Skip to main content

Molecular Targeted Therapies for HCC

  • Chapter
  • First Online:
  • 1416 Accesses

Part of the book series: Current Clinical Oncology ((CCO))

Abstract

The years of fundamental cancer biology research is now starting to pay clinical dividends, with the identification of key enzymatic steps in the growth control and angiogenesis pathways, resulting in specific chemical inhibitors and antibodies to several of the involved kinases. This has led to a whole new family of novel, non-chemotherapy agents that are being tested alone or in combination with each other and with chemotherapy. Enhanced survival has been shown for at least one phase II and one phase III trial. These agents also have potential use in adjuvant therapy post-resection. Furthermore, they are changing our paradigms, as they seem to enhance survival without causing tumor shrinkage.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Avila MA, Berasain C, Sangro B, Prieto J. New therapies for hepatocellular carcinoma. Oncogene 2006; 25(27):3866–3884.

    Article  PubMed  CAS  Google Scholar 

  2. Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol 2007; 25(7):884–896.

    Article  PubMed  CAS  Google Scholar 

  3. Croce CM. Oncogenes and cancer. N Engl J Med 2008; 358(5):502–511.

    Article  PubMed  CAS  Google Scholar 

  4. Lyons JF, Wilhelm S, Hibner B, Bollag G. Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 2001; 8(3):219–225.

    Article  PubMed  CAS  Google Scholar 

  5. Sridhar SS, Hedley D, Siu LL. Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 2005; 4(4):677–685.

    Article  PubMed  CAS  Google Scholar 

  6. Adjei AA, Hidalgo M. Intracellular signal transduction pathway proteins as targets for cancer therapy. J Clin Oncol 2005; 23(23):5386–5403.

    Article  PubMed  CAS  Google Scholar 

  7. Friday BB, Adjei AA. Advances in Targeting the Ras/Raf/MEK/Erk Mitogen-Activated Protein Kinase Cascade with MEK Inhibitors for Cancer Therapy. Clin Cancer Res 2008; 14(2):342–346.

    Article  PubMed  CAS  Google Scholar 

  8. Malumbres M, Barbacid M. RAS oncogenes: the first 30 years. Nat Rev Cancer 2003; 3(6):459–465.

    Article  PubMed  CAS  Google Scholar 

  9. Bos JL. Ras oncogenes in human cancer: a review. Cancer Res 1989; 49(17):4682–4689.

    PubMed  CAS  Google Scholar 

  10. Hwang YH, Choi JY, Kim S et al. Over-expression of c-raf-1 proto-oncogene in liver cirrhosis and hepatocellular carcinoma. Hepatol Res 2004; 29(2):113–121.

    Article  PubMed  CAS  Google Scholar 

  11. Wan PT, Garnett MJ, Roe SM et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 2004; 116(6):855–867.

    Article  PubMed  CAS  Google Scholar 

  12. Calvisi DF, Ladu S, Gorden A et al. Ubiquitous activation of Ras and Jak/Stat pathways in human HCC. Gastroenterology 2006; 130(4):1117–1128.

    Article  PubMed  CAS  Google Scholar 

  13. Hopfner M, Schuppan D, Scherubl H. Growth factor receptors and related signalling pathways as targets for novel treatment strategies of hepatocellular cancer. World J Gastroenterol 2008; 14(1):1–14.

    Article  PubMed  Google Scholar 

  14. Clauss M. Molecular biology of the VEGF and the VEGF receptor family. Semin Thromb Hemost 2000; 26(5):561–569.

    Article  PubMed  CAS  Google Scholar 

  15. Seeliger H, Guba M, Kleespies A, Jauch KW, Bruns CJ. Role of mTOR in solid tumor systems: a therapeutical target against primary tumor growth, metastases, and angiogenesis. Cancer Metastasis Rev 2007; 26(3–4):611–621.

    Article  PubMed  Google Scholar 

  16. Jianhonb W, Qingke H, Minxin C. The role of NF-êB in hepatocellular carcinoma cell. Chinese Med J 116[5], 747–752. 2003. Ref Type: Generic

    Google Scholar 

  17. Rocha-Lima CM, Soares HP, Raez LE, Singal R. EGFR targeting of solid tumors. Cancer Control 2007; 14(3):295–304.

    PubMed  Google Scholar 

  18. Okamoto T, Sanda T, Asamitsu K. NF-kappa B signaling and carcinogenesis. Curr Pharm Des 2007; 13(5):447–462.

    Article  PubMed  CAS  Google Scholar 

  19. Thomas MB, Abbruzzese JL. Opportunities for targeted therapies in hepatocellular carcinoma. J Clin Oncol 2005; 23(31):8093–8108.

    Article  PubMed  CAS  Google Scholar 

  20. Chao Y, Li CP, Chau GY et al. Prognostic significance of vascular endothelial growth factor, basic fibroblast growth factor, and angiogenin in patients with resectable hepatocellular carcinoma after surgery. Ann Surg Oncol 2003; 10(4):355–362.

    Article  PubMed  Google Scholar 

  21. Mizejewski GJ. Role of integrins in cancer: survey of expression patterns. Proc Soc Exp Biol Med 1999; 222(2):124–138.

    Article  PubMed  CAS  Google Scholar 

  22. Vousden KH, Lane DP. p53 in health and disease. Nat Rev Mol Cell Biol 2007; 8(4):275–283.

    Article  PubMed  CAS  Google Scholar 

  23. Vautier G, Bomford AB, Portmann BC, Metivier E, Williams R, Ryder SD. p53 mutations in british patients with hepatocellular carcinoma: clustering in genetic hemochromatosis. Gastroenterology 1999; 117(1):154–160.

    Article  PubMed  CAS  Google Scholar 

  24. Kazachkov Y, Khaoustov V, Yoffe B, Solomon H, Klintmalm GB, Tabor E. p53 abnormalities in hepatocellular carcinoma from United States patients: analysis of all 11 exons. Carcinogenesis 1996; 17(10):2207–2212.

    Article  PubMed  CAS  Google Scholar 

  25. Ciardiello F, Tortora G. EGFR antagonists in cancer treatment. N Engl J Med 2008; 358(11):1160–1174.

    Article  PubMed  CAS  Google Scholar 

  26. Kawaguchi Y, Kono K, Mimura K, Sugai H, Akaike H, Fujii H. Cetuximab induce antibody-dependent cellular cytotoxicity against EGFR-expressing esophageal squamous cell carcinoma. Int J Cancer 2007; 120(4):781–787.

    Article  PubMed  CAS  Google Scholar 

  27. Camp ER, Summy J, Bauer TW, Liu W, Gallick GE, Ellis LM. Molecular mechanisms of resistance to therapies targeting the epidermal growth factor receptor. Clin Cancer Res 2005; 11(1):397–405.

    PubMed  CAS  Google Scholar 

  28. Klein PJ, Schmidt CM, Wiesenauer CA et al. The effects of a novel MEK inhibitor PD184161 on MEK-ERK signaling and growth in human liver cancer. Neoplasia 2006; 8(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  29. Amaravadi R, Thompson CB. The survival kinases Akt and Pim as potential pharmacological targets. J Clin Invest 2005; 115(10):2618–2624.

    Article  PubMed  CAS  Google Scholar 

  30. Pang RW, Poon RT. From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now. Oncology 2007; 72 Suppl 1:30–44.

    Article  PubMed  CAS  Google Scholar 

  31. You L, He B, Xu Z et al. Inhibition of Wnt-2-mediated signaling induces programmed cell death in non-small-cell lung cancer cells. Oncogene 2004; 23(36):6170–6174.

    Article  PubMed  CAS  Google Scholar 

  32. You L, He B, Uematsu K et al. Inhibition of Wnt-1 signaling induces apoptosis in beta-catenin-deficient mesothelioma cells. Cancer Res 2004; 64(10):3474–3478.

    Article  PubMed  CAS  Google Scholar 

  33. You L, He B, Xu Z et al. An anti-Wnt-2 monoclonal antibody induces apoptosis in malignant melanoma cells and inhibits tumor growth. Cancer Res 2004; 64(15):5385–5389.

