

    Article  PubMed  CAS  Google Scholar 

  72. van Empel VP, Bertrand AT, van Oort RJ, et al. EUK-8, a superoxide dismutase and catalase mimetic, reduces cardiac oxidative stress and ameliorates pressure overload-induced heart failure in the harlequin mouse mutant. J Am Coll Cardiol 2006;48 (4):824–32.

    Article  PubMed  Google Scholar 

  73. Kajstura J, Cigola E, Malhotra A, et al. Angiotensin II induces apoptosis of adult ventricular myocytes in vitro. J Mol Cell Cardiol 1997;29 (3):859–70.

    Article  PubMed  CAS  Google Scholar 

  74. Sabbah HN, Sharov VG, Gupta RC, Todor A, Singh V, Goldstein S. Chronic therapy with metoprolol attenuates cardiomyocyte apoptosis in dogs with heart failure. J Am Coll Cardiol 2000;36 (5):1698–705.

    Article  PubMed  CAS  Google Scholar 

  75. Rossig L, Haendeler J, Mallat Z, et al. Congestive heart failure induces endothelial cell apoptosis: Protective role of carvedilol. J Am Coll Cardiol 2000;36 (7):2081–9.

    Article  PubMed  CAS  Google Scholar 

  76. Yaoita H, Ogawa K, Maehara K, Maruyama Y. Attenuation of ischemia/reperfusion injury in rats by a caspase inhibitor. Circulation 1998;97 (3):276–81.

    Article  PubMed  CAS  Google Scholar 

  77. Yarbrough WM, Mukherjee R, Escobar GP, et al. Pharmacologic inhibition of intracellular caspases after myocardial infarction attenuates left ventricular remodeling: A potentially novel pathway. J Thorac Cardiovasc Surg 2003;126 (6):1892–9.

    Article  PubMed  CAS  Google Scholar 

  78. Chandrashekhar Y, Sen S, Anway R, Shuros A, Anand I. Long-term caspase inhibition ameliorates apoptosis, reduces myocardial troponin-I cleavage, protects left ventricular function, and attenuates remodeling in rats with myocardial infarction. J Am Coll Cardiol 2004;43 (2):295–301.

    Article  PubMed  CAS  Google Scholar 

  79. Hayakawa Y, Chandra M, Miao W, et al. Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation 2003;108 (24):3036–41.

    Article  PubMed  CAS  Google Scholar 

  80. Zhao ZQ, Morris CD, Budde JM, et al. Inhibition of myocardial apoptosis reduces infarct size and improves regional contractile dysfunction during reperfusion. Cardiovasc Res 2003;59 (1):132–42.

    Article  PubMed  CAS  Google Scholar 

  81. Baines CP, Molkentin JD. STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 2005;38 (1):47–62.

    Article  PubMed  CAS  Google Scholar 

  82. Van Empel VP, De Windt LJ. Myocyte hypertrophy and apoptosis: A balancing act. Cardiovasc Res 2004;63 (3):487–99.

    Article  PubMed  Google Scholar 

  83. Li Q, Li B, Wang X, et al. Overexpression of insulin-like growth factor-1 in mice protects from myocyte death after infarction, attenuating ventricular dilation, wall stress, and cardiac hypertrophy. J Clin Invest 1997;100 (8):1991–9.

    Article  PubMed  CAS  Google Scholar 

  84. Wang L, Ma W, Markovich R, Chen JW, Wang PH. Regulation of cardiomyocyte apoptotic signaling by insulin-like growth factor I. Circ Res 1998;83 (5):516–22.

    Article  PubMed  CAS  Google Scholar 

  85. von Harsdorf R, Li PF, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999;99 (22):2934–41.

    Article  Google Scholar 

  86. Melov S, Doctrow SR, Schneider JA, et al. Lifespan extension and rescue of spongiform encephalopathy in superoxide dismutase 2 nullizygous mice treated with superoxide dismutase-catalase mimetics. J Neurosci 2001;21 (21):8348–53.

    PubMed  CAS  Google Scholar 

  87. Yamamoto M, Yang G, Hong C, et al. Inhibition of endogenous thioredoxin in the heart increases oxidative stress and cardiac hypertrophy. J Clin Invest 2003;112 (9):1395–406.

    PubMed  CAS  Google Scholar 

  88. Oskarsson HJ, Coppey L, Weiss RM, Li WG. Antioxidants attenuate myocyte apoptosis in the remote non-infarcted myocardium following large myocardial infarction. Cardiovasc Res 2000;45 (3):679–87.

    Article  PubMed  CAS  Google Scholar 

  89. Dumont EA, Reutelingsperger CP, Smits JF, et al. Real-time imaging of apoptotic cell-membrane changes at the single-cell level in the beating murine heart. Nat Med 2001;7 (12):1352–5.

    Article  PubMed  CAS  Google Scholar 

  90. Hofstra L, Liem IH, Dumont EA, et al. Visualisation of cell death in vivo in patients with acute myocardial infarction. Lancet 2000;356 (9225):209–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research in our laboratory is supported by a 2007 Heart Failure Association Research Fellowship from the European Society of Cardiology (to P.D.C.M); grants 912-04-054, 912-04-017, and a VIDI award 917-863-72 from the Netherlands Organization for Health Research and Development; grant NHS2003B258 from the Netherlands Heart Foundation; and by the European Union Contract No. LSHM-CT-2005-018833/EUGeneHeart (to L.J.D.W.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon J. De Windt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Azzouzi, H.e., Bourajjaj, M., da Costa Martins, P.A., De Windt, L.J. (2009). Apoptosis in Cardiovascular Pathogenesis. In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_22

Download citation

Publish with us

Policies and ethics