Skip to main content

Agonist-Selective Coupling of G Protein-Coupled Receptors

  • Chapter
  • First Online:
Functional Selectivity of G Protein-Coupled Receptor Ligands

Part of the book series: The Receptors ((REC))

  • 887 Accesses

Abstract

During the last 20 years, molecular and biochemical data concerning G protein-coupled receptors (GPCRs) have accumulated, providing a detailed characterization of the structure and function of this large family of receptors. Initially viewed as simple transducing proteins interacting with intracellular adapters that confer signaling specificity and amplification, the last decade has revealed the extreme complexity and flexibility offered by these membrane receptors. Indeed, the capacity to interact with several unrelated G proteins, which was originally considered as a peculiar property of some recombinant receptors, is now demonstrated for the vast majority of GPCRs. The mechanisms governing and regulating this multiplicity of coupling have been deeply investigated, highlighting the physiological and pharmacological consequences, which are herein reviewed. Of particular importance is the emerging concept of functional selectivity, which explains the capacity of a ligand to selectively orientate the coupling of a receptor with a subset of G proteins. Obviously, future studies should help to transpose functional selective ligands into functional selective drugs showing enhanced clinical efficacy with lower unwanted side effects. In addition, ligands endowed with functional selectivity constitute relevant tools for exploring the GPCR functions in physiological and pathological processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albert PR, Robillard L. G protein specificity: Traffic direction required. Cell Signal 2002;14:407–18

    PubMed  CAS  Google Scholar 

  2. Burford NT, Wang DX, Sadee W. G-protein coupling of mu-opioid receptors (OP3): elevated basal signalling activity. Biochem J 2000;348:531–7

    PubMed  CAS  Google Scholar 

  3. Chalecka-Franaszek E, Weems HB, Crowder AT, Cox BM, Cote TE. Immunoprecipitation of high-affinity, guanine nucleotide- sensitive, solubilized mu-opioid receptors from rat brain: coimmunoprecipitation of the G proteins G(alpha o), G(alpha i1), and G(alpha i3). J Neurochem 2000;74:1068–78

    PubMed  CAS  Google Scholar 

  4. Milligan G. The stoichiometry of expression of protein components of the stimulatory adenylyl cyclase cascade and the regulation of information transfer. Cell Signal 1996;8:87–95

    PubMed  CAS  Google Scholar 

  5. Neubig RR. Membrane organization in G-protein mechanisms. FASEB J 1994;8:939–46

    PubMed  CAS  Google Scholar 

  6. Ostrom RS, Post SR, Insel PA. Stoichiometry and compartmentation in G protein-coupled receptor signaling: implications for therapeutic interventions involving G(s). J Pharmacol Exp Ther 2000;294:407–12

    PubMed  CAS  Google Scholar 

  7. Ostrom RS, Insel PA. The evolving role of lipid rafts and caveolae in G protein-coupled receptor signaling: implications for molecular pharmacology. Br J Pharmacol 2004;143:235–45

    PubMed  CAS  Google Scholar 

  8. Blank JL, Brattain KA, Exton JH. Activation of cytosolic phosphoinositide phospholipase C by G-protein beta gamma subunits. J Biol Chem 1992;267:23069–75

    PubMed  CAS  Google Scholar 

  9. Boyer JL, Waldo GL, Harden TK. Beta gamma-subunit activation of G-protein-regulated phospholipase C. J Biol Chem 1992;267:25451–6

    PubMed  CAS  Google Scholar 

  10. Exton JH. Regulation of phosphoinositide phospholipases by hormones, neurotransmitters, and other agonists linked to G proteins. Annu Rev Pharmacol Toxicol 1996;36:481–509

    PubMed  CAS  Google Scholar 

  11. Morris AJ, Scarlata S. Regulation of effectors by G-protein alpha- and beta gamma-subunits. Recent insights from studies of the phospholipase c-beta isoenzymes. Biochem Pharmacol 1997;54:429–35

    PubMed  CAS  Google Scholar 

  12. Rhee SG, Bae YS. Regulation of phosphoinositide-specific phospholipase C isozymes. J Biol Chem 1997;272:15045–8

    PubMed  CAS  Google Scholar 

  13. Fargin A, Yamamoto K, Cotecchia S et al. Dual coupling of the cloned 5-HT1A receptor to both adenylyl cyclase and phospholipase C is mediated via the same Gi protein. Cell Signal 1991;3:547–57

    PubMed  CAS  Google Scholar 

  14. Zgombick JM, Borden LA, Cochran TL, Kucharewicz SA, Weinshank RL, Branchek TA. Dual coupling of cloned human 5-hydroxytryptamine1D alpha and 5-hydroxytryptamine1D beta receptors stably expressed in murine fibroblasts: inhibition of adenylate cyclase and elevation of intracellular calcium concentrations via pertussis toxin-sensitive G protein(s). Mol Pharmacol 1993;44:575–82

    PubMed  CAS  Google Scholar 

  15. Clark JD, Lin LL, Kriz RW et al. A novel arachidonic acid-selective cytosolic PLA2 contains a Ca(2+)-dependent translocation domain with homology to PKC and GAP. Cell 1991;65:1043–51

    PubMed  CAS  Google Scholar 

  16. Hirabayashi T, Kume K, Hirose K et al. Critical duration of intracellular Ca2+ response required for continuous translocation and activation of cytosolic phospholipase A2. J Biol Chem 1999;274:5163–9

    PubMed  CAS  Google Scholar 

  17. Schievella AR, Regier MK, Smith WL, Lin LL. Calcium-mediated translocation of cytosolic phospholipase A2 to the nuclear envelope and endoplasmic reticulum. J Biol Chem 1995;270:30749–54

    PubMed  CAS  Google Scholar 

  18. Choi EJ, Wong ST, Hinds TR, Storm DR. Calcium and muscarinic agonist stimulation of type I adenylylcyclase in whole cells. J Biol Chem 1992;267:12440–2

    PubMed  CAS  Google Scholar 

  19. Felder CC, Jose PA, Axelrod J. The dopamine-1 agonist, SKF 82526, stimulates phospholipase-C activity independent of adenylate cyclase. J Pharmacol Exp Ther 1989;248:171–5

    PubMed  CAS  Google Scholar 

  20. Sunahara RK, Dessauer CW, Gilman AG. Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 1996;36:461–80

    PubMed  CAS  Google Scholar 

  21. Taussig R, Gilman AG. Mammalian membrane-bound adenylyl cyclases. J Biol Chem 1995;270:1–4

    PubMed  CAS  Google Scholar 

  22. Crawford KW, Frey EA, Cote TE. Angiotensin II receptor recognized by DuP753 regulates two distinct guanine nucleotide-binding protein signaling pathways. Mol Pharmacol 1992;41:154–62

    PubMed  CAS  Google Scholar 

  23. Felder CC, Kanterman RY, Ma AL, Axelrod J. A transfected m1 muscarinic acetylcholine receptor stimulates adenylate cyclase via phosphatidylinositol hydrolysis. J Biol Chem 1989;264:20356–62

    PubMed  CAS  Google Scholar 

  24. Jones SB, Halenda SP, Bylund DB. Alpha 2-adrenergic receptor stimulation of phospholipase A2 and of adenylate cyclase in transfected Chinese hamster ovary cells is mediated by different mechanisms. Mol Pharmacol 1991;39:239–45

    PubMed  CAS  Google Scholar 

  25. Wolsing DH, Rosenbaum JS. The mechanism for the rapid desensitization in bradykinin-stimulated inositol monophosphate production in NG108-15 cells involves interaction of a single receptor with multiple signaling pathways. J Pharmacol Exp Ther 1993;266:253–61

    PubMed  CAS  Google Scholar 

  26. Eason MG, Kurose H, Holt BD, Raymond JR, Liggett SB. Simultaneous coupling of alpha 2-adrenergic receptors to two G-proteins with opposing effects. Subtype-selective coupling of alpha 2C10, alpha 2C4, and alpha 2C2 adrenergic receptors to Gi and Gs. J Biol Chem 1992;267:15795–801

    PubMed  CAS  Google Scholar 

  27. Fraser CM, Arakawa S, McCombie WR, Venter JC. Cloning, sequence analysis, and permanent expression of a human alpha 2-adrenergic receptor in Chinese hamster ovary cells. Evidence for independent pathways of receptor coupling to adenylate cyclase attenuation and activation. J Biol Chem 1989;264:11754–61

    PubMed  CAS  Google Scholar 

  28. Gailly P, Najimi M, Hermans E. Evidence for the dual coupling of the rat neurotensin receptor with pertussis toxin-sensitive and insensitive G-proteins. FEBS Lett 2000;483:109–13

    PubMed  CAS  Google Scholar 

  29. Katz A, Wu D, Simon MI. Subunits beta gamma of heterotrimeric G protein activate beta 2 isoform of phospholipase C. Nature 1992;360:686–9

    PubMed  CAS  Google Scholar 

  30. Vasquez C, Lewis DL. The beta2-adrenergic receptor specifically sequesters Gs but signals through both Gs and Gi/o in rat sympathetic neurons. Neuroscience 2003;118:603–10

    PubMed  CAS  Google Scholar 

  31. Ogino Y, Tanaka K, Shimizu N. Direct evidence for two distinct G proteins coupling with thrombin receptors in human neuroblastoma SH-EP cells. Eur J Pharmacol 1996;316:105–9

    PubMed  CAS  Google Scholar 

  32. Pommier B, Da-Nascimento S, Dumont S et al. The cholecystokininB receptor is coupled to two effector pathways through pertussis toxin-sensitive and -insensitive G proteins. J Neurochem 1999;73:281–8

    PubMed  CAS  Google Scholar 

  33. Shi LC, Wang HY, Horwitz J, Friedman E. Guanine nucleotide regulatory proteins, Gq and Gi1/2, mediate platelet-activating factor-stimulated phosphoinositide metabolism in immortalized hippocampal cells. J Neurochem 1996;67:1478–84

    PubMed  CAS  Google Scholar 

  34. Vallar L, Muca C, Magni M et al. Differential coupling of dopaminergic D2 receptors expressed in different cell types. Stimulation of phosphatidylinositol 4,5-bisphosphate hydrolysis in LtK- fibroblasts, hyperpolarization, and cytosolic-free Ca2+ concentration decrease in GH4C1 cells. J Biol Chem 1990;265:10320–6

    PubMed  CAS  Google Scholar 

  35. Morishita R, Ueda H, Ito H, Takasaki J, Nagata K, Asano T. Involvement of Gq/11 in both integrin signal-dependent and -independent pathways regulating endothelin-induced neural progenitor proliferation. Neurosci Res 2007;59:205–14

    PubMed  CAS  Google Scholar 

  36. Krsmanovic LZ, Mores N, Navarro CE, Arora KK, Catt KJ. An agonist-induced switch in G protein coupling of the gonadotropin-releasing hormone receptor regulates pulsatile neuropeptide secretion. Proc Natl Acad Sci USA 2003;100:2969–74

    PubMed  CAS  Google Scholar 

  37. Hallbrink M, Holmqvist T, Olsson M, Ostenson CG, Efendic S, Langel U. Different domains in the third intracellular loop of the GLP-1 receptor are responsible for Galpha(s) and Galpha(i)/Galpha(o) activation. Biochim Biophys Acta 2001;1546:79–86

    PubMed  CAS  Google Scholar 

  38. Hampson RE, Mu J, Deadwyler SA. Cannabinoid and kappa opioid receptors reduce potassium K current via activation of G(s) proteins in cultured hippocampal neurons. J Neurophysiol 2000;84:2356–64

    PubMed  CAS  Google Scholar 

  39. Sidhu A, Kimura K, Uh M, White BH, Patel S. Multiple coupling of human D5 dopamine receptors to guanine nucleotide binding proteins Gs and Gz. J Neurochem 1998;70:2459–67

    PubMed  CAS  Google Scholar 

  40. Goon GF, Sloss CM, Cunningham MR, Nilsson M, Cadalbert L, Plevin R. G-protein-dependent and -independent pathways regulate proteinase-activated receptor-2 mediated p65 NFkappaB serine 536 phosphorylation in human keratinocytes. Cell Signal 2008;20:1267–74

    Google Scholar 

  41. Abel A, Wittau N, Wieland T, Schultz G, Kalkbrenner F. Cell cycle-dependent coupling of the vasopressin V1a receptor to different G proteins. J Biol Chem 2000;275:32543–51

    PubMed  CAS  Google Scholar 

  42. Alberts GL, Pregenzer JF, Im WB, Zaworski PG, Gill GS. Agonist-induced GTP gamma S-35 binding mediated by human 5-HT2C receptors expressed in human embryonic kidney 293 cells. Eur J Pharmacol 1999;383:311–9

    PubMed  CAS  Google Scholar 

  43. Jin LQ, Wang HY, Friedman E. Stimulated D-1 dopamine receptors couple to multiple G alpha proteins in different brain regions. J Neurochem 2001;78:981–90

    PubMed  CAS  Google Scholar 

  44. Luo X, Zeng WZ, Xu X et al. Alternate coupling of receptors to G(s) and G(i) in pancreatic and submandibular gland cells. J Biol Chem 1999;274:17684–90

    PubMed  CAS  Google Scholar 

  45. Newman-Tancredi A, Cussac D, Audinot V, Pasteau V, Gavaudan S, Millan MJ. G protein activation by human dopamine D3 receptors in high-expressing Chinese hamster ovary cells: A guanosine-5'-O-(3-[35S]thio)- triphosphate binding and antibody study. Mol Pharmacol 1999;55:564–74

    PubMed  CAS  Google Scholar 

  46. Delmas P, Abogadie FC, Milligan G, Buckley NJ, Brown DA. betagamma dimers derived from Go and Gi proteins contribute different components of adrenergic inhibition of Ca2+ channels in rat sympathetic neurones. J Physiol 1999;518 (Pt 1):23–36

    PubMed  CAS  Google Scholar 

  47. Kasahara J, Sugiyama H. Inositol phospholipid metabolism in Xenopus oocytes mediated by endogenous G(o) and Gi proteins. FEBS Lett 1994;355:41–4

    PubMed  CAS  Google Scholar 

  48. Koller E, Gaarde WA, Monia BP. Elucidating cell signaling mechanisms using antisense technology. Trends Pharmacol Sci 2000;21:142–8

    PubMed  CAS  Google Scholar 

  49. Bevan N, Palmer T, Drmota T et al. Functional analysis of a human A(l) adenosine receptor/green fluorescent protein/G(il)alpha fusion protein following stable expression in CHO cells. FEBS Lett 1999;462:61–5

    PubMed  CAS  Google Scholar 

  50. Fong CW, Milligan G. Analysis of agonist function at fusion proteins between the IP prostanoid receptor and cognate, unnatural and chimaeric G- proteins. Biochem J 1999;342:457–63

    PubMed  CAS  Google Scholar 

  51. Grisshammer R, Hermans E. Functional coupling with G alpha(q) and G alpha(il) protein subunits promotes high-affinity agonist binding to the neurotensin receptor NTS-1 expressed in Escherichia coli. FEBS Lett 2001;493:101–5

    PubMed  CAS  Google Scholar 

  52. Seifert R, Wenzel SK, Kobilka BK. GPCR-Galpha fusion proteins: molecular analysis of receptor-G-protein coupling. Trends Pharmacol Sci 1999;20:383–9

    PubMed  CAS  Google Scholar 

  53. Wenzel-Seifert K, Seifert R. Molecular analysis of beta(2)-adrenoceptor coupling to G(s)-, G(i)-, and G(q)-proteins. Mol Pharmacol 2000;58:954–66

    PubMed  CAS  Google Scholar 

  54. Stanasila L, Lim WK, Neubig RR, Pattus F. Coupling efficacy and selectivity of the human mu-opioid receptor expressed as receptor-G alpha fusion proteins in Escherichia coli. J Neurochem 2000;75:1190–9

    PubMed  CAS  Google Scholar 

  55. Massotte D, Brillet K, Kieffer B, Milligan G. Agonists activate Gi1 alpha or Gi2 alpha fused to the human mu opioid receptor differently. J Neurochem 2002;81:1372–82

    PubMed  CAS  Google Scholar 

  56. Lane JR, Powney B, Wise A, Rees S, Milligan G. Protean agonism at the dopamine D2 receptor: (S)-3-(3-hydroxyphenyl)-N-propylpiperidine is an agonist for activation of Go1 but an antagonist/inverse agonist for Gi1,Gi2, and Gi3. Mol Pharmacol 2007;71:1349–59

    PubMed  CAS  Google Scholar 

  57. Milligan G. Insights into ligand pharmacology using receptor-G-protein fusion proteins. Trends Pharmacol Sci 2000;21:24–8

    PubMed  CAS  Google Scholar 

  58. Cordeaux Y, Nickolls SA, Flood LA, Graber SG, Strange PG. Agonist regulation of d2 dopamine receptor/g protein interaction. evidence for agonist selection of g protein subtype. J Biol Chem 2001;276:28667–75

    PubMed  CAS  Google Scholar 

  59. Gazi L, Nickolls SA, Strange PG. Functional coupling of the human dopamine D2 receptor with G alpha i1, G alpha i2, G alpha i3 and G alpha o G proteins: evidence for agonist regulation of G protein selectivity. Br J Pharmacol 2003;138:775–86

    PubMed  CAS  Google Scholar 

  60. Nickolls SA, Strange PG. The influence of G protein subtype on agonist action at D2 dopamine receptors. Neuropharmacology 2004;47:860–72

    PubMed  CAS  Google Scholar 

  61. Kleemann P, Papa D, Vigil-Cruz S, Seifert R. Functional reconstitution of the human chemokine receptor CXCR4 with G(i)/G (o)-proteins in Sf9 insect cells. Naunyn Schmiedebergs Arch Pharmacol 200861 Kleemann P, Papa D, Vigil-Cruz S, Seifert R. Functional reconstitution of the human chemokine receptor CXCR4 with G(i)/G (o)-proteins in Sf9 insect cells. Naunyn Schmiedebergs Arch Pharmacol 2008

    Google Scholar 

  62. Barr AJ, Brass LF, Manning DR. Reconstitution of receptors and GTP-binding regulatory proteins (G proteins) in Sf9 cells. A direct evaluation of selectivity in receptor.G protein coupling. J Biol Chem 1997;272:2223–9

    PubMed  CAS  Google Scholar 

  63. Okada M, Goldman D, Linnoila M, Iwata N, Ozaki N, Northup JK. Comparison of G-protein selectivity of human 5-HT2C and 5-HT1A receptors. Ann N Y Acad Sci 2004;1025:570–7

    PubMed  CAS  Google Scholar 

  64. Parmentier ML, Joly C, Restituito S, Bockaert J, Grau Y, Pin JP. The G protein-coupling profile of metabotropic glutamate receptors, as determined with exogenous G proteins, is independent of their ligand recognition domain. Mol Pharmacol 1998;53:778–86

    PubMed  CAS  Google Scholar 

  65. Masuda K, Itoh H, Sakihama T et al. A combinatorial G protein–coupled receptor reconstitution system on budded baculovirus. Evidence for Galpha and Galphao coupling to a human leukotriene B4 receptor. J Biol Chem 2003;278:24552–62

    PubMed  CAS  Google Scholar 

  66. Doi T, Sugimoto H, Arimoto N, Hiroaki Y, Fujiyoshi Y. Interactions of endothelin receptor subtypes A and B with G(i), G(o), and G(q) in reconstituted phospholipid vesicles. Biochemistry 1999;38:3090–9

    PubMed  CAS  Google Scholar 

  67. Bodor ET, Waldo GL, Hooks SB, Corbitt J, Boyer JL, Harden TK. Purification and functional reconstitution of the human P2Y12 receptor. Mol Pharmacol 2003;64:1210–6

    PubMed  CAS  Google Scholar 

  68. Figler RA, Lindorfer MA, Graber SG, Garrison JC, Linden J. Reconstitution of bovine A1 adenosine receptors and G proteins in phospholipid vesicles: betagamma-subunit composition influences guanine nucleotide exchange and agonist binding. Biochemistry 1997;36:16288–99

    PubMed  CAS  Google Scholar 

  69. Kozasa T, Kaziro Y, Ohtsuka T, Grigg JJ, Nakajima S, Nakajima Y. G protein specificity of the muscarine-induced increase in an inward rectifier potassium current in AtT-20 cells. Neurosci Res 1996;26:289–97

    PubMed  CAS  Google Scholar 

  70. Banihashemi B, Albert PR. Dopamine-D2S receptor inhibition of calcium influx, adenylyl cyclase, and mitogen-activated protein kinase in pituitary cells: distinct Galpha and Gbetagamma requirements. Mol Endocrinol 2002;16:2393–404

    PubMed  CAS  Google Scholar 

  71. Tian L, Kammermeier PJ. G protein coupling profile of mGluR6 and expression of G alpha proteins in retinal ON bipolar cells. Vis Neurosci 2006;23:909–16

    PubMed  Google Scholar 

  72. Clark MJ, Furman CA, Gilson TD, Traynor JR. Comparison of the relative efficacy and potency of mu-opioid agonists to activate Galpha(i/o) proteins containing a pertussis toxin-insensitive mutation. J Pharmacol Exp Ther 2006;317:858–64

    PubMed  CAS  Google Scholar 

  73. Anavi-Goffer S, Fleischer D, Hurst DP et al. Helix 8 Leu in the CB1 cannabinoid receptor contributes to selective signal transduction mechanisms. J Biol Chem 2007;282:25100–13

    PubMed  CAS  Google Scholar 

  74. Alberts GL, Pregenzer JF, Im WB. Advantages of heterologous expression of human D2long dopamine receptors in human neuroblastoma SH-SY5Y over human embryonic kidney 293 cells. Br J Pharmacol 2000;131:514–20

    PubMed  CAS  Google Scholar 

  75. Allgeier A, Offermanns S, Van-Sande J, Spicher K, Schultz G, Dumont JE. The human thyrotropin receptor activates G-proteins Gs and Gq/11. J Biol Chem 1994;269:13733–5

    PubMed  CAS  Google Scholar 

  76. Brydon L, Roka F, Petit L et al. Dual signaling of human Mel1a melatonin receptors via G(i2), G(i3), and G(q/11) proteins. Mol Endocrinol 1999;13:2025–38

    PubMed  CAS  Google Scholar 

  77. Chakrabarti S, Prather PL, Yu L, Law PY, Loh HH. Expression of the mu-opioid receptor in CHO cells: ability of mu-opioid ligands to promote alpha-azidoanilido[32P]GTP labeling of multiple G protein alpha subunits. J Neurochem 1995;64:2534–43

    PubMed  CAS  Google Scholar 

  78. Selkirk JV, Price GW, Nahorski SR, Challiss RAJ. Cell type-specific differences in the coupling of recombinant mGlu1 alpha receptors to endogenous G protein sub-populations. Neuropharmacology 2001;40:645–56

    PubMed  CAS  Google Scholar 

  79. Hermans E, Saunders R, Selkirk JV, Mistry R, Nahorski SR, Challiss RAJ. Complex involvement of pertussis toxin-sensitive G proteins in the regulation of type 1 alpha metabotropic glutamate receptor signaling in baby hamster kidney cells. Mol Pharmacol 2000;58:352–60

    PubMed  CAS  Google Scholar 

  80. Herrlich A, Kuhn B, Grosse R, Schmid A, Schultz G, Gudermann T. Involvement of Gs and Gi proteins in dual coupling of the luteinizing hormone receptor to adenylyl cyclase and phospholipase C. J Biol Chem 1996;271:16764–72

    PubMed  CAS  Google Scholar 

  81. Kuhn B, Schmid A, Harteneck C, Gudermann T, Schultz G. G proteins of the Gq family couple the H2 histamine receptor to phospholipase C. Mol Endocrinol 1996;10:1697–707

    PubMed  CAS  Google Scholar 

  82. Lawler OA, Miggin SM, Kinsella BT. Protein kinase A-mediated phosphorylation of serine 357 of the mouse prostacyclin receptor regulates its coupling to G(s)-, to G(i)-, and to G(q)-coupled effector signaling. J Biol Chem 2001;276:33596–607

    PubMed  CAS  Google Scholar 

  83. Offermanns S, Wieland T, Homann D et al. Transfected muscarinic acetylcholine receptors selectively couple to Gi-type G proteins and Gq/11. Mol Pharmacol 1994;45:890–8

    PubMed  CAS  Google Scholar 

  84. Windh RT, Lee MJ, Hla T, An SZ, Barr AJ, Manning DR. Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J Biol Chem 1999;274:27351–8

    PubMed  CAS  Google Scholar 

  85. Zaworski PG, Alberts GL, Pregenzer JF, Bin I, Slightom JL, Gill GS. Efficient functional coupling of the human D3 dopamine receptor to G(o) subtype of G proteins in SH-SY5Y cells. Br J Pharmacol 1999;128:1181–8

    PubMed  CAS  Google Scholar 

  86. Cussac D, Newman-Tancredi A, Duqueyroix D, Pasteau V, Millan MJ. Differential activation of Gq/1 and Gi(3) proteins at 5- hydroxytryptamine(2C) receptors revealed by antibody capture assays: influence of receptor reserve and relationship to agonist-directed trafficking. Mol Pharmacol 2002;62:578–89

    PubMed  CAS  Google Scholar 

  87. Mannoury LC, Elmestikawy S, Hanoun N, Hamon M, Lanfumey L. Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol 2006;70:1013–21

    Google Scholar 

  88. Newman-Tancredi A, Cussac D, Marini L, Millan MJ. Antibody capture assay reveals bell-shaped concentration- response isotherms for h5-HT1A receptor-mediated G alpha(i3) activation: Conformational selection by high-efficacy agonists, and relationship to trafficking of receptor signaling. Mol Pharmacol 2002;62:590–601

    PubMed  CAS  Google Scholar 

  89. DeLapp NW, McKinzie JH, Sawyer BD et al. Determination of [35S]guanosine-5'-O-(3-thio)triphosphate binding mediated by cholinergic muscarinic receptors in membranes from Chinese hamster ovary cells and rat striatum using an anti-G protein scintillation proximity assay. J Pharmacol Exp Ther 1999;289:946–55

    PubMed  CAS  Google Scholar 

  90. Mannoury la Cour C, Vidal S, Pasteau V, Cussac D, Millan MJ. Dopamine D1 receptor coupling to Gs/olf and Gq in rat striatum and cortex: a scintillation proximity assay (SPA)/antibody-capture characterization of benzazepine agonists. Neuropharmacology 2007;52:1003–14

    PubMed  CAS  Google Scholar 

  91. Mannoury la Cour C, Herbelles C, Pasteau V, de Nanteuil G, Millan MJ. Influence of positive allosteric modulators on GABA(B) receptor coupling in rat brain: a scintillation proximity assay characterisation of G protein subtypes. J Neurochem 2008;105:308–23

    PubMed  Google Scholar 

  92. Mukhopadhyay S, Howlett AC. Chemically distinct ligands promote differential CB1 cannabinoid receptor-Gi protein interactions. Mol Pharmacol 2005;67:2016–24

    PubMed  CAS  Google Scholar 

  93. Magga J, Bart G, Oker-Blom C, Kukkonen JP, Akerman KE, Nasman J. Agonist potency differentiates G protein activation and Ca2+ signalling by the orexin receptor type 1. Biochem Pharmacol 2006;71:827–36

    PubMed  CAS  Google Scholar 

  94. Bondi CD, McKeon RM, Bennett JM et al. MT1 melatonin receptor internalization underlies melatonin-induced morphologic changes in Chinese hamster ovary cells and these processes are dependent on Gi proteins, MEK 1/2 and microtubule modulation. J Pineal Res 2008;44:288–98

    PubMed  CAS  Google Scholar 

  95. Chakrabarti S, Regec A, Gintzler AR. Biochemical demonstration of mu-opioid receptor association with Gsalpha: enhancement following morphine exposure. Brain Res Mol Brain Res 2005;135:217–24

    PubMed  CAS  Google Scholar 

  96. Gibson SK, Gilman AG. Gialpha and Gbeta subunits both define selectivity of G protein activation by alpha2-adrenergic receptors. Proc Natl Acad Sci USA 2006;103:212–7

    PubMed  CAS  Google Scholar 

  97. Nobles M, Benians A, Tinker A. Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc Natl Acad Sci USA 2005;102:18706–11

    PubMed  CAS  Google Scholar 

  98. Hasbi A, Nguyen T, Fan T et al. Trafficking of preassembled opioid mu-delta heterooligomer-Gz signaling complexes to the plasma membrane: coregulation by agonists. Biochemistry 2007;46:12997–3009

    PubMed  CAS  Google Scholar 

  99. Tateyama M, Kubo Y. Dual signaling is differentially activated by different active states of the metabotropic glutamate receptor 1alpha. Proc Natl Acad Sci USA 2006;103:1124–8

    PubMed  CAS  Google Scholar 

  100. Alves ID, Salamon Z, Varga E, Yamamura HI, Tollin G, Hruby VJ. Direct observation of G-protein binding to the human delta-opioid receptor using plasmon-waveguide resonance spectroscopy. J Biol Chem 2003;278:48890–7

    PubMed  CAS  Google Scholar 

  101. Alves ID, Cowell SM, Salamon Z, Devanathan S, Tollin G, Hruby VJ. Different structural states of the proteolipid membrane are produced by ligand binding to the human delta-opioid receptor as shown by plasmon-waveguide resonance spectroscopy. Mol Pharmacol 2004;65:1248–57

    PubMed  CAS  Google Scholar 

  102. Georgieva T, Devanathan S, Stropova D et al. Unique agonist-bound cannabinoid CB1 receptor conformations indicate agonist specificity in signaling. Eur J Pharmacol 2008;581:19–29

    PubMed  CAS  Google Scholar 

  103. Hruby VJ, Tollin G. Plasmon-waveguide resonance (PWR) spectroscopy for directly viewing rates of GPCR/G-protein interactions and quantifying affinities. Curr Opin Pharmacol 2007;7:507–14

    PubMed  CAS  Google Scholar 

  104. Chabre O, Conklin BR, Brandon S, Bourne HR, Limbird LE. Coupling of the alpha 2A-adrenergic receptor to multiple G-proteins. A simple approach for estimating receptor-G-protein coupling efficiency in a transient expression system. J Biol Chem 1994;269:5730–4

    PubMed  CAS  Google Scholar 

  105. Cordeaux Y, Briddon SJ, Megson AE, McDonnell J, Dickenson JM, Hill SJ. Influence of receptor number on functional responses elicited by agonists acting at the human adenosine A(1) receptor: evidence for signaling pathway-dependent changes in agonist potency and relative intrinsic activity. Mol Pharmacol 2000;58:1075–84

    PubMed  CAS  Google Scholar 

  106. Mullaney I, Carr IC, Milligan G. Overexpression of G(s)alpha in NG108-15, neuroblastomaXglioma cells: effects on receptor regulation of the stimulatory adenylyl cyclase cascade. FEBS Lett 1996;397:325–30

    PubMed  CAS  Google Scholar 

  107. Offermanns S, Iida-Klein A, Segre GV, Simon MI. G alpha q family members couple parathyroid hormone (PTH)/PTH-related peptide and calcitonin receptors to phospholipase C in COS-7 cells. Mol Endocrinol 1996;10:566–74

    PubMed  CAS  Google Scholar 

  108. Palmer TM, Gettys TW, Stiles GL. Differential interaction with and regulation of multiple G-proteins by the rat A3 adenosine receptor. J Biol Chem 1995;270:16895–902

    PubMed  CAS  Google Scholar 

  109. Stanislaus D, Ponder S, Ji TH, Conn PM. Gonadotropin-releasing hormone receptor couples to multiple G proteins in rat gonadotrophs and in GGH3 cells: evidence from palmitoylation and overexpression of G proteins. Biol Reprod 1998;59:579–86

    PubMed  CAS  Google Scholar 

  110. Nasman J, Kukkonen JP, Ammoun S, Akerman KEO. Role of G-protein availability in differential signaling by alpha 2-adrenoceptors. Biochem Pharmacol 2001;62:913–22

    PubMed  CAS  Google Scholar 

  111. Sidhu A, sullivan M, Kohout T, Balen P, Fishman P. D1 dopamine receptors can interact with both stimulatory and inhibitory guanine nucleotide binding proteins. J Neurochem 1991;57:1445–51

    PubMed  CAS  Google Scholar 

  112. Lauckner JE, Hille B, Mackie K. The cannabinoid agonist WIN55,212-2 increases intracellular calcium via CB1 receptor coupling to Gq/11 G proteins. Proc Natl Acad Sci USA 2005;102:19144–9

    PubMed  CAS  Google Scholar 

  113. Saidak Z, Blake-Palmer K, Hay DL, Northup JK, Glass M. Differential activation of G-proteins by mu-opioid receptor agonists. Br J Pharmacol 2006;147:671–80

    PubMed  CAS  Google Scholar 

  114. Cordeaux Y, Ijzerman AP, Hill SJ. Coupling of the human A1 adenosine receptor to different heterotrimeric G proteins: evidence for agonist-specific G protein activation. Br J Pharmacol 2004;143:705–14

    PubMed  CAS  Google Scholar 

  115. Gudermann T, Schoneberg T, Schultz G. Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu Rev Neurosci 1997;20:399–427

    PubMed  CAS  Google Scholar 

  116. Schneider H, Feyen JH, Seuwen K. A C-terminally truncated human parathyroid hormone receptor is functional and activates multiple G proteins. FEBS Lett 1994;351:281–5

    PubMed  CAS  Google Scholar 

  117. Burt AR, Sautel M, Wilson MA, Rees S, Wise A, Milligan G. Agonist occupation of an alpha(2A)-adrenoreceptor-G(i1)alpha fusion protein results in activation of both receptor-linked and endogenous G(i) proteins - Comparisons of their contributions to GTPase activity and signal transduction and analysis of receptor-G protein activation stoichiometry. J Biol Chem 1998;273:10367–75

    PubMed  CAS  Google Scholar 

  118. Esbenshade TA, Wang X, Williams NG