    Article  PubMed  CAS  Google Scholar 

  34. Emami KH, Nguyen C, Ma H et al. A small molecule inhibitor of beta-catenin/CREB-binding protein transcription [corrected]. Proc Natl Acad Sci USA 2004; 101(34):12682–12687.

    Article  PubMed  CAS  Google Scholar 

  35. You L, He B, Uematsu K et al. Inhibition of Wnt-1 signaling induces apoptosis in beta-catenin-deficient mesothelioma cells. Cancer Res 2004; 64(10):3474–3478.

    Article  PubMed  CAS  Google Scholar 

  36. Yount S, Cella D, Webster K et al. Assessment of patient-reported clinical outcome in pancreatic and other hepatobiliary cancers: the FACT Hepatobiliary Symptom Index. J Pain Symptom Manage 2002; 24(1):32–44.

    Article  PubMed  Google Scholar 

  37. Ganten TM, Koschny R, Haas TL et al. Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology 2005; 42(3):588–597.

    Article  PubMed  CAS  Google Scholar 

  38. Rodel F, Frey B, Leitmann W, Capalbo G, Weiss C, Rodel C. Survivin antisense oligonucleotides effectively radiosensitize colorectal cancer cells in both tissue culture and murine xenograft models. Int J Radiat Oncol Biol Phys 2008; 71(1):247–255.

    Article  PubMed  Google Scholar 

  39. Wilhelm S, Chien DS. BAY 43-9006: preclinical data. Curr Pharm Des 2002; 8(25):2255–2257.

    Article  PubMed  CAS  Google Scholar 

  40. Wilhelm SM, Carter C, Tang L et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 2004; 64(19):7099–7109.

    Article  PubMed  CAS  Google Scholar 

  41. Carlomagno F, Anaganti S, Guida T et al. BAY 43-9006 inhibition of oncogenic RET mutants. J Natl Cancer Inst 2006; 98(5):326–334.

    Article  PubMed  CAS  Google Scholar 

  42. Llovet J, Ricci S, Mazzaferro V et al. Randomized phase III trial of sorafenib versus placebo in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol (Meeting Abstracts) 2007; 25(18_suppl):LBA1.

    Google Scholar 

  43. Llovet J, Ricci S, Mazzaferro V et al. Randomized phase III trial of sorafenib versus placebo in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol (Meeting Abstracts) 2007; 25(18_suppl):LBA1.

    Google Scholar 

  44. NCCN. NCCN Clinical Practice Guidelines in Oncology: Hepatobiliary Cancers 2008. [2]. 2008. Ref Type: Data File

    Google Scholar 

  45. Cheng A, Kang Y, Chen Z. Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: a phase III randomized, double-blind, placebo-controlled trial. The Lancet Oncology 2009; 10(1):25–34.

    Google Scholar 

  46. Cheng A. Randomized phase III trial of sorafenib versus placebo in Asian patients with advanced hepatocellular carcinoma. ILC Abstracts 2008.

    Google Scholar 

  47. Llovet J, Ricci S, Mazzaferro V et al. Randomized phase III trial of sorafenib versus placebo in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol (Meeting Abstracts) 2007; 25(18_suppl):LBA1.

    Google Scholar 

  48. Lopez PM, Villanueva A, Llovet JM. Systematic review: evidence-based management of hepatocellular carcinoma—an updated analysis of randomized controlled trials. Aliment Pharmacol Ther 2006; 23(11):1535–1547.

    Article  PubMed  CAS  Google Scholar 

  49. Llovet J, Ricci S, Mazzaferro V et al. Randomized phase III trial of sorafenib versus placebo in patients with advanced hepatocellular carcinoma (HCC). J Clin Oncol (Meeting Abstracts) 2007; 25(18_suppl):LBA1.

    Google Scholar 

  50. Abou-Alfa GK, Schwartz L, Ricci S et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006; 24(26):4293–4300.

    Article  PubMed  CAS  Google Scholar 

  51. Wacker B, Nagrani T, Weinberg J, Witt K, Clark G, Cagnoni PJ. Correlation between development of rash and efficacy in patients treated with the epidermal growth factor receptor tyrosine kinase inhibitor erlotinib in two large phase III studies. Clin Cancer Res 2007; 13(13):3913–3921.

    Article  PubMed  CAS  Google Scholar 

  52. Racca P, Fanchini L, Caliendo V et al. Efficacy and skin toxicity management with cetuximab in metastatic colorectal cancer: outcomes from an oncologic/dermatologic cooperation. Clin Colorectal Cancer 2008; 7(1):48–54.

    Article  PubMed  CAS  Google Scholar 

  53. Strumberg D, Awada A, Hirte H et al. Pooled safety analysis of BAY 43-9006 (sorafenib) monotherapy in patients with advanced solid tumours: Is rash associated with treatment outcome? Eur J Cancer 2006; 42(4):548–556.

    Article  PubMed  CAS  Google Scholar 

  54. Amato RJ, Harris P, Dalton M et al. A phase II trial of intra-patient dose-escalated sorafenib in patients with metastatic renal cell cancer. ASCO Meeting Abstracts 25[18S]. 6-20-0007.

    Google Scholar 

  55. Chu D, Lacouture ME, Fillos T, Wu S. Risk of hand-foot skin reaction with sorafenib: a systematic review and meta-analysis. Acta Oncol 2008; 47(2):176–186.

    Article  PubMed  CAS  Google Scholar 

  56. Llovet JM. Updated treatment approach to hepatocellular carcinoma. J Gastroenterol 2005; 40(3):225–235.

    Article  PubMed  Google Scholar 

  57. Llovet JM, Bustamante J, Castells A et al. Natural history of untreated nonsurgical hepatocellular carcinoma: rationale for the design and evaluation of therapeutic trials. Hepatology 1999; 29(1):62–67.

    Article  PubMed  CAS  Google Scholar 

  58. Bruix J, Sherman M. Management of hepatocellular carcinoma. Hepatology 2005; 42(5):1208–1236.

    Article  PubMed  Google Scholar 

  59. Michielsen PP, Francque SM, van Dongen JL. Viral hepatitis and hepatocellular carcinoma. World J Surg Oncol 2005; 3:27.

    Article  PubMed  Google Scholar 

  60. El-Maraghi RH, Eisenhauer EA. Review of phase II trial designs used in studies of molecular targeted agents: outcomes and predictors of success in phase III. J Clin Oncol 2008; 26(8):1346–1354.

    Article  PubMed  Google Scholar 

  61. Ratain MJ, Eisen T, Stadler WM et al. Phase II placebo-controlled randomized discontinuation trial of sorafenib in patients with metastatic renal cell carcinoma. J Clin Oncol 2006; 24(16):2505–2512.

    Article  PubMed  CAS  Google Scholar 

  62. Ratain MJ, Eckhardt SG. Phase II studies of modern drugs directed against new targets: if you are fazed, too, then resist RECIST. J Clin Oncol 2004; 22(22):4442–4445.

    Article  PubMed  Google Scholar 

  63. Daugherty CK, Ratain MJ, Emanuel EJ, Farrell AT, Schilsky RL. Ethical, scientific, and regulatory perspectives regarding the use of placebos in cancer clinical trials. J Clin Oncol 2008; 26(8):1371–1378.

    Article  PubMed  Google Scholar 

  64. Zhu AX. Development of sorafenib and other molecularly targeted agents in hepatocellular carcinoma. Cancer 2008; 112(2):250–259.

    Article  PubMed  CAS  Google Scholar 

  65. Booth CM, Tannock I. Reflections on medical oncology: 25 years of clinical trials—where have we come and where are we going? J Clin Oncol 2008; 26(1):6–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Carr, B.I., Kralian, S. (2009). Molecular Targeted Therapies for HCC. In: Carr, B. (eds) Hepatocellular Carcinoma. Current Clinical Oncology. Humana Press. https://doi.org/10.1007/978-1-60327-376-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-376-3_22

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-373-2

  • Online ISBN: 978-1-60327-376-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics