Skip to main content

An Introduction to Drug–Nutrient Interactions

  • Chapter
  • First Online:

Part of the book series: Nutrition and Health ((NH))

Objectives

•Define the term drug–nutrient interaction in its broadest sense.

•Describe the classification of drug–nutrient interactions with examples of each.

•List possible approaches for identifying, preventing, and managing drug–nutrient interactions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kaufman DW, Kelly JP, Rosenberg L, et al. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. JAMA 2002;287:337–344.

    Article  Google Scholar 

  2. IMS Health, Inc. Global pharmaceutical sales by region, 2007. Available at: www.imshealth.com.

  3. Centers for Medicare & Medicaid Services, Office of the Actuary. National health expenditure projections. Available at: http://www.cms.hhs.gov/NationalHealthExpendData/Downloads/proj2007.pdf.

  4. World Health Organization, Food and Agriculture Organization of the United Nations. WHO Technical Report Series (916): Diet, Nutrition and the Prevention of Chronic Diseases, 2003. Available at: http://www.fao.org/docrep/005/AC911E/ac911e00.HTM. Accessed May 2008.

  5. USDA, Agricultural Research Service. Nutrient Intakes: Mean Amounts Consumed per Individual, One Day, 2005–2006. NHANES http://www.ars.usda.gov/Services/docs.htm?docid=15044. Accessed May 2008.

  6. Kongkaew C, Noyce PR, Ashcroft DM. Hospital admissions associated with adverse drug reactions: a systematic review of prospective observational studies. Ann Pharmacother 2008;42:1017–1025.

    Article  Google Scholar 

  7. Chan L-N. Drug–nutrient interactions. In: Shils ME, et al., eds. Modern nutrition in health and disease, 10th edition. Philadelphia, PA: Lippincott Williams & Wilkins, 2006:1539–1553.

    Google Scholar 

  8. Santos CA, Boullata JI. An approach to evaluating drug–nutrient interactions. Pharmacotherapy 2005;25:1789–1800.

    Article  Google Scholar 

  9. Kordas K, Lönnerdal B, Stoltzfus RJ. Interactions between nutrition and environmental exposures: effects on health outcomes in women and children. J Nutr 2007;137:2794–2797.

    CAS  Google Scholar 

  10. Salazar JA, Poon I, Nair M. Clinical consequences of polypharmacy in elderly: expect the unexpected, think the unthinkable. Expert Opin Drug Saf 2007;6:695–704.

    Article  Google Scholar 

  11. Rushmore TH, Kong A-NT. Pharmacogenomics, regulation and signaling pathways of phase I and II drug metabolizing enzymes. Curr Drug Metab 2002;3:481–490.

    Article  CAS  Google Scholar 

  12. Gillies PJ, Krul ES. Using genetic variation to optimize nutritional preemption. J Nutr 2007;137:270S–274S.

    CAS  Google Scholar 

  13. Yeo IB. Food in health and disease. Philadelphia, PA: Lea Brothers & Company, 1894.

    Google Scholar 

  14. Jolliffe N, Most RM. The appraisal of nutritional status. Vit Horm 1943;1:49–107.

    Google Scholar 

  15. Spiller GA, ed. Nutritional pharmacology. New York: Alan R. Liss, Inc., 1981.

    Google Scholar 

  16. Richards RK, Kueter K, Klatt TJ. Effects of vitamin C deficiency on action of different types of barbiturates. Proc Soc Exp Biol Med 1941;48:403–409.

    CAS  Google Scholar 

  17. Neovonen P, Gothoni G, Hackman R, Bjorksten K. Interference of iron with the absorption of tetracyclines in man. BMJ 1970;4:532–534.

    Article  Google Scholar 

  18. Biehl JP, Vilter RW. Effects of isoniazid on pyridoxine metabolism. JAMA 1954;156:1549–1552.

    CAS  Google Scholar 

  19. Krishnaswamy K. Drug metabolism and pharmacokinetics in malnutrition. Clin Pharmacokinet 1978;3:216–240.

    Article  CAS  Google Scholar 

  20. Welling PG. Influence of food and diet on gastrointestinal drug absorption: a review. J Pharmacokinet Biopharmacol 1977;5:291–334.

    Article  CAS  Google Scholar 

  21. Roe DA. Drug effects on nutrient absorption, transport, and metabolism. Drug Nutr Interact 1985;4:117–135.

    CAS  Google Scholar 

  22. Boullata JI, Barber JR. A perspective on drug–nutrient interaction. In: Boullata JI, Armenti VT, eds. Handbook of drug–nutrient interactions. Totowa, NJ: Humana Press, Inc., 2004:3–25.

    Google Scholar 

  23. Huang S-M, Lesko LJ. Drug–drug, drug-dietary supplement, and drug-citrus fruit and other food interactions: what have we learned? J Clin Pharmacol 2004;44:559–569.

    Article  CAS  Google Scholar 

  24. Teresi ME, Morgan DE. Attitudes of healthcare professionals toward patient counseling on drug–nutrient interactions. Ann Pharmacother 1994;28:576–580.

    CAS  Google Scholar 

  25. Couris RR, Tataronis GR, Dallal GE, et al. Assessment of healthcare professionals’ knowledge about warfarin-vitamin K drug–nutrient interactions. J Am Coll Nutr 2000;19:439–445.

    CAS  Google Scholar 

  26. San Miguel MT, Martínez JA, Vargas E. Food-drug interactions in the summary of product characteristics of proprietary medicinal products. Eur J Clin Pharmacol 2005;61:77–83.

    Article  Google Scholar 

  27. Rodrigues AD, ed. Drug–drug interactions, 2nd edition. New York: Informa Healthcare USA, Inc., 2008.

    Google Scholar 

  28. Hutt PB, Merrill RA, Grossman LA, eds. Food and drug law: cases and materials, 3rd edition. New York: Foundation Press, 2007.

    Google Scholar 

  29. Food and Drug Administration. Guidance for industry: drug interaction studies – study design, data analysis, and implications for dosing and labeling. Food and Drug Administration: Rockville, MD, September 2006. Available at http://www.fda.gov/cder/guidance/6695dft.pdf.

  30. Huang S-M, Strong JM, Zhang L, et al. New era in drug interaction evaluation: US Food and Drug Administration update on CYP enzymes, transporters, and the guidance process. J Clin Pharmacol 2008;48:662–670.

    Article  CAS  Google Scholar 

  31. Chan L-N. Drug–nutrient interaction in clinical nutrition. Curr Opin Clin Nutr Metab Care 2002;5:327–332.

    Article  Google Scholar 

  32. Evans WE. Differing effects of methylenetetrahydrofolate reductase single nucleotide polymorphism on methotrexate efficacy and toxicity in rheumatoid arthritis. Pharmacogenetics 2002;12:181–182.

    Article  Google Scholar 

  33. Drozdzik M, Rudas T, Pawlik A, Gornik W, Kurzawski M, Herczynska M. Reduced folate carrier-1 80G>A polymorphism affects methotrexate treatment outcome in rheumatoid arthritis. Pharmacogenomics J 2007;7:404–407.

    Article  CAS  Google Scholar 

  34. Okey AB, Boutros PC, Harper PA. Polymorphisms of human nuclear receptors that control expression of drug-metabolizing enzymes. Pharmacogenetics Genomics 2005;15:371–379.

    Article  CAS  Google Scholar 

  35. Conney AH, Burns JJ. Factors influencing drug metabolism. Adv Pharmacol 1962;1:31–58.

    Article  CAS  Google Scholar 

  36. Walter-Sack I, Klotz U. Influence of diet and nutritional status on drug metabolism. Clin Pharmacokinet 1996;31:47–64.

    Article  CAS  Google Scholar 

  37. Cheymol G. Effects of obesity on pharmacokinetics: implications for drug therapy. Clin Pharmacokinet 2000;39:215–231.

    Article  CAS  Google Scholar 

  38. Mehta S. Malnutrition and drugs: clinical implications. Dev Pharmacol Ther 1990;15:159–165.

    CAS  Google Scholar 

  39. Pai MP, Bearden DT. Antimicrobial dosing considerations in obese adult patients. Pharmacotherapy 2007;27:1081–1091.

    Article  CAS  Google Scholar 

  40. Maitland K, Berkley JA, Shebbe M, et al. Children with severe malnutrition: can those at highest risk of death be identified with the WHO protocol? PLoS Med 2006;3:2431–2439.

    Article  Google Scholar 

  41. Newman D, Scheetz MH, Adeyemi OA, et al. Serum piperacillin/tazobactam pharmacokinetics in a morbidly obese individual. Ann Pharmacother 2007;41:1734–1739.

    Article  Google Scholar 

  42. Forse RA, Karam B, MacLean LD, Christou NV. Antibiotic prophylaxis for surgery in morbidly obese patients. Surgery 1989;106:750–757.

    CAS  Google Scholar 

  43. Grando J, Tristan A, Vanhems P, et al. Weight as a risk factor of mediastinitis after cardiac surgery in context of insufficient dosage of prophylactic antibiotic [letter & reply]. Ann Thorac Surg 2005;80:381–386.

    Article  Google Scholar 

  44. Mann HJ, Buchwald H. Cefamandole distribution in serum, adipose tissue, and wound drainage in morbidly obese patients. Drug Intell Clin Pharm 1986;20:869–873.

    CAS  Google Scholar 

  45. Chen M, Nafziger AN, Drusano GL, Ma L, Bertino JS. Comparative pharmacokinetics and pharmacodynamic target attainment of ertapenem in normal-weight, obese, and extremely obese adults. Antimicrob Agents Chemother 2006;50:1222–1227.

    Article  CAS  Google Scholar 

  46. Custodio JM, Wu C-Y, Benet LZ. Predicting drug disposition, absorption/elimination/transporter interplay and the role of food on drug absorption. Adv Drug Delivery Rev 2008;60:717–733.

    Article  CAS  Google Scholar 

  47. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutics drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res 1995;12:413–420.

    Article  CAS  Google Scholar 

  48. Wu C-Y, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug disposition classification system. Pharm Res 2005;22:11–23.

    Article  CAS  Google Scholar 

  49. Food and Drug Administration. Guidance for industry: food-effect bioavailability and fed bioequivalence studies. Food and Drug Administration: Rockville, MD, December 2002. Available at http://www.fda.gov/cder/guidance/5194fnl.pdf.

  50. Yang Y, Faustino PJ, Volpe DA, Ellison CD, Lyon RC, Yu LX. Biopharmaceutics classification of selected β-blockers: solubility and permeability class membership. Mol Pharm 2007;4:608–614.

    Article  CAS  Google Scholar 

  51. Galanello R, Piga A, Cappellini MD, et al. Effect of food, type of food, and time of food intake on deferasirox bioavailability: recommendations for an optimal deferasirox administration regimen. J Clin Pharmacol 2008;48:428–435.

    Article  CAS  Google Scholar 

  52. Fleisher D, Li C, Zhou Y, et al. Drug, meal and formulation interactions influencing drug absorption after oral administration: clinical implications. Clin Pharmacokin 1999;36:233–54.

    Article  CAS  Google Scholar 

  53. Novartis Pharmaceuticals Corp. Exjade (deferasirox) Tablets for Oral Suspension prescribing information. East Hanover, NJ;2007. Available from: http://www.fda.gov/cder/foi/label/2007/021882s003lbl.pdf. Accessed May 2008.

  54. Krishna G, Kisicki JC, Olsen S, Grasela DM, Wang Z. Effect of an aluminum- and magnesium-containing antacid on the bioavailability of garenoxacin in healthy volunteers. Pharmacotherapy 2007;27:963–969.

    Article  CAS  Google Scholar 

  55. de Lemos ML, Hamata L, Jennings S, Leduc T. Interaction between mercaptopurine and milk. J Oncol Pharm Pract 2007;13:237–240.

    Article  Google Scholar 

  56. Steck SE, Gammon MD, Hebert JR, Wall DE, Zeisel SH. GSTM1, GSTT1, GSTP1, and GSTA1 polymorphisms and urinary isothiocyanate metabolites following broccoli consumption in humans. J Nutr 2007;137:904–909.

    CAS  Google Scholar 

  57. Singhal R, Badger TM, Ronis MJ. Reduction in 7,12-dimethylbenz[a]anthracene-induced hepatic cytochrome-P450 1A1 expression following soy consumption in female rats is mediated by degradation of the aryl hydrocarbon receptor. J Nutr 2007;137:19–24.

    CAS  Google Scholar 

  58. Li Y, Mezei O, Shay NF. Human and murine hepatic sterol-12-α-hydroxylase and other xenobiotic metabolism mRNA are upregulated by soy isoflavones. J Nutr 2007;137:1705–1712.

    CAS  Google Scholar 

  59. Wang G, Xiao C-Q, Li Z, et al. Effect of soy extract administration on losartan pharmacokinetics in healthy female volunteers. Ann Pharmacother 2009;43:1045–1049.

    Google Scholar 

  60. Dresser GK, Bailey DG, Leake BF, et al. Fruit juices inhibit organic anion transporting polypeptide-mediated drug uptake to decrease the oral availability of fexofenadine. Clin Pharmacol Ther 2002;71:11–20.

    Article  CAS  Google Scholar 

  61. Bailey DG, Dresser GK, Bend JR. Bergamottin, lime juice and red wine as inhibitors of CYP3A4 activity: comparison with grapefruit juice. Clin Pharmacol Ther 2003;73:529–537.

    Article  CAS  Google Scholar 

  62. Lilja JJ, Backman JT, Neuvonen PJ. Effects of daily ingestion of cranberry juice on the pharmacokinetics of warfarin, tizanidine, and midazolam – probes of CYP2C9, CYP1A2, and CYP3A4. Clin Pharmacol Ther 2007;81:833–839.

    Article  CAS  Google Scholar 

  63. Pham DQ, Pham AQ. Interaction potential between cranberry juice and warfarin. Am J Health-Syst Pharm 2007;64:490–494.

    Article  CAS  Google Scholar 

  64. Dickerson RN. Medication administration considerations for patients receiving enteral tube feedings. Hosp Pharm 2004;39:84–89,96.

    Google Scholar 

  65. Rollins C, Thomson C, Crane T. Pharmacotherapeutic issues. In: Rolandelli RH, Bankhead R, Boullata JI, Compher CW, eds. Clinical nutrition: enteral and tube feeding, 4th ed. Philadelphia, PA: Elsevier/Saunders, 2005:291–305.

    Google Scholar 

  66. Earl-Salotti GI, Charland SL. The effect of parenteral nutrition on hepatic cytochrome P-450. JPEN 1994;18:458–465.

    CAS  Google Scholar 

  67. Trissel LA, Gilbert DL, Martinez JF. Baker MB, Walter WV, Mirtallo JM. Compatibility of medications with 3-in-1 parenteral nutrition admixtures. J Parenter Enter Nutr 1999;23:67–74.

    Article  CAS  Google Scholar 

  68. Stargrove MB, Treasure J, McKee DL, eds. Herb, nutrient, and drug interactions: clinical implications and therapeutic strategies. St. Louis, MO: Mosby Elsevier, 2008.

    Google Scholar 

  69. Boullata JI. Natural health product interactions with medication. Nutr Clin Pract 2005;20:33–51.

    Article  Google Scholar 

  70. Badrick AC, Jones CE. The immunosuppressive drug mycophenolic acid does not bind iron(II) under conditions mimicking the upper gastrointestinal environment. Transplantation 2007;84:799–800.

    Article  Google Scholar 

  71. Kutuzova GD, DeLuca HF. 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol 2007;218:37–44.

    Article  CAS  Google Scholar 

  72. Morrow LE, Wear RE, Schuller D, Malesker M. Acute isoniazid toxicity and the need for adequate pyridoxine supplies. Pharmacotherapy 2006;26:1529–1532.

    Article  Google Scholar 

  73. Ramos S. Cancer chemoprevention and chemotherapy: dietary polyphenols and signaling pathways. Mol Nutr Food Res 2008;52:507–526.

    Article  CAS  Google Scholar 

  74. Erdmann K, Cheung BWY, Schröder H. The possible roles of food-derived bioactive peptides in reducing the risk of cardiovascular disease. J Nutr Biochem 2008;19:643–654.

    Article  CAS  Google Scholar 

  75. Kaefer CM, Milner JA. The role of herbs and spices in cancer prevention. J Nutr Biochem 2008;19:347–361.

    Article  CAS  Google Scholar 

  76. Chun OK, Chung SJ, Song WO. Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 2007;137:1244–1252.

    CAS  Google Scholar 

  77. Erdman JW, Balentine D, Arab L, et al. Flavonoids and heart health: proceedings of the ILSI North America flavonoids workshop. J Nutr 2007;137:718S–737S.

    CAS  Google Scholar 

  78. Volak LP, Ghirmai S, Cashman JR, Court MH. Curcuminoids inhibit multiple human cytochromes P450, UDP-glucuronosyltransferase, and sulfotransferase enzymes, whereas piperine is a relatively selective CYP3A4 inhibitor. Drug Metab Disp 2008;36:1594–1605.

    Article  CAS  Google Scholar 

  79. Morris ME, Zhang S. Flavonoid-drug interactions: effects of flavonoids on ABC transporters. Life Sci 2006;78:2116–2130.

    Article  CAS  Google Scholar 

  80. Shim C-K, Cheon E-P, Kang KW, Seo K-S, Han H-K. Inhibition effect of flavonoids on monocarboxylate transporter 1 (MCT1) in Caco-2 cells. J Pharm Pharmacol 2007;59:1515–1519.

    Article  CAS  Google Scholar 

  81. Nabekura T, Kamiyama S, Kitagawa S. Effect of dietary chemopreventive phytochemicals on P-glycoprotein function. Biochem Biophys Res Comm 2004;327:866–870.

    Article  CAS  Google Scholar 

  82. Zhang W, Lim LY. Effects of spice constituents on P-glycoprotein-mediated transport and CYP3A4-mediated metabolism in vitro. Drug Metab Disp 2008;36:1283–1290.

    Article  CAS  Google Scholar 

  83. Cermak R. Effect of dietary flavanoids on pathways involved in drug metabolism. Expert Opin Drug Metab Toxicol 2008;4:17–35.

    Article  CAS  Google Scholar 

  84. Peng WX, Li HD, Zhou HH. Effect of daidzein on CYP1A2 activity and pharmacokinetics of theophylline in healthy volunteers. Eur J Clin Pharmacol 2003;58:237–241.

    Article  CAS  Google Scholar 

  85. Rajnarayana K, Reddy MS, Krishna DR. Diosmin pretreatment affects bioavailability of metronidazole. Eur J Clin Pharmacol 2003;58:803–807.

    CAS  Google Scholar 

  86. Rajnarayana K, Reddy MS, Vidyasagar J, Krishna DR. Study on the influence of silymarin pretreatment on metabolism and disposition of metronidazole. Arzneimittel Forschung 2004;54:109–113.

    CAS  Google Scholar 

  87. Rajnarayana K, Venkatesham A, Krishna DR. Bioavailability of diclofenac sodium after pretreatment with diosmin in healthy volunteers. Drug Metab Drug Interact 2007;22:165–174.

    CAS  Google Scholar 

  88. Boullata JI. Influence of medication on nutritional status. In: Bendich A, Deckelbaum RJ, eds. Preventive nutrition, 3rd edition. Totowa, NJ: Humana Press, Inc., 2005:833–868.

    Google Scholar 

  89. Tack J. Chemosensitivity of the human gastrointestinal tract in health and disease. Neurogastroenterol Motil 2007;19:241–244.

    Article  CAS  Google Scholar 

  90. Tawara Y, Nishikawa T, Koga I, Uchida Y, Yamawaki S. Transient and intermittent oral dyskinesia appearing in a young woman ten days after neuroleptic treatment. Clin Neuropharmacol 1997;20:175–178.

    Article  CAS  Google Scholar 

  91. Halford JC, Blundell JE. Pharmacology of appetite suppression. Prog Drug Res 2000;54:25–58.

    CAS  Google Scholar 

  92. Weisberg J, Wanger J, Olson J, et al. Megestrol acetate stimulates weight gain and ventilation in underweight COPD patients. Chest 2002;121:1070–1078.

    Article  CAS  Google Scholar 

  93. Brixner DI, Said Q, Corey-Lisle PK, et al. Naturalistic impact of second generation antipsychotics on weight gain. Ann Pharmacother 2006;40:626–632.

    Article  CAS  Google Scholar 

  94. American Diabetes Association. Consensus development conference on antipsychotyic drugs and obesity and diabetes. Diab Care 2004;27:596–601.

    Google Scholar 

  95. Khalili H, Dashti-Khavidaki S, Okhovatpour H, Ghaeli P. Effects of risperidone on lipid profile. Ann Pharmacother 2007;41:899–900.

    Article  Google Scholar 

  96. Citrome LL, Holt RIG, Zachry WM, et al. Risk of treatment-emergent diabetes mellitus in patients receiving antispychotics. Ann Pharmacother 2007;41:1593–1603.

    Article  CAS  Google Scholar 

  97. Kurt M, Babaoglu MO, Yasar U, Shorbagi A, Guler N. Capecitabine-induced severe hypertriglyceridemia: report of two cases. Ann Pharmacother 2006;40:328–331.

    Article  CAS  Google Scholar 

  98. Said HM, Redha R, Nylander W. Biotin transport in the human intestine: inhibition by anticonvulsant drugs. Am J Clin Nutr 1989;49:127–131.

    CAS  Google Scholar 

  99. Mock DM, Dyken ME. Biotin catabolism is accelerated in adults receiving long-term therapy with anticonvulsants. Neurology 1997;49:1444–1447.

    CAS  Google Scholar 

  100. Rathman SC, Eisenschenk S, McMahon RJ. The abundance and function of biotin-dependent enzymes are reduced in rats chronically administered carbamazepine. J Nutr 2002;132:3405–3410.

    CAS  Google Scholar 

  101. Venhoff N, Setzer B, lebrecht D, Walker UA. Dietary supplements in the treatment of nucleoside reverse transcriptase inhibitor-related mitochondrial toxicity. AIDS 2002;16:800–802.

    Article  Google Scholar 

  102. Opala G, Winter S, Vance C, et al. The effect of valproic acid on plasma carnitine levels. Am J Dis Child 1991;145:999–1001.

    CAS  Google Scholar 

  103. Van Wouwe JP. Carnitine deficiency during valproic acid treatment. Int J Vit Nutr Res 1995;65:211–214.

    Google Scholar 

  104. Melegh B, Kerner J, Kispal G, et al. Effect of chronic valproic acid treatment on plasma and urine carnitine levels in children. Acta Paediat Hung 1987;28:137–142.

    CAS  Google Scholar 

  105. Tein I, DimAuro S, Xie ZW, et al. Valproic acid impairs carnitine uptake in cultured human skin fibroblasts: an in vitro model for pathogenesis of valproic acid-associated carnitine deficiency. Pediatr Res 1993;34:281–287.

    Article  CAS  Google Scholar 

  106. Werner T, Treiss I, Kohlmueller D, et al. Effects of valproate on acylcarnitines in children with epilepsy using ESI-MS/MS. Epilepsia 2007;48:72–76.

    Article  CAS  Google Scholar 

  107. Farkas V, Bock I, Cseko J, et al. Inhibition of carnitine biosynthesis by valproic acid in rats: the biochemical mechanism of inhibition. Biochem Phrmacol 1996;52:1429–1433.

    Article  CAS  Google Scholar 

  108. De Vivo DC, Bohan TP, Coulter DL, et al. L-carnitine supplementation in childhood epilepsy: current perspectives. Epilepsia 1998;39:1216–1225.

    Article  Google Scholar 

  109. Hirose S, Mitsudome A, Yasumoto S, et al. Valproate therapy does not deplete carnitine levels in otherwise healthy children. Pediatrics 1998;101:E9.

    Article  CAS  Google Scholar 

  110. Gabriel HE, Crott JW, Ghandour H, et al. Chronic cigarette smoking is associated with diminished folate status, altered folate form distribution, and increased genetic damage in the buccal mucosa of healthy adults. Am J Clin Nutr 2006;83:835–841.

    CAS  Google Scholar 

  111. Sealey WM, Teague AM, Stratton SL, Mock DM. Smoking accelerates biotin catabolism in women. Am J Clin Nutr 2004;80:932–935.

    CAS  Google Scholar 

  112. Drain PK, Kupka R, Mugusi F, Fawzi WW. Micronutrients in HIV-positive persons receiving highly active antiretroviral therapy. Am J Clin Nutr 2007;85:333–345.

    CAS  Google Scholar 

  113. Pérez-Castrillón J, Vega G, Abad L, et al. Effects of atorvastatin on vitamin D levels in patients with acute ischemic heart disease. Am J Cardiol 2007;99:903–905.

    Article  CAS  Google Scholar 

  114. Shitara Y, Sato H, Sugiyama Y. Evaluation of drug–drug interaction in the hepatobiliary and renal transport of drugs. Annu Rev Pharmacol Toxicol 2005;45:689–723.

    Article  CAS  Google Scholar 

  115. Huang S-M, Temple R, Throckmorton DC, Lesko LJ. Drug interaction studies: study design, data analysis, and implications for dosing and labeling. Clin Pharmacol Ther 2007;81:298–304.

    Article  CAS  Google Scholar 

  116. Ahmad AM. Recent advances in pharmacokinetic modeling. Biopharm Drug Disp 2007;28:135–143.

    Article  CAS  Google Scholar 

  117. Kang JX. A transgenic mouse model for gene-nutrient interactions. J Nutrigenet Nutrigenomics 2008;1:172–177.

    Article  CAS  Google Scholar 

  118. Kim SK, Novak RF. The role of intracellular signaling in insulin-mediated regulation of drug metabolizing enzyme gene and protein expression. Pharmacol Ther 2007;113:88–120.

    Article  CAS  Google Scholar 

  119. Brand W, Schutte ME, Williamson G, et al. Flavonoid-mediated inhibition of intestinal ABC transporters may affect the oral bioavailability of drugs, food-borne toxic compounds and bioactive ingredients. Biomed Pharmacother 2006;60:508–519.

    Article  CAS  Google Scholar 

  120. Noé J, Portmann R, Brun ME, Funk C. Substrate-dependent drug–drug interactions between gemfibrozil, fluvastatin and other organic anion-transporting peptide (OATP) substrates on OATP1B1, OATP2B1, and OATP1B3. Drug Metab Disp 2007;35:1308–1314.

    Article  CAS  Google Scholar 

  121. Seithel A, Eberl S, Singer K, et al. The influence of macrolide antibiotics on the uptake of organic anions and drugs mediated by OATP1B1 and OATP1B3. Drug Metab Disp 2007;35:779–786.

    Article  CAS  Google Scholar 

  122. Marathe PH, Rodriques AD. In vivo animal models for investigating potential CYP3A- and Pgp-mediated drug–drug interactions. Curr Drug Metab 2006;7:687–704.

    Article  CAS  Google Scholar 

  123. Williams JA, Andersson T, Andersson TB, et al. PhRMA white paper on ADME pharmacogenomics. J Clin Pharmacol 2008;48:849–889.

    Article  CAS  Google Scholar 

  124. Lemay DG, Zivkovic AM, German JB. Building the bridges to bioinformatics in nutrition research. Am J Clin nutr 2007;86:1261–1269.

    CAS  Google Scholar 

  125. De Buck SS, Sinha VK, Fenu LA, Gilissen RA, Mackie CE, Nijsen MJ. The prediction of drug metabolism, tissue distribution, and bioavailability of 50 structurally diverse compounds in rat using mechanism-based absorption, distribution, and metabolism prediction tools. Drug Metab Disp 2007;35:649–659.

    Article  CAS  Google Scholar 

  126. Parrott N, Lave T. Applications of physiologically based absorption models in drug discovery and development. Mol Pharm 2008;5: available 12 June 2008 DOI: 10.1021/mp8000155.

    Google Scholar 

  127. The Joint Commission. Hospital accreditation program: accreditation requirements (effective January 1, 2009). Available at: http://www.jointcommission.org/Standards/SII/sii_hap.htm.

  128. Ervin RB, Kennedy-Stephenson J. Mineral intakes of elderly adult supplement and non-supplement users in the third National Health and Nutrition Examination Survey. J Nutr 2002;132:3422–3427.

    CAS  Google Scholar 

  129. The Joint Commission. 2009 National patient safety goals. Available at: http://www.jointcommission.org/PatientSafety/NationalPatientSafetyGoals/.

  130. Wadelius M, Pirmohamed M. Pharmacogenetics of warfarin: current status and future challenges. Pharmacogenom J 2007;7:99–111.

    Article  CAS  Google Scholar 

  131. Hamberg A-K, Dahl M-L, Barban M, et al. A PK-PD model for predicting the impact of age, CYP2C9, and VKORC1 genotype on individualization of warfarin therapy. Clin Pharmacol Ther 2007;81:529–538.

    Article  CAS  Google Scholar 

  132. Uno T, Sugimoto K, Sugawara K, Tateishi T. The effect of CYP2C19 genotypes on the pharmacokinetics of warfarin enantiomers. J Clin Pharm Ther 2008;33:67–73.

    Article  CAS  Google Scholar 

  133. Horn JR, Hansten PD, Chan L-N. Proposal for a new tool to evaluate drug interaction cases. Ann Pharmacother 2007;41:674–680.

    Article  Google Scholar 

  134. Cooper MK, Brock DG, McDaniel CM. Interaction between levodopa and enteral nutrition. Ann Pharmacother 2008;42:439–442.

    Article  CAS  Google Scholar 

  135. Genser D. Food and drug interaction: consequences for the nutrition/health status. Ann Nutr Metab 2008;52(suppl 1):29–32.

    Article  CAS  Google Scholar 

  136. Hager M, Hutchins A. Position of the American Dietetic Association: integration of medical nutrition therapy and pharmacotherapy. J Am Diet Assoc 2003;103:1363–1370.

    Article  Google Scholar 

  137. Butterweck V, Derendorf H. Potential of pharmacokinetic profiling for detecting herbal interactions with drugs. Clin Pharmacokinet 2008;47:383–397.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Boullata, J.I. (2009). An Introduction to Drug–Nutrient Interactions. In: Boullata, J., Armenti, V. (eds) Handbook of Drug-Nutrient Interactions. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-362-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-362-6_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-363-3

  • Online ISBN: 978-1-60327-362-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics