Skip to main content

Predictors of Kidney Disease in Diabetic, Hypertensive Patients

  • Chapter
  • First Online:
Diabetes and Hypertension

Abstract

The underlying mechanisms of insulin resistance that contribute to the development of overt type 2 diabetes mellitus also contribute to endothelial dysfunction and hypertension that are related to chronic kidney disease (CKD). The hyperinsulinemic state is associated with inappropriate activation of the renin–angiotensin–aldosterone system (RAAS) and sympathetic nervous system that leads to sodium and extracellular fluid expansion as well as increased tissue inflammation and oxidative stress. Moreover, mounting evidence in recent years supports that insulin resistance is independently associated with proteinuria and the development of CKD. Elevations in circulating insulin and impairments in insulin-dependent metabolic signaling pathways are associated with upregulation of angiotensinogen expression contributing to the maladaptive effects of angiotensin II and aldosterone on the kidneys. Thereby, aggressive management of risk factors, using both pharmacologic and non-pharmacological strategies, is essential to diminish loss of kidney function. Thereby we will review the mechanisms leading to kidney disease in insulin-resistant individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nelson RG, Tuttle KR. The new KDOQI clinical practice guidelines and clinical practice recommendations for diabetes and CKD. Blood Purif. 2007;25(1):112–4.

    Article  PubMed  Google Scholar 

  2. Buse JB, Ginsberg HN, Bakris GL, et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care. 2007;30(1):162–72.

    Article  PubMed  CAS  Google Scholar 

  3. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–53.

    Article  PubMed  Google Scholar 

  4. Stamler J, Stamler R, Neaton JD. Blood pressure, systolic and diastolic, and cardiovascular risks. US population data. Arch Intern Med. 1993;153(5):598–615.

    Article  PubMed  CAS  Google Scholar 

  5. El-Atat F, McFarlane SI, Sowers JR. Diabetes, hypertension, and cardiovascular derangements: pathophysiology and management. Curr Hypertens Rep. 2004;6(3):215–23.

    Article  PubMed  Google Scholar 

  6. McFarlane SI, Jacober SJ, Winer N, et al. Control of cardiovascular risk factors in patients with diabetes and hypertension at urban academic medical centers. Diabetes Care. 2002;25(4): 718–23.

    Article  PubMed  Google Scholar 

  7. Arauz-Pacheco C, Parrott MA, Raskin P. Hypertension management in adults with diabetes. Diabetes Care. 2004;27 Suppl 1:S65–7.

    PubMed  Google Scholar 

  8. Gress TW, Nieto FJ, Shahar E, Wofford MR, Brancati FL. Hypertension and antihypertensive therapy as risk factors for type 2 diabetes mellitus. Atherosclerosis risk in communities study. N Engl J Med. 2000;342(13):905–12.

    Article  PubMed  CAS  Google Scholar 

  9. National High Blood Pressure Education Program Working Group report on hypertension in diabetes. Hypertension. 1994;23(2):145–158; discussion 159–160.

    Google Scholar 

  10. Sowers JR. Treatment of hypertension in patients with diabetes. Arch Intern Med. 2004;164(17):1850–7.

    Article  PubMed  CAS  Google Scholar 

  11. Bakris GL, Williams M, Dworkin L, et al. Preserving renal function in adults with hypertension and diabetes: a consensus approach. National Kidney Foundation Hypertension and Diabetes Executive Committees Working Group. Am J Kidney Dis. 2000;36(3):646–61.

    Article  PubMed  CAS  Google Scholar 

  12. Sowers JR, Haffner S. Treatment of cardiovascular and renal risk factors in the diabetic hypertensive. Hypertension. 2002;40(6):781–8.

    Article  PubMed  CAS  Google Scholar 

  13. Rahmouni K, Correia ML, Haynes WG, Mark AL. Obesity-associated hypertension: new insights into mechanisms. Hypertension. 2005;45(1):9–14.

    PubMed  CAS  Google Scholar 

  14. Vaz M, Jennings G, Turner A, Cox H, Lambert G, Esler M. Regional sympathetic nervous activity and oxygen consumption in obese normotensive human subjects. Circulation. 1997;96(10):3423–9.

    Article  PubMed  CAS  Google Scholar 

  15. Caballero AE. Endothelial dysfunction in obesity and insulin resistance: a road to diabetes and heart disease. Obes Res. 2003;11(11):1278–89.

    Article  PubMed  CAS  Google Scholar 

  16. Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation. 2000;101(6):676–81.

    Article  PubMed  CAS  Google Scholar 

  17. Hsueh WA, Quin MJ. Role of endothelial dysfunction in insulin resistance. Am J Cardiol. 2003;92(4A):10J–7.

    Article  PubMed  CAS  Google Scholar 

  18. Williams SB, Cusco JA, Roddy MA, Johnstone MT, Creager MA. Impaired nitric oxide-mediated vasodilation in patients with non-insulin-dependent diabetes mellitus. J Am Coll Cardiol. 1996;27(3):567–74.

    Article  PubMed  CAS  Google Scholar 

  19. McFarlane SI, Sowers JR. Cardiovascular endocrinology 1: aldosterone function in diabetes mellitus: effects on cardiovascular and renal disease. J Clin Endocrinol Metab. 2003;88(2): 516–23.

    Article  PubMed  CAS  Google Scholar 

  20. Kohan DE. Endothelins in the kidney: physiology and pathophysiology. Am J Kidney Dis. 1993;22(4):493–510.

    PubMed  CAS  Google Scholar 

  21. Marsen TA, Schramek H, Dunn MJ. Renal actions of endothelin: linking cellular signaling pathways to kidney disease. Kidney Int. 1994;45(2):336–44.

    Article  PubMed  CAS  Google Scholar 

  22. Lee YJ, Shin SJ, Tsai JH. Increased urinary endothelin-1-like immunoreactivity excretion in NIDDM patients with albuminuria. Diabetes Care. 1994;17(4):263–6.

    Article  PubMed  CAS  Google Scholar 

  23. De Mattia G, Cassone-Faldetta M, Bellini C, et al. Role of plasma and urinary endothelin-1 in early diabetic and hypertensive nephropathy. Am J Hypertens. 1998;11(8 Pt 1):983–8.

    PubMed  Google Scholar 

  24. Simonson MS, Herman WH. Protein kinase C and protein tyrosine kinase activity contribute to mitogenic signaling by endothelin-1. Cross-talk between G protein-coupled receptors and pp 60c-src. J Biol Chem. 1993;268(13):9347–57.

    PubMed  CAS  Google Scholar 

  25. Chaudhary K, Buddineni JP, Nistala R, Whaley-Connell A. Resistant hypertension in the high-risk metabolic patient. Curr Diab Rep. 2011;11(1):41–6.

    Article  PubMed  Google Scholar 

  26. Reaven GM. Banting lecture 1988. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–607.

    Article  PubMed  CAS  Google Scholar 

  27. Sechi LA, Melis A, Tedde R. Insulin hypersecretion: a distinctive feature between essential and secondary hypertension. Metabolism. 1992;41(11):1261–6.

    Article  PubMed  CAS  Google Scholar 

  28. Reaven GM. Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J Clin Endocrinol Metab. 2003;88(6):2399–403.

    Article  PubMed  CAS  Google Scholar 

  29. Cusumano AM, Bodkin NL, Hansen BC, et al. Glomerular hypertrophy is associated with hyperinsulinemia and precedes overt diabetes in aging rhesus monkeys. Am J Kidney Dis. 2002;40(5):1075–85.

    Article  PubMed  Google Scholar 

  30. Cohen AJ, McCarthy DM, Stoff JS. Direct hemodynamic effect of insulin in the isolated perfused kidney. Am J Physiol. 1989;257(4 Pt 2):F580–5.

    PubMed  CAS  Google Scholar 

  31. Dengel DR, Goldberg AP, Mayuga RS, Kairis GM, Weir MR. Insulin resistance, elevated glomerular filtration fraction, and renal injury. Hypertension. 1996;28(1):127–32.

    Article  PubMed  CAS  Google Scholar 

  32. Catalano C, Muscelli E, Quinones Galvan A, et al. Effect of insulin on systemic and renal handling of albumin in nondiabetic and NIDDM subjects. Diabetes. 1997;46(5):868–75.

    Article  PubMed  CAS  Google Scholar 

  33. McFarlane SI, Banerji M, Sowers JR. Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab. 2001;86(2):713–8.

    Article  PubMed  CAS  Google Scholar 

  34. Richey JM, Ader M, Moore D, Bergman RN. Angiotensin II induces insulin resistance independent of changes in interstitial insulin. Am J Physiol. 1999;277(5 Pt 1):E920–6.

    PubMed  CAS  Google Scholar 

  35. Ogihara T, Asano T, Ando K, et al. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension. 2002;40(6):872–9.

    Article  PubMed  CAS  Google Scholar 

  36. Coward RJ, Welsh GI, Yang J, et al. The human glomerular podocyte is a novel target for insulin action. Diabetes. 2005;54(11):3095–102.

    Article  PubMed  CAS  Google Scholar 

  37. Shepherd PR, Kahn BB. Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus. N Engl J Med. 1999;341(4):248–57.

    Article  PubMed  CAS  Google Scholar 

  38. Gloy J, Henger A, Fischer KG, et al. Angiotensin II depolarizes podocytes in the intact glomerulus of the rat. J Clin Invest. 1997;99(11):2772–81.

    Article  PubMed  CAS  Google Scholar 

  39. Conti FG, Striker LJ, Lesniak MA, MacKay K, Roth J, Striker GE. Studies on binding and mitogenic effect of insulin and insulin-like growth factor I in glomerular mesangial cells. Endocrinology. 1988;122(6):2788–95.

    Article  PubMed  CAS  Google Scholar 

  40. Nicholas SB. Advances in pathogenetic mechanisms of diabetic nephropathy. Cell Mol Biol (Noisy-le-Grand). 2003;49(8):1319–25.

    CAS  Google Scholar 

  41. Anderson PW, Zhang XY, Tian J, et al. Insulin and angiotensin II are additive in stimulating TGF-beta 1 and matrix mRNAs in mesangial cells. Kidney Int. 1996;50(3):745–53.

    Article  PubMed  CAS  Google Scholar 

  42. Sowers JR, Sowers PS, Peuler JD. Role of insulin resistance and hyperinsulinemia in development of hypertension and atherosclerosis. J Lab Clin Med. 1994;123(5):647–52.

    PubMed  CAS  Google Scholar 

  43. Standley PR, Bakir MH, Sowers JR. Vascular insulin abnormalities, hypertension, and accelerated atherosclerosis. Am J Kidney Dis. 1993;21(6 Suppl 3):39–46.

    PubMed  CAS  Google Scholar 

  44. Feldt-Rasmussen B, Mathiesen ER, Deckert T, et al. Central role for sodium in the pathogenesis of blood pressure changes independent of angiotensin, aldosterone and catecholamines in type 1 (insulin-dependent) diabetes mellitus. Diabetologia. 1987;30(8):610–7.

    PubMed  CAS  Google Scholar 

  45. Weidmann P, Beretta-Piccoli C, Trost BN. Pressor factors and responsiveness in hypertension accompanying diabetes mellitus. Hypertension. 1985;7(6 Pt 2):II33–42.

    Article  PubMed  CAS  Google Scholar 

  46. Sowers JR. Effects of insulin and IGF-I on vascular smooth muscle glucose and cation metabolism. Diabetes. 1996;45 Suppl 3:S47–51.

    PubMed  CAS  Google Scholar 

  47. Brenner BM, Cooper ME, de Zeeuw D, et al. Effects of losartan on renal and cardiovascular outcomes in patients with type 2 diabetes and nephropathy. N Engl J Med. 2001;345(12):861–9.

    Article  PubMed  CAS  Google Scholar 

  48. Sloniger JA, Saengsirisuwan V, Diehl CJ, et al. Defective insulin signaling in skeletal muscle of the hypertensive TG(mREN2)27 rat. Am J Physiol Endocrinol Metab. 2005;288(6): E1074–81.

    Article  PubMed  CAS  Google Scholar 

  49. Blendea MC, Jacobs D, Stump CS, et al. Abrogation of oxidative stress improves insulin sensitivity in the Ren-2 rat model of tissue angiotensin II overexpression. Am J Physiol Endocrinol Metab. 2005;288(2):E353–9.

    Article  PubMed  CAS  Google Scholar 

  50. McFarlane SI, Kumar A, Sowers JR. Mechanisms by which angiotensin-converting enzyme inhibitors prevent diabetes and cardiovascular disease. Am J Cardiol. 2003;91(12A):30H–7.

    Article  PubMed  CAS  Google Scholar 

  51. Niklason A, Hedner T, Niskanen L, Lanke J. Development of diabetes is retarded by ACE inhibition in hypertensive patients–a subanalysis of the captopril prevention project (CAPPP). J Hypertens. 2004;22(3):645–52.

    Article  PubMed  CAS  Google Scholar 

  52. Kjeldsen SE, Westheim AS, Os I. Prevention of cardiovascular events and diabetes with angiotensin-receptor blockers in hypertension: LIFE, SCOPE, and VALUE. Curr Hypertens Rep. 2005;7(3):155–7.

    Article  PubMed  CAS  Google Scholar 

  53. Scheen AJ. Renin-angiotensin system inhibition prevents type 2 diabetes mellitus. Part 1. A meta-analysis of randomised clinical trials. Diabetes Metab. 2004;30(6):487–96.

    Article  PubMed  CAS  Google Scholar 

  54. Grassi G. Renin-angiotensin-sympathetic crosstalks in hypertension: reappraising the relevance of peripheral interactions. J Hypertens. 2001;19(10):1713–6.

    Article  PubMed  CAS  Google Scholar 

  55. Kidambi S, Kotchen JM, Grim CE, et al. Association of adrenal steroids with hypertension and the metabolic syndrome in blacks. Hypertension. 2007;49(3):704–11.

    Article  PubMed  CAS  Google Scholar 

  56. Sechi LA, Bartoli E. Molecular mechanisms of insulin resistance in arterial hypertension. Blood Press Suppl. 1996;1:47–54.

    PubMed  CAS  Google Scholar 

  57. Hall JE, da Silva AA, do Carmo JM, et al. Obesity-induced hypertension: role of sympathetic nervous system, leptin, and melanocortins. J Biol Chem. 2010;285(23):17271–6.

    Article  PubMed  CAS  Google Scholar 

  58. Morgan DA, Thedens DR, Weiss R, Rahmouni K. Mechanisms mediating renal sympathetic activation to leptin in obesity. Am J Physiol Regul Integr Comp Physiol. 2008;295(6): R1730–6.

    Article  PubMed  CAS  Google Scholar 

  59. Duncan BB, Schmidt MI, Pankow JS, et al. Low-grade systemic inflammation and the development of type 2 diabetes: the atherosclerosis risk in communities study. Diabetes. 2003;52(7):1799–805.

    Article  PubMed  CAS  Google Scholar 

  60. Katagiri H, Yamada T, Oka Y. Adiposity and cardiovascular disorders: disturbance of the regulatory system consisting of humoral and neuronal signals. Circ Res. 2007;101(1):27–39.

    Article  PubMed  CAS  Google Scholar 

  61. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83.

    Article  PubMed  CAS  Google Scholar 

  62. Fernandez-Real JM, Ricart W. Insulin resistance and chronic cardiovascular inflammatory syndrome. Endocr Rev. 2003;24(3):278–301.

    Article  PubMed  CAS  Google Scholar 

  63. Parving HH, Oxenboll B, Svendsen PA, Christiansen JS, Andersen AR. Early detection of patients at risk of developing diabetic nephropathy. A longitudinal study of urinary albumin excretion. Acta Endocrinol (Copenh). 1982;100(4):550–5.

    CAS  Google Scholar 

  64. Hovind P, Tarnow L, Rossing P, et al. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. Br Med J. 2004;328(7448):1105.

    Article  Google Scholar 

  65. Hostetter TH, Rennke HG, Brenner BM. The case for intrarenal hypertension in the initiation and progression of diabetic and other glomerulopathies. Am J Med. 1982;72(3):375–80.

    Article  PubMed  CAS  Google Scholar 

  66. Brenner BM, Chertow GM. Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis. 1994;23(2):171–5.

    PubMed  CAS  Google Scholar 

  67. Fox CS, Gona P, Larson MG, et al. A multi-marker approach to predict incident CKD and microalbuminuria. J Am Soc Nephrol. 2010;21(12):2143–9.

    Article  PubMed  CAS  Google Scholar 

  68. Kottgen A, Hwang SJ, Larson MG, et al. Uromodulin levels associate with a common UMOD variant and risk for incident CKD. J Am Soc Nephrol. 2010;21(2):337–44.

    Article  PubMed  CAS  Google Scholar 

  69. Yamauchi T, Hara K, Maeda S, et al. A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B. Nat Genet. 2010;42(10):864–8.

    Article  PubMed  CAS  Google Scholar 

  70. Chobanian AV, Bakris GL, Black HR, et al. Seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Hypertension. 2003;42(6):1206–52.

    Article  PubMed  CAS  Google Scholar 

  71. Sacks FM, Svetkey LP, Vollmer WM, et al. Effects on blood pressure of reduced dietary sodium and the Dietary Approaches to Stop Hypertension (DASH) diet. DASH-Sodium Collaborative Research Group. N Engl J Med. 2001;344(1):3–10.

    Article  PubMed  CAS  Google Scholar 

  72. Wassertheil-Smoller S, Blaufox MD, Oberman AS, Langford HG, Davis BR, Wylie-Rosett J. The Trial of Antihypertensive Interventions and Management (TAIM) study. Adequate weight loss, alone and combined with drug therapy in the treatment of mild hypertension. Arch Intern Med. 1992;152(1):131–6.

    Article  PubMed  CAS  Google Scholar 

  73. Halbert JA, Silagy CA, Finucane P, Withers RT, Hamdorf PA. Exercise training and blood lipids in hyperlipidemic and normolipidemic adults: a meta-analysis of randomized, controlled trials. Eur J Clin Nutr. 1999;53(7):514–22.

    Article  PubMed  CAS  Google Scholar 

  74. Whelton SP, Chin A, Xin X, He J. Effect of aerobic exercise on blood pressure: a meta-analysis of randomized, controlled trials. Ann Intern Med. 2002;136(7):493–503.

    PubMed  Google Scholar 

  75. Whaley-Connell A, Sowers JR. Hypertension management in type 2 diabetes mellitus: recommendations of the Joint National Committee VII. Endocrinol Metab Clin North Am. 2005;34(1):63–75.

    Article  PubMed  CAS  Google Scholar 

  76. Bakris GL, Smith AC, Richardson DJ, et al. Impact of an ACE inhibitor and calcium antagonist on microalbuminuria and lipid subfractions in type 2 diabetes: a randomised, multi-centre pilot study. J Hum Hypertens. 2002;16(3):185–91.

    Article  PubMed  CAS  Google Scholar 

  77. Ravid M, Lang R, Rachmani R, Lishner M. Long-term renoprotective effect of angiotensin-converting enzyme inhibition in non-insulin-dependent diabetes mellitus. A 7-year follow-up study. Arch Intern Med. 1996;156(3):286–9.

    Article  PubMed  CAS  Google Scholar 

  78. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. N Engl J Med. 2008;358(15):1547–59.

    Article  PubMed  CAS  Google Scholar 

  79. Giugliano D, Acampora R, Marfella R, et al. Metabolic and cardiovascular effects of carvedilol and atenolol in non-insulin-dependent diabetes mellitus and hypertension. A randomized, controlled trial. Ann Intern Med. 1997;126(12):955–9.

    PubMed  CAS  Google Scholar 

  80. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288(23):2981–97.

    Article  Google Scholar 

  81. Curb JD, Pressel SL, Cutler JA, et al. Effect of diuretic-based antihypertensive treatment on cardiovascular disease risk in older diabetic patients with isolated systolic hypertension. Systolic Hypertension in the Elderly Program Cooperative Research Group. J Am Med Assoc. 1996;276(23):1886–92.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Whaley-Connell D.O., M.S.P.H. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Buddineni, J.P., Chaudhary, K., Whaley-Connell, A. (2012). Predictors of Kidney Disease in Diabetic, Hypertensive Patients. In: McFarlane, S., Bakris, G. (eds) Diabetes and Hypertension. Contemporary Diabetes. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-357-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-357-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-356-5

  • Online ISBN: 978-1-60327-357-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics