Skip to main content

Diabetes and Hypertension in People with Sleep Apnea: Risk Evaluation and Therapeutic Rationale

  • Chapter
  • First Online:
  • 1968 Accesses

Part of the book series: Contemporary Diabetes ((CDI))

Abstract

The widely prevailing diabetes pandemic has resulted in increased cardiovascular deaths over the last 50 years (Haffner et al., N Engl J Med 339(4):229–234, 1998). Established cross-sectional studies have remarked that an increase in glycosylated hemoglobin by 1 % is associated with upwards of a 20 % cardiovascular risk (Selvin et al., Ann Intern Med 141(6):421–431, 2004). Newly discovered and evolving relationships have shown sleep apnea and its cardiometabolic associations (Pandey et al., Curr Diab Rep 11(1):35–40, 2011), (Demede et al., Int J Hypertens 2011:340929, 2011) to have burdensome public health concerns and cost (Nieto et al., JAMA 283(14):1829–1836, 2000), (Peppard et al., N Engl J Med 342(19):1378–1384, 2000). There is also accumulating data suggesting the sleep apnea is involved in the pathogenesis of altered glucose metabolism independent of sociodemographic and medical comorbidities. The disastrous duo, diabetes and sleep apnea, have over encompassing mortality and morbidity and increased healthcare costs (Pandey et al., Curr Diab Rep 11(1):35–40, 2011).

We need to understand this is a mixed relationship, with an overlying role of obesity. None of the disease entities are independent of each other but are all intertwined into complex relationships that require multidisciplinary approach for prevention and treatment.

Hypertension is common among adults with obstructive sleep apnea (OSA) affecting up to 50 % of this group of patients. Hypertensive patients with OSA often have difficulty in controlling high blood pressure. Accordingly, the seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC-7) recognized OSA as a common secondary cause of hypertension. The American Heart Association also issued a Scientific Statement describing the need to recognize OSA as an important target for therapy in reducing cardiovascular risk.

Although several mechanisms have been suggested as possible links between hypertension and OSA, sustained adrenergic stimulation appears to be the most compelling pathophysiological link between the two. This chapter will discuss the pathophysiological and epidemiological data associating OSA with hypertension. Diagnosis and management of hypertension in OSA patients will also be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   159.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   209.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Barthel SW, Strome M. Snoring, obstructive sleep apnea, and surgery. Med Clin North Am. 1999;83(1):85–96.

    Article  PubMed  CAS  Google Scholar 

  2. Gallup. 2000 Omnibus Sleep in America Poll. National Sleep Foundation 2000;1–19. Available at: URL: http://www.sleepfoundation.org/publications/2000poll.html. Accessed August 24, 2000.

  3. Phillipson EA. Sleep apnea-a major public health problem. N Engl J Med. 1993;328(17):1271–3.

    Article  PubMed  CAS  Google Scholar 

  4. Young T, Finn L. Epidemiological insights into the public health burden of sleep disordered breathing: sex differences in survival among sleep clinic patients. Thorax. 1998;53 Suppl 3:S16–9.

    Article  PubMed  Google Scholar 

  5. Omnibus Sleep in America Poll. National Sleep Foundation; 2005.

    Google Scholar 

  6. Young T, Palta M, Dempsey J, Skatrud J, Weber S, Badr S. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med. 1993;328(17):1230–5.

    Article  PubMed  CAS  Google Scholar 

  7. Tishler PV, Larkin EK, Schluchter MD, Redline S. Incidence of sleep-disordered breathing in an urban adult population: the relative importance of risk factors in the development of sleep-disordered breathing. J Am Med Assoc. 2003;289(17):2230–7.

    Article  Google Scholar 

  8. Zizi F, Jean-Louis G, Fernandez S, et al. Symptoms of obstructive sleep apnea in a Caribbean sample. Sleep Breath. 2008;12(4):317–22.

    Article  PubMed  Google Scholar 

  9. Silverberg DS, Oksenberg A, Iaina A. Sleep-related breathing disorders as a major cause of essential hypertension: fact or fiction? Curr Opin Nephrol Hypertens. 1998;7(4):353–7.

    Article  PubMed  CAS  Google Scholar 

  10. Redline S, Tishler PV, Hans MG, Tosteson TD, Strohl KP, Spry K. Racial differences in sleep-disordered breathing in African-Americans and Caucasians. Am J Respir Crit Care Med. 1997;155(1):186–92.

    PubMed  CAS  Google Scholar 

  11. Ip MS, Lam B, Ng MM, Lam WK, Tsang KW, Lam KS. Obstructive sleep apnea is independently associated with insulin resistance. Am J Respir Crit Care Med. 2002;165(5):670–6.

    PubMed  Google Scholar 

  12. Punjabi NM, Sorkin JD, Katzel LI, Goldberg AP, Schwartz AR, Smith PL. Sleep-disordered breathing and insulin resistance in middle-aged and overweight men. Am J Respir Crit Care Med. 2002;165(5):677–82.

    PubMed  Google Scholar 

  13. Punjabi NM, Shahar E, Redline S, Gottlieb DJ, Givelber R, Resnick HE. Sleep-disordered breathing, glucose intolerance, and insulin resistance: the Sleep Heart Health Study. Am J Epidemiol. 2004;160(6):521–30.

    Article  PubMed  Google Scholar 

  14. Punjabi NM, Polotsky VY. Disorders of glucose metabolism in sleep apnea. J Appl Physiol. 2005;99(5):1998–2007.

    Article  PubMed  CAS  Google Scholar 

  15. Foster GD, Sanders MH, Millman R, et al. Obstructive sleep apnea among obese patients with type 2 diabetes. Diabetes Care. 2009;32(6):1017–9.

    Article  PubMed  Google Scholar 

  16. Resnick HE, Redline S, Shahar E, et al. Diabetes and sleep disturbances: findings from the Sleep Heart Health Study. Diabetes Care. 2003;26(3):702–9.

    Article  PubMed  Google Scholar 

  17. Ayas NT, White DP, Al Delaimy WK, et al. A prospective study of self-reported sleep duration and incident diabetes in women. Diabetes Care. 2003;26(2):380–4.

    Article  PubMed  Google Scholar 

  18. Gottlieb DJ, Punjabi NM, Newman AB, et al. Association of sleep time with diabetes mellitus and impaired glucose tolerance. Arch Intern Med. 2005;165(8):863–7.

    Article  PubMed  Google Scholar 

  19. Tasali E, Leproult R, Spiegel K. Reduced sleep duration or quality: relationships with insulin resistance and type 2 diabetes. Prog Cardiovasc Dis. 2009;51(5):381–91.

    Article  PubMed  CAS  Google Scholar 

  20. Gangwisch JE, Heymsfield SB, Boden-Albala B, et al. Sleep duration as a risk factor for diabetes incidence in a large U.S. sample. Sleep. 2007;30(12):1667–73.

    PubMed  Google Scholar 

  21. The American Academy of Sleep Medicine (Practice Parameters). http://www.aasmnet.org/practiceparameters.htm. Accessed August 24, 2002. Ref Type: Internet Communication

  22. Wright J, Johns R, Watt I, Melville A, Sheldon T. Health effects of obstructive sleep apnoea and the effectiveness of continuous positive airways pressure: a systematic review of the research evidence. Br Med J. 1997;314(7084):851–60.

    Article  CAS  Google Scholar 

  23. Rosenthal L, Gerhardstein R, Lumley A, et al. CPAP therapy in patients with mild OSA: implementation and treatment outcome. Sleep Med. 2000;1(3):215–20.

    Article  PubMed  Google Scholar 

  24. Anand VK, Ferguson PW, Schoen LS. Obstructive sleep apnea: a comparison of continuous positive airway pressure and surgical treatment. Otolaryngol Head Neck Surg. 1991;105(3):382–90.

    PubMed  CAS  Google Scholar 

  25. Ball EM, Banks MB. Determinants of compliance with nasal continuous positive airway pressure treatment applied in a community setting. Sleep Med. 2001;2(3):195–205.

    Article  PubMed  Google Scholar 

  26. Fletcher EC, Shah A, Qian W, Miller III CC. “Near miss” death in obstructive sleep apnea: a critical care syndrome. Crit Care Med. 1991;19(9):1158–64.

    Article  PubMed  CAS  Google Scholar 

  27. Riley RW, Powell NB, Guilleminault C, Clerk A, Troell R. Obstructive sleep apnea. Trends in therapy. West J Med. 1995;162(2):143–8.

    PubMed  CAS  Google Scholar 

  28. Hoy CJ, Vennelle M, Kingshott RN, Engleman HM, Douglas NJ. Can intensive support improve continuous positive airway pressure use in patients with the sleep apnea/hypopnea syndrome? Am J Respir Crit Care Med. 1999;159(4 Pt 1):1096–100.

    PubMed  CAS  Google Scholar 

  29. Oki Y, Shiomi T, Sasanabe R, et al. Multiple cardiovascular risk factors in obstructive sleep apnea syndrome patients and an attempt at lifestyle modification using telemedicine-based education. Psychiatry Clin Neurosci. 1999;53(2):311–3.

    Article  PubMed  CAS  Google Scholar 

  30. Chervin RD, Theut S, Bassetti C, Aldrich MS. Compliance with nasal CPAP can be improved by simple interventions. Sleep. 1997;20(4):284–9.

    PubMed  CAS  Google Scholar 

  31. Aloia MS, Di Dio L, Ilniczky N, Perlis ML, Greenblatt DW, Giles DE. Improving compliance with nasal CPAP and vigilance in older adults with OAHS. Sleep Breath. 2001;5(1):13–21.

    Article  PubMed  CAS  Google Scholar 

  32. Zozula R, Rosen R. Compliance with continuous positive airway pressure therapy: assessing and improving treatment outcomes. Curr Opin Pulm Med. 2001;7(6):391–8.

    Article  PubMed  CAS  Google Scholar 

  33. Popescu G, Latham M, Allgar V, Elliott MW. Continuous positive airway pressure for sleep apnoea/hypopnoea syndrome: usefulness of a 2 week trial to identify factors associated with long term use. Thorax. 2001;56(9):727–33.

    Article  PubMed  CAS  Google Scholar 

  34. Aronsohn RS, Whitmore H, Van CE, Tasali E. Impact of untreated obstructive sleep apnea on glucose control in type 2 diabetes. Am J Respir Crit Care Med. 2010;181(5):507–13.

    Article  PubMed  Google Scholar 

  35. Sanner BM, Kollhosser P, Buechner N, Zidek W, Tepel M. Influence of treatment on leptin levels in patients with obstructive sleep apnoea. Eur Respir J. 2004;23(4):601–4.

    Article  PubMed  CAS  Google Scholar 

  36. Takahashi K, Chin K, Akamizu T, et al. Acylated ghrelin level in patients with OSA before and after nasal CPAP treatment. Respirology. 2008;13(6):810–6.

    Article  PubMed  Google Scholar 

  37. Pillar G, Shehadeh N. Abdominal fat and sleep apnea: the chicken or the egg? Diabetes Care. 2008;31 Suppl 2:S303–9.

    Article  PubMed  Google Scholar 

  38. Trenell MI, Ward JA, Yee BJ, et al. Influence of constant positive airway pressure therapy on lipid storage, muscle metabolism and insulin action in obese patients with severe obstructive sleep apnoea syndrome. Diabetes Obes Metab. 2007;9(5):679–87.

    Article  PubMed  CAS  Google Scholar 

  39. Harsch IA, Schahin SP, Bruckner K, et al. The effect of continuous positive airway pressure treatment on insulin sensitivity in patients with obstructive sleep apnoea syndrome and type 2 diabetes. Respiration. 2004;71(3):252–9.

    Article  PubMed  Google Scholar 

  40. Schahin SP, Nechanitzky T, Dittel C, et al. Long-term improvement of insulin sensitivity during CPAP therapy in the obstructive sleep apnoea syndrome. Med Sci Monit. 2008;14(3):CR117–21.

    PubMed  CAS  Google Scholar 

  41. Dawson A, Abel SL, Loving RT, et al. CPAP therapy of obstructive sleep apnea in type 2 diabetics improves glycemic control during sleep. J Clin Sleep Med. 2008;4(6):538–42.

