Skip to main content

Caspases: Activation, Regulation, and Function

  • Chapter
  • First Online:
Essentials of Apoptosis
  • 1569 Accesses

Abstract

The main effectors of apoptosis are proteases belonging to the caspase family. Caspases represent key mediators in the initiation and execution of the apoptotic program. The apoptotic caspases constitute a minimal two-step signaling pathway that culminates in the controlled demise of the affected cell. At the center of intense research for more than a decade and a half, a thorough picture of these regulatory proteases has emerged. A plethora of recent reports shed exciting new and refined light on their activation, regulation, and function. In addition to an advanced understanding of caspases in the apoptotic program, additional functions of these proteases in other pathways and their intriguing regulation by new signaling platforms have surfaced. With caspases affecting biological processes extending from apoptosis to other forms of cell death and inflammation, a closer look at these regulatory proteases is paramount for our understanding of cell signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerr JF, Wyllie AH, Currie AR. Apoptosis: A basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972; 26(4):239–57.

    Article  PubMed  CAS  Google Scholar 

  2. Yuan J, Yankner BA. Apoptosis in the nervous system. Nature 2000;407(6805):802–9.

    Article  PubMed  CAS  Google Scholar 

  3. Mattson MP. Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 2000;1(2):120–9.

    Article  PubMed  CAS  Google Scholar 

  4. Vaux DL, Flavell RA. Apoptosis genes and autoimmunity. Curr Opin Immunol 2000;12(6):719–24.

    Article  PubMed  CAS  Google Scholar 

  5. Green DR, Evan GI. A matter of life and death. Cancer Cell 2002;1(1):19–30.

    Article  PubMed  CAS  Google Scholar 

  6. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000;100(1):57–70.

    Article  PubMed  CAS  Google Scholar 

  7. Lowe SW, Cepero E, Evan G. Intrinsic tumour suppression. Nature 2004;432(7015):307–15.

    Article  PubMed  CAS  Google Scholar 

  8. Reed JC, Tomaselli KJ. Drug discovery opportunities from apoptosis research. Curr Opin Biotechnol 2000;11(6):586–92.

    Article  PubMed  CAS  Google Scholar 

  9. Alam JJ. Apoptosis: Target for novel drugs. Trends Biotechnol 2003;21(11):479–83.

    Article  PubMed  CAS  Google Scholar 

  10. Fesik SW. Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev Cancer 2005;5(11):876–85.

    Article  PubMed  CAS  Google Scholar 

  11. Bouchier-Hayes L, Martin SJ. CARDINAL roles in apoptosis and NFkappaB activation. Vitam Horm 2004;67:133–47.

    Article  PubMed  CAS  Google Scholar 

  12. Horvitz HR. Genetic control of programmed cell death in the nematode Caenorhabditis elegans. Cancer Res 1999;59(7 Suppl):1701s–6s.

    PubMed  CAS  Google Scholar 

  13. Jacobson MD, Weil M, Raff MC. Programmed cell death in animal development. Cell 1997;88(3):347–54.

    Article  PubMed  CAS  Google Scholar 

  14. Thornberry NA, Bull HG, Calaycay JR, et al. A novel heterodimeric cysteine protease is required for interleukin-1beta processing in monocytes. Nature 1992;356:768–74.

    Article  PubMed  CAS  Google Scholar 

  15. Cerretti DP, Kozlosky CJ, Mosley B, et al. Molecular cloning of the interleukin-1b converting enzyme. Science 1992;256:97–100.

    Article  PubMed  CAS  Google Scholar 

  16. Yuan J, Shaham S, Ledoux S, Ellis HM, Horvitz HM. The C. elegans cell death gene ced-3 encodes a protein similar to mammalian interleukin-1b-converting enzyme. Cell 1993;75:641–52.

    Article  PubMed  CAS  Google Scholar 

  17. Denecker G, Hoste E, Gilbert B, et al. Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 2007;9(6):666–74.

    Article  PubMed  CAS  Google Scholar 

  18. Taylor RC, Cullen SP, Martin SJ. Apoptosis: Controlled demolition at the cellular level. Nat Rev Mol Cell Biol 2008;9(3):231–41.

    Article  PubMed  CAS  Google Scholar 

  19. Martinon F, Tschopp J. Inflammatory caspases: Linking an intracellular innate immune system to autoinflammatory diseases. Cell 2004;117(5):561–74.

    Article  PubMed  CAS  Google Scholar 

  20. Lamkanfi M, Festjens N, Declercq W, Vanden Berghe T, Vandenabeele P. Caspases in cell survival, proliferation and differentiation. Cell Death Differ 2007;14(1):44–55.

    Article  PubMed  CAS  Google Scholar 

  21. Boatright KM, Salvesen GS. Mechanisms of caspase activation. Curr Opin Cell Biol 2003;15(6):725–31.

    Article  PubMed  CAS  Google Scholar 

  22. Riedl SJ, Salvesen GS. The apoptosome: Signalling platform of cell death. Nat Rev Mol Cell Biol 2007;8(5):405–13.

    Article  PubMed  CAS  Google Scholar 

  23. Riedl SJ, Shi Y. Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 2004;5(11):897–907.

    Article  PubMed  CAS  Google Scholar 

  24. Fuentes-Prior P, Salvesen GS. The protein structures that shape caspase activity, specificity, activation and inhibition. Biochem J 2004;384(Pt 2):201–32.

    PubMed  CAS  Google Scholar 

  25. Stennicke HR, Salvesen GS. Biochemical characteristics of caspases-3, -6, -7, and -8. J Biol Chem 1997;272(41):25719–23.

    Article  PubMed  CAS  Google Scholar 

  26. Li P, Nijhawan D, Budihardjo I, et al. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 1997;91(4):479–89.

    Article  PubMed  CAS  Google Scholar 

  27. Fernandes-Alnemri T, Armstrong RC, Krebs J, et al. In vitro activation of CPP32 and Mch3 by Mch4, a novel human apoptotic cysteine protease containing two FADD-like domains. Proc Natl Acad Sci USA 1996;93(15):7464–9.

    Article  PubMed  CAS  Google Scholar 

  28. Darmon AJ, Nicholson DW, Bleackley RC. Activation of the apoptotic protease CPP32 by cytotoxic T-cell-derived granzyme B. Nature 1995;377(6548):446–8.

    Article  PubMed  CAS  Google Scholar 

  29. Quan LT, Tewari M, O'Rourke K, et al. Proteolytic activation of the cell death protease Yama/CPP32 by granzyme B. Proc Natl Acad Sci USA 1996;93(5):1972–6.

    Article  PubMed  CAS  Google Scholar 

  30. Turk V. Proteases: New Perspectives. Birkhäuser, Boston. 1999.

    Book  Google Scholar 

  31. Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H. The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 2007;25:561–86.

    Article  PubMed  CAS  Google Scholar 

  32. Zou H, Li Y, Liu X, Wang X. An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 1999;274(17):11549–56.

    Article  PubMed  CAS  Google Scholar 

  33. Boldin MP, Goncharov TM, Goltsev YV, Wallach D. Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 1996;85(6):803–15.

    Article  PubMed  CAS  Google Scholar 

  34. Muzio M, Stockwell BR, Stennicke HR, Salvesen GS, Dixit VM. An induced proximity model for caspase-8 activation. J Biol Chem 1998;273(5):2926–30.

    Article  PubMed  CAS  Google Scholar 

  35. Pop C, Timmer J, Sperandio S, Salvesen GS. The apoptosome activates caspase-9 by dimerization. Mol Cell 2006;22(2):269–75.

    Article  PubMed  CAS  Google Scholar 

  36. Zhou Q, Salvesen GS. Activation of pro-caspase-7 by serine proteases includes a non-canonical specificity. Biochem J 1997;324(Pt 2):361–4.

    PubMed  CAS  Google Scholar 

  37. Chang HY, Yang X. Proteases for cell suicide: Functions and regulation of caspases. Microbiol Mol Biol Rev 2000;64(4):821–46.

    Article  PubMed  CAS  Google Scholar 

  38. Chai J, Wu Q, Shiozaki E, Srinivasula SM, Alnemri ES, Shi Y. Crystal structure of a procaspase-7 zymogen: Mechanisms of activation and substrate binding. Cell 2001;107(3):399–407.

    Article  PubMed  CAS  Google Scholar 

  39. Riedl SJ, Fuentes-Prior P, Renatus M, et al. Structural basis for the activation of human procaspase-7. Proc Natl Acad Sci USA 2001;98(26):14790–5.

    Article  PubMed  CAS  Google Scholar 

  40. Wei Y, Fox T, Chambers SP, et al. The structures of caspases-1, -3, -7 and -8 reveal the basis for substrate and inhibitor selectivity. Chem Biol 2000;7(6):423–32.

    Article  PubMed  CAS  Google Scholar 

  41. Yan N, Shi Y. Mechanisms of apoptosis through structural biology. Annu Rev Cell Dev Biol 2005;21:35–56.

    Article  PubMed  CAS  Google Scholar 

  42. LeBlanc HN, Ashkenazi A. Apo2L/TRAIL and its death and decoy receptors. Cell Death Differ 2003;10(1):66–75.

    Article  PubMed  CAS  Google Scholar 

  43. Peter ME, Krammer PH. The CD95(APO-1/Fas) DISC and beyond. Cell Death Differ 2003;10(1):26–35.

    Article  PubMed  CAS  Google Scholar 

  44. Kischkel FC, Lawrence DA, Tinel A, et al. Death receptor recruitment of endogenous caspase-10 and apoptosis initiation in the absence of caspase-8. J Biol Chem 2001;276(49):46639–46.

    Article  PubMed  CAS  Google Scholar 

  45. Carrington PE, Sandu C, Wei Y, et al. The structure of FADD and its mode of interaction with procaspase-8. Mol Cell 2006;22(5):599–610.

    Article  PubMed  CAS  Google Scholar 

  46. Yang JK, Wang L, Zheng L, et al. Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol Cell 2005;20(6):939–49.

    Article  PubMed  CAS  Google Scholar 

  47. Li FY, Jeffrey PD, Yu JW, Shi Y. Crystal structure of a viral FLIP: Insights into FLIP-mediated inhibition of death receptor signaling. J Biol Chem 2006;281(5):2960–8.

    Article  PubMed  CAS  Google Scholar 

  48. Lee KH, Feig C, Tchikov V, et al. The role of receptor internalization in CD95 signaling. EMBO J 2006;25(5):1009–23.

    Article  PubMed  CAS  Google Scholar 

  49. Feig C, Tchikov V, Schutze S, Peter ME. Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J 2007;26(1):221–31.

    Article  PubMed  CAS  Google Scholar 

  50. Chakrabandhu K, Herincs Z, Huault S, et al. Palmitoylation is required for efficient Fas cell death signaling. EMBO J 2007;26(1):209-20.

    Article  PubMed  CAS  Google Scholar 

  51. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 1997;90(3):405–13.

    Article  PubMed  CAS  Google Scholar 

  52. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: Implications for assembly, procaspase-9 binding, and activation. Mol Cell 2002;9(2):423–32.

    Article  PubMed  CAS  Google Scholar 

  53. Yu X, Acehan D, Menetret JF, et al. A structure of the human apoptosome at 12.8 Å resolution provides insights into this cell death platform. Structure 2005;13(11):1725–35.

    Article  PubMed  CAS  Google Scholar 

  54. Rodriguez J, Lazebnik Y. Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 1999;13(24):3179–84.

    Article  PubMed  CAS  Google Scholar 

  55. Boatright KM, Renatus M, Scott FL, et al. A unified model for apical caspase activation. Mol Cell 2003;11(2):529–41.

    Article  PubMed  CAS  Google Scholar 

  56. Shi Y. Caspase activation: Revisiting the induced proximity model. Cell 2004;117(7):855–8.

    Article  PubMed  CAS  Google Scholar 

  57. Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS. Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci USA 2001;98(25):14250–5.

    Article  PubMed  CAS  Google Scholar 

  58. Stennicke HR, Deveraux QL, Humke EW, Reed JC, Dixit VM, Salvesen GS. Caspase-9 can be activated without proteolytic processing. J Biol Chem 1999;274(13):8359–62.

    Article  PubMed  CAS  Google Scholar 

  59. Donepudi M, Mac Sweeney A, Briand C, Grutter MG. Insights into the regulatory mechanism for caspase-8 activation. Mol Cell 2003;11(2):543–9.

    Article  PubMed  CAS  Google Scholar 

  60. Petrilli V, Papin S, Dostert C, Mayor A, Martinon F, Tschopp J. Activation of the NALP3 inflammasome is triggered by low intracellular potassium concentration. Cell Death Differ 2007;14(9):1583–9.

    Article  PubMed  CAS  Google Scholar 

  61. Martinon F. Orchestration of pathogen recognition by inflammasome diversity: Variations on a common theme. Eur J Immunol 2007;37(11):3003–6.

    Article  PubMed  CAS  Google Scholar 

  62. Poyet JL, Srinivasula SM, Tnani M, Razmara M, Fernandes-Alnemri T, Alnemri ES. Identification of Ipaf, a human caspase-1-activating protein related to Apaf-1. J Biol Chem 2001;276(30):28309–13.

    Article  PubMed  CAS  Google Scholar 

  63. Kanneganti TD, Lamkanfi M, Nunez G. Intracellular NOD-like receptors in host defense and disease. Immunity 2007;27(4):549–59.

    Article  PubMed  CAS  Google Scholar 

  64. Franchi L, Amer A, Body-Malapel M, et al. Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 2006;7(6):576–82.

    Article  PubMed  CAS  Google Scholar 

  65. Mariathasan S, Newton K, Monack DM, et al. Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 2004;430(6996):213–8.

    Article  PubMed  CAS  Google Scholar 

  66. Miao EA, Alpuche-Aranda CM, Dors M, et al. Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 2006;7(6):569–75.

    Article  PubMed  CAS  Google Scholar 

  67. Amer A, Franchi L, Kanneganti TD, et al. Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 2006;281(46):35217–23.

    Article  PubMed  CAS  Google Scholar 

  68. Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 2004;20(3):319–25.

    Article  PubMed  CAS  Google Scholar 

  69. Masumoto J, Taniguchi S, Ayukawa K, et al. ASC, a novel 22-kDa protein, aggregates during apoptosis of human promyelocytic leukemia HL-60 cells. J Biol Chem 1999;274(48):33835–8.

    Article  PubMed  CAS  Google Scholar 

  70. Mariathasan S. ASC, Ipaf and Cryopyrin/Nalp3: Bona fide intracellular adapters of the caspase-1 inflammasome. Microbes Infect 2007;9(5):664–71.

    Article  PubMed  CAS  Google Scholar 

  71. Fernandes-Alnemri T, Wu J, Yu JW, et al. The pyroptosome: A supramolecular assembly of ASC dimers mediating inflammatory cell death via caspase-1 activation. Cell Death Differ 2007;14(9):1590–604.

    Article  PubMed  CAS  Google Scholar 

  72. Tinel A, Tschopp J. The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 2004;304(5672):843–6.

    Article  PubMed  CAS  Google Scholar 

  73. Festjens N, Cornelis S, Lamkanfi M, Vandenabeele P. Caspase-containing complexes in the regulation of cell death and inflammation. Biol Chem 2006;387(8):1005–16.

    Article  PubMed  CAS  Google Scholar 

  74. Park HH, Logette E, Raunser S, et al. Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 2007;128(3):533-46.

    Article  PubMed  CAS  Google Scholar 

  75. Yu JW, Fernandes-Alnemri T, Datta P, et al. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell 2007;28(2):214–27.

    Article  PubMed  CAS  Google Scholar 

  76. Suzuki T, Franchi L, Toma C, et al. Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 2007;3(8):e111.

    Article  PubMed  CAS  Google Scholar 

  77. Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: Mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005;73(4):1907–16.

    Article  PubMed  CAS  Google Scholar 

  78. Fink SL, Cookson BT. Pyroptosis and host cell death responses during Salmonella infection. Cell Microbiol 2007;9(11):2562–70.

    Article  PubMed  CAS  Google Scholar 

  79. Stehlik C, Dorfleutner A. COPs and POPs: Modulators of inflammasome activity. J Immunol 2007;179(12):7993–8.

    PubMed  CAS  Google Scholar 

  80. Annand RR, Dahlen JR, Sprecher CA, et al. Caspase-1 (interleukin-1beta-converting enzyme) is inhibited by the human serpin analogue proteinase inhibitor 9. Biochem J 1999;342(Pt 3):655–65.

    Article  PubMed  CAS  Google Scholar 

  81. Young JL, Sukhova GK, Foster D, Kisiel W, Libby P, Schonbeck U. The serpin proteinase inhibitor 9 is an endogenous inhibitor of interleukin 1beta-converting enzyme (caspase-1) activity in human vascular smooth muscle cells. J Exp Med 2000;191(9):1535–44.

    Article  PubMed  CAS  Google Scholar 

  82. Bird CH, Sutton V, Sun J, et al. Selective regulation of apoptosis: The cytotoxic lymphocyte serpin proteinase inhibitor 9 protects against granzyme B-mediated apoptosis without perturbing the Fas cell death pathway. Mol Cell Biol 1998;18(11):6387–98.

    PubMed  CAS  Google Scholar 

  83. Bots M, L VANB, Rademaker MT, Offringa R, Medema JP. Serpins prevent granzyme-induced death in a species-specific manner. Immunol Cell Biol 2006;84(1):79–86.

    Google Scholar 

  84. Kummer JA, Micheau O, Schneider P, et al. Ectopic expression of the serine protease inhibitor PI9 modulates death receptor-mediated apoptosis. Cell Death Differ 2007;14(8):1486–96.

    Article  PubMed  CAS  Google Scholar 

  85. Zhou Q, Snipas S, Orth K, Dixit VM, Salvesen GS. Target protease specificity of the viral serpin CrmA: Analysis of five caspases. J Biol Chem 1997;273:7797–800.

    Google Scholar 

  86. Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA. Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 1998;273(49):32608–13.

    Article  PubMed  CAS  Google Scholar 

  87. Komiyama T, Ray CA, Pickup DJ, et al. Inhibition of interleukin-1beta converting enzyme by the cowpox virus serpin CrmA. An example of cross-class inhibition. J Biol Chem 1994;269(30):19331–7.

    PubMed  CAS  Google Scholar 

  88. Tewari M, Dixit VM. Fas- and tumor necrosis factor-induced apoptosis is inhibited by the poxvirus CrmA gene product. J Biol Chem 1995;270:3255–60.

    Article  PubMed  CAS  Google Scholar 

  89. Miura M, Friedlander RM, Yuan J. Tumor necrosis factor-induced apoptosis is mediated by a CrmA-sensitive cell death pathway. Proc Natl Acad Sci USA 1995;92(18):8318–22.

    Article  PubMed  CAS  Google Scholar 

  90. Turner SJ, Silke J, Kenshole B, Ruby J. Characterization of the ectromelia virus serpin, SPI-2. J Gen Virol 2000;81(Pt 10):2425–30.

    PubMed  CAS  Google Scholar 

  91. Dobbelstein M, Shenk T. Protection against apoptosis by the vaccinia virus SPI-2 (B13R) gene product. J Virol 1996;70(9):6479–85.

    PubMed  CAS  Google Scholar 

  92. Kettle S, Alcami A, Khanna A, Ehret R, Jassoy C, Smith GL. Vaccinia virus serpin B13R (SPI-2) inhibits interleukin-1beta-converting enzyme and protects virus-infected cells from TNF- and Fas-mediated apoptosis, but does not prevent IL-1beta-induced fever. J Gen Virol 1997;78(Pt 3):677–85.

    Google Scholar 

  93. Renatus M, Zhou Q, Stennicke HR, et al. Crystal structure of the apoptotic suppressor CrmA in its cleaved form. Structure Fold Des 2000;8(7):789–97.

    Article  PubMed  CAS  Google Scholar 

  94. Ahmad M, Srinivasula S, Wang L, Litwack G, Fernandes-Alnemri T, Alnemri ES. Spodoptera frugiperda caspase-1, a novel insect death protease that cleaves the nuclear immunophilin FKBP46, is the target of the baculovirus antiapoptotic protein p35. J Biol Chem 1997;272:1421–4.

    Article  PubMed  CAS  Google Scholar 

  95. Bump NJ, Hackett M, Hugunin M, et al. Inhibition of ICE family proteases by baculovirus antiapoptotic protein p35. Science 1995;269(5232):1885–8.

    Article  PubMed  CAS  Google Scholar 

  96. Xue D, Horvitz HR. Inhibition of the Caenorhabditis elegans cell-death protease CED-3 by a CED-3 cleavage site in baculovirus p35 protein. Nature 1995;377(6546):248–51.

    Article  PubMed  CAS  Google Scholar 

  97. Zhou Q, Krebs JF, Snipas SJ, et al. Interaction of the baculovirus anti-apoptotic protein p35 with caspases: Specificity, kinetics, and characterization of the caspase/p35 complex. Biochemistry 1998;37:10757–65.

    Article  PubMed  CAS  Google Scholar 

  98. Clem RJ, Fechheimer M, Miller LK. Prevention of apoptosis by a baculovirus gene during infection of insect cells. Science 1991;254(5036):1388–90.

    Article  PubMed  CAS  Google Scholar 

  99. Jabbour AM, Ekert PG, Coulson EJ, Knight MJ, Ashley DM, Hawkins CJ. The p35 relative, p49, inhibits mammalian and Drosophila caspases including DRONC and protects against apoptosis. Cell Death Differ 2002;9(12):1311–20.

    Article  PubMed  CAS  Google Scholar 

  100. Zoog SJ, Schiller JJ, Wetter JA, Chejanovsky N, Friesen PD. Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO J 2002;21(19):5130–40.

    Article  PubMed  CAS  Google Scholar 

  101. Xu G, Rich RL, Steegborn C, et al. Mutational analyses of the p35-caspase interaction. A bowstring kinetic model of caspase inhibition by p35. J Biol Chem 2003;278(7):5455–61.

    Article  PubMed  CAS  Google Scholar 

  102. Xu G, Cirilli M, Huang Y, Rich RL, Myszka DG, Wu H. Covalent inhibition revealed by the crystal structure of the caspase-8/p35 complex. Nature 2001;410:494–7.

    Article  PubMed  CAS  Google Scholar 

  103. Crook NE, Clem RJ, Miller LK. An apoptosis-inhibiting baculovirus gene with a zinc finger-like motif. J Virol 1993;67(4):2168–74.

    PubMed  CAS  Google Scholar 

  104. Salvesen GS, Duckett CS. IAP proteins: Blocking the road to death's door. Nat Rev Mol Cell Biol 2002;3(6):401–10.

    Article  PubMed  CAS  Google Scholar 

  105. Eckelman BP, Salvesen GS, Scott FL. Human inhibitor of apoptosis proteins: Why XIAP is the black sheep of the family. EMBO Rep 2006;7(10):988–94.

    Article  PubMed  CAS  Google Scholar 

  106. Wilkinson JC, Wilkinson AS, Scott FL, Csomos RA, Salvesen GS, Duckett CS. Neutralization of Smac/Diablo by inhibitors of apoptosis (IAPs): A caspase-independent mechanism for apoptotic inhibition. J Biol Chem 2004;279(49):51082–90.

    Article  PubMed  CAS  Google Scholar 

  107. Deveraux QL, Leo E, Stennicke HR, Welsh K, Salvesen GS, Reed JC. Cleavage of human inhibitor of apoptosis protein XIAP results in fragments with distinct specificities for caspases. EMBO J 1999;18(19):5242–51.

    Article  PubMed  CAS  Google Scholar 

  108. Vaux DL, Silke J. Mammalian mitochondrial IAP binding proteins. Biochem Biophys Res Commun 2003;304(3):499–504.

    Article  PubMed  CAS  Google Scholar 

  109. Shiozaki EN, Chai J, Rigotti DJ, et al. Mechanism of XIAP-mediated inhibition of caspase-9. Mol Cell 2003;11(2):519–27.

    Article  PubMed  CAS  Google Scholar 

  110. Riedl SJ, Renatus M, Schwarzenbacher R, et al. Structural basis for the inhibition of caspase-3 by XIAP. Cell 2001;104(5):791–800.

    Article  PubMed  CAS  Google Scholar 

  111. Scott FL, Denault JB, Riedl SJ, Shin H, Renatus M, Salvesen GS. XIAP inhibits caspase-3 and -7 using two binding sites: Evolutionarily conserved mechanism of IAPs. EMBO J 2005;24(3):645–55.

    Article  PubMed  CAS  Google Scholar 

  112. Chai J, Shiozaki E, Srinivasula SM, et al. Structural basis of caspase-7 inhibition by XIAP. Cell 2001;104:769–80.

    Article  PubMed  CAS  Google Scholar 

  113. Huang Y, Park YC, Rich RL, Segal D, Myszka DG, Wu H. Structural basis of caspase inhibition by XIAP: Differential roles of the linker versus the BIR domain. Cell 2001;104:781–90.

    PubMed  CAS  Google Scholar 

  114. Thornberry NA, Rano TA, Peterson EP, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 1997;272(29):17907–11.

    Article  PubMed  CAS  Google Scholar 

  115. Stennicke HR, Renatus M, Meldal M, Salvesen GS. Internally quenched fluorescent peptide substrates disclose the subsite preferences of human caspases 1, 3, 6, 7 and 8. Biochem J 2000;350(Pt 2):563–8.

    Article  PubMed  CAS  Google Scholar 

  116. Talanian RV, Quinlan C, Trautz S, et al. Substrate specificities of caspase family proteases. J Biol Chem 1997;272(15):9677–82.

    Article  PubMed  CAS  Google Scholar 

  117. Lien S, Pastor R, Sutherlin D, Lowman HB. A substrate-phage approach for investigating caspase specificity. Protein J 2004;23(6):413–25.

    Article  PubMed  CAS  Google Scholar 

  118. Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G. Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 1999;96(5):615–24.

    Article  PubMed  CAS  Google Scholar 

  119. McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D. Solution structure of the proapoptotic molecule BID: A structural basis for apoptotic agonists and antagonists. Cell 1999;96(5):625–34.

    Article  PubMed  CAS  Google Scholar 

  120. Woo EJ, Kim YG, Kim MS, et al. Structural mechanism for inactivation and activation of CAD/DFF40 in the apoptotic pathway. Mol Cell 2004;14(4):531–9.

    Article  PubMed  CAS  Google Scholar 

  121. Otomo T, Sakahira H, Uegaki K, Nagata S, Yamazaki T. Structure of the heterodimeric complex between CAD domains of CAD and ICAD. Nat Struct Biol 2000;7(8):658–62.

    Article  PubMed  CAS  Google Scholar 

  122. Bode W, Brandstetter H, Mather T, Stubbs MT. Comparative analysis of haemostatic proteinases: Structural aspects of thrombin, factor Xa, factor IXa and protein C. Thromb Haemost 1997;78(1):501–11.

    PubMed  CAS  Google Scholar 

  123. Germain M, Affar EB, D'Amours D, Dixit VM, Salvesen GS, Poirier GG. Cleavage of automodified Poly(ADP-ribose) polymerase during apoptosis. Evidence for involvement of caspase-7. J Biol Chem 1999;274(40):28379–84.

    Article  PubMed  CAS  Google Scholar 

  124. Houde C, Banks KG, Coulombe N, et al. Caspase-7 expanded function and intrinsic expression level underlies strain-specific brain phenotype of caspase-3-null mice. J Neurosci 2004;24(44):9977–84.

    Article  PubMed  CAS  Google Scholar 

  125. Behrensdorf HA, van de Craen M, Knies UE, Vandenabeele P, Clauss M. The endothelial monocyte-activating polypeptide II (EMAP II) is a substrate for caspase-7. FEBS Lett 2000;466(1):143–7.

    Article  PubMed  CAS  Google Scholar 

  126. Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC. Cleavage of poly(ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 1994;371:346–7.

    Article  PubMed  CAS  Google Scholar 

  127. Barry M, Heibein JA, Pinkoski MJ, et al. Granzyme B short-circuits the need for caspase 8 activity during granule-mediated cytotoxic T-lymphocyte killing by directly cleaving Bid. Mol Cell Biol 2000;20(11):3781–94.

    Article  PubMed  CAS  Google Scholar 

  128. Li H, Zhu H, Xu CJ, Yuan J. Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998;94(4):491–501.

    Article  PubMed  CAS  Google Scholar 

  129. Luo X, Budihardjo I, Zou H, Slaughter C, Wang X. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998;94(4):481–90.

    Article  PubMed  CAS  Google Scholar 

  130. Enari M, Sakahira H, Yokoyama H, Okawa K, Iwamatsu A, Nagata S. A caspase-activated DNase that degrades DNA during apoptosis, and its inhibitor ICAD. Nature 1998;391(6662):43–50.

    Article  PubMed  CAS  Google Scholar 

  131. Liu X, Zou H, Slaughter C, Wang X. DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 1997;89(2):175–84.

    Google Scholar 

  132. Sakahira H, Enari M, Nagata S. Cleavage of CAD inhibitor in CAD activation and DNA degradation during apoptosis. Nature 1998;391(6662):96–9.

    Article  PubMed  CAS  Google Scholar 

  133. Luthi AU, Martin SJ. The CASBAH: A searchable database of caspase substrates. Cell Death Differ 2007;14(4):641–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan J. Riedl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Riedl, S.J., Scott, F.L. (2009). Caspases: Activation, Regulation, and Function. In: Dong, Z., Yin, XM. (eds) Essentials of Apoptosis. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-381-7_1

Download citation

Publish with us

Policies and ethics