    PubMed  Google Scholar 

  42. Babu AR, Herdegen J, Fogelfeld L, Shott S, Mazzone T. Type 2 diabetes, glycemic control, and continuous positive airway pressure in obstructive sleep apnea. Arch Intern Med. 2005;165(4):447–52.

    Article  PubMed  Google Scholar 

  43. Clarenbach CF, West SD, Kohler M. Is obstructive sleep apnea a risk factor for diabetes? Discov Med. 2011;12(62):17–24.

    PubMed  Google Scholar 

  44. Nunes J, Jean-Louis G, Zizi F, et al. Sleep duration among black and white Americans: results of the National Health Interview Survey. J Natl Med Assoc. 2008;100(3):317–22.

    PubMed  Google Scholar 

  45. Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. J Am Med Assoc. 2003;289(19):2560–72.

    Article  CAS  Google Scholar 

  46. Egan BM, Zhao Y, Axon RN. US trends in prevalence, awareness, treatment, and control of hypertension, 1988–2008. J Am Med Assoc. 2010;303(20):2043–50.

    Article  CAS  Google Scholar 

  47. Calhoun DA, Harding SM. Sleep and hypertension. Chest. 2010;138(2):434–43.

    Article  PubMed  Google Scholar 

  48. Young T, Peppard P, Palta M, et al. Population-based study of sleep-disordered breathing as a risk factor for hypertension. Arch Intern Med. 1997;157(15):1746–52.

    Article  PubMed  CAS  Google Scholar 

  49. Jean-Louis G, Zizi F, Clark LT, Brown CD, McFarlane SI. Obstructive sleep apnea and cardiovascular disease: role of the metabolic syndrome and its components. J Clin Sleep Med. 2008;4(3):261–72.

    PubMed  Google Scholar 

  50. Dempsey JA, Veasey SC, Morgan BJ, O’Donnell CP. Pathophysiology of sleep apnea. Physiol Rev. 2010;90(1):47–112.

    Article  PubMed  CAS  Google Scholar 

  51. Lesske J, Fletcher EC, Bao G, Unger T. Hypertension caused by chronic intermittent hypoxia—influence of chemoreceptors and sympathetic nervous system. J Hypertens. 1997;15(12 Pt 2):1593–603.

    PubMed  CAS  Google Scholar 

  52. Narkiewicz K, Somers VK. The sympathetic nervous system and obstructive sleep apnea: implications for hypertension. J Hypertens. 1997;15(12 Pt 2):1613–9.

    Article  PubMed  CAS  Google Scholar 

  53. Morgan BJ, Crabtree DC, Palta M, Skatrud JB. Combined hypoxia and hypercapnia evokes long-lasting sympathetic activation in humans. J Appl Physiol. 1995;79(1):205–13.

    PubMed  CAS  Google Scholar 

  54. Guilleminault C, Motta J, Mihm F, Melvin K. Obstructive sleep apnea and cardiac index. Chest. 1986;89(3):331–4.

    Article  PubMed  CAS  Google Scholar 

  55. Schulz R, Mahmoudi S, Hattar K, et al. Enhanced release of superoxide from polymorphonuclear neutrophils in obstructive sleep apnea. Impact of continuous positive airway pressure therapy. Am J Respir Crit Care Med. 2000;162(2 Pt 1):566–70.

    PubMed  CAS  Google Scholar 

  56. Kourembanas S, Marsden PA, McQuillan LP, Faller DV. Hypoxia induces endothelin gene expression and secretion in cultured human endothelium. J Clin Invest. 1991;88(3):1054–7.

    Article  PubMed  CAS  Google Scholar 

  57. Hartmann G, Tschop M, Fischer R, et al. High altitude increases circulating interleukin-6, interleukin-1 receptor antagonist and C-reactive protein. Cytokine. 2000;12(3):246–52.

    Article  PubMed  CAS  Google Scholar 

  58. Fletcher EC, Bao G, Li R. Renin activity and blood pressure in response to chronic episodic hypoxia. Hypertension. 1999;34(2):309–14.

    Article  PubMed  CAS  Google Scholar 

  59. Lavie P, Herer P, Hoffstein V. Obstructive sleep apnoea syndrome as a risk factor for hypertension: population study. Br Med J. 2000;320(7233):479–82.

    Article  CAS  Google Scholar 

  60. Floras JS, Bradley TD. Treating obstructive sleep apnea: is there more to the story than 2 millimeters of mercury? Hypertension. 2007;50(2):289–91.

    Article  PubMed  CAS  Google Scholar 

  61. Buda AJ, Pinsky MR, Ingels Jr NB, Daughters GT, Stinson EB, Alderman EL. Effect of intrathoracic pressure on left ventricular performance. N Engl J Med. 1979;301(9):453–9.

    Article  PubMed  CAS  Google Scholar 

  62. Somers VK, Dyken ME, Skinner JL. Autonomic and hemodynamic responses and interactions during the Mueller maneuver in humans. J Auton Nerv Syst. 1993;44(2–3):253–9.

    Article  PubMed  CAS  Google Scholar 

  63. Otto ME, Belohlavek M, Romero-Corral A, et al. Comparison of cardiac structural and functional changes in obese otherwise healthy adults with versus without obstructive sleep apnea. Am J Cardiol. 2007;99(9):1298–302.

    Article  PubMed  Google Scholar 

  64. Romero-Corral A, Somers VK, Pellikka PA, et al. Decreased right and left ventricular myocardial performance in obstructive sleep apnea. Chest. 2007;132(6):1863–70.

    Article  PubMed  Google Scholar 

  65. Arias MA, Garcia-Rio F, Alonso-Fernandez A, Mediano O, Martinez I, Villamor J. Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men. Circulation. 2005;112(3):375–83.

    Article  PubMed  Google Scholar 

  66. Sampol G, Romero O, Salas A, et al. Obstructive sleep apnea and thoracic aorta dissection. Am J Respir Crit Care Med. 2003;168(12):1528–31.

    Article  PubMed  Google Scholar 

  67. O’Brien E, Sheridan J, O’Malley K. Dippers and non-dippers. Lancet. 1988;2(8607):397.

    Article  PubMed  Google Scholar 

  68. Ohkubo T, Hozawa A, Yamaguchi J, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens. 2002;20(11):2183–9.

    Article  PubMed  CAS  Google Scholar 

  69. Lavie L. Obstructive sleep apnoea syndrome-an oxidative stress disorder. Sleep Med Rev. 2003;7(1):35–51.

    Article  PubMed  Google Scholar 

  70. Ip MS, Lam B, Chan LY, et al. Circulating nitric oxide is suppressed in obstructive sleep apnea and is reversed by nasal continuous positive airway pressure. Am J Respir Crit Care Med. 2000;162(6):2166–71.

    PubMed  CAS  Google Scholar 

  71. Nieto FJ, Young TB, Lind BK, et al. Association of sleep-disordered breathing, sleep apnea, and hypertension in a large community-based study. Sleep Heart Health Study. J Am Med Assoc. 2000;283(14):1829–36.

    Article  CAS  Google Scholar 

  72. Peppard PE, Young T, Palta M, Skatrud J. Prospective study of the association between sleep-disordered breathing and hypertension. N Engl J Med. 2000;342(19):1378–84.

    Article  PubMed  CAS  Google Scholar 

  73. Somers VK, White DP, Amin R, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. J Am Coll Cardiol. 2008;52(8):686–717.

    Article  PubMed  Google Scholar 

  74. Johns MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep. 1991;14(6):540–5.

    PubMed  CAS  Google Scholar 

  75. Netzer NC, Stoohs RA, Netzer CM, Clark K, Strohl KP. Using the Berlin questionnaire to identify patients at risk for the sleep apnea syndrome. Ann Intern Med. 1999;131(7):485–91.

    PubMed  CAS  Google Scholar 

  76. Levendowski DJ, Olmstead EM, Popovich D, Carper D, Berka C, Westbrook PR. Assessment of obstructive sleep apnea risk and severity in truck drivers: validation of a screening questionnaire. Sleep Diagnosis Ther. 2007;2(2):20–6.

    Google Scholar 

  77. The American Academy of Sleep Medicine (Practice Parameters). http://www.aasmnet.org/practiceparameters.htm. Accessed August 24, 2011.

  78. Noda A, Nakata S, Koike Y, et al. Continuous positive airway pressure improves daytime baroreflex sensitivity and nitric oxide production in patients with moderate to severe obstructive sleep apnea syndrome. Hypertens Res. 2007;30(8):669–76.

    Article  PubMed  CAS  Google Scholar 

  79. Bazzano LA, Khan Z, Reynolds K, He J. Effect of nocturnal nasal continuous positive airway pressure on blood pressure in obstructive sleep apnea. Hypertension. 2007;50(2):417–23.

    Article  PubMed  CAS  Google Scholar 

  80. Logan AG, Tkacova R, Perlikowski SM, et al. Refractory hypertension and sleep apnoea: effect of CPAP on blood pressure and baroreflex. Eur Respir J. 2003;21(2):241–7.

    Article  PubMed  CAS  Google Scholar 

  81. Barbe F, Duran-Cantolla J, Capote F, et al. Long-term effect of continuous positive airway pressure in hypertensive patients with sleep apnea. Am J Respir Crit Care Med. 2010;181(7):718–26.

    Article  PubMed  Google Scholar 

  82. Gotsopoulos H, Kelly JJ, Cistulli PA. Oral appliance therapy reduces blood pressure in obstructive sleep apnea: a randomized, controlled trial. Sleep. 2004;27(5):934–41.

    PubMed  Google Scholar 

  83. Yu S, Liu F, Wang Q, et al. Effect of revised UPPP surgery on ambulatory BP in sleep apnea patients with hypertension and oropharyngeal obstruction. Clin Exp Hypertens. 2010;32(1):49–53.

    Article  PubMed  CAS  Google Scholar 

  84. Calhoun DA, Jones D, Textor S, et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.

    Article  PubMed  CAS  Google Scholar 

  85. Pratt-Ubunama MN, Nishizaka MK, Boedefeld RL, Cofield SS, Harding SM, Calhoun DA. Plasma aldosterone is related to severity of obstructive sleep apnea in subjects with resistant hypertension. Chest. 2007;131(2):453–9.

    Article  PubMed  CAS  Google Scholar 

  86. Calhoun DA, Nishizaka MK, Zaman MA, Harding SM. Aldosterone excretion among subjects with resistant hypertension and symptoms of sleep apnea. Chest. 2004;125(1):112–7.

    Article  PubMed  CAS  Google Scholar 

  87. Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339(4):229–34.

    Article  PubMed  CAS  Google Scholar 

  88. Selvin E, Marinopoulos S, Berkenblit G, et al. Meta-analysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med. 2004;141(6):421–31.

    PubMed  CAS  Google Scholar 

  89. Pandey A, Demede M, Zizi F, et al. Sleep apnea and diabetes: insights into the emerging epidemic. Curr Diab Rep. 2011;11(1):35–40.

    Article  PubMed  CAS  Google Scholar 

  90. Demede M, Pandey A, Zizi F, et al. Resistant hypertension and obstructive sleep apnea in the primary-care setting. Int J Hypertens. 2011;2011:340929.

    PubMed  CAS  Google Scholar 

  91. Jean-Louis G, Zizi F, Brown D, Ogedegbe G, Borer J, McFarlane S. Obstructive sleep apnea and cardiovascular disease: evidence and underlying mechanisms. Minerva Pneumol. 2009 Dec; 48(4):277–293.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Girardin Jean-Louis Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pandey, A., Olafiranye, O., Adedayo, M., Zizi, F., McFarlane, S.I., Jean-Louis, G. (2012). Diabetes and Hypertension in People with Sleep Apnea: Risk Evaluation and Therapeutic Rationale. In: McFarlane, S., Bakris, G. (eds) Diabetes and Hypertension. Contemporary Diabetes. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-357-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-357-2_5

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-356-5

  • Online ISBN: 978-1-60327-357-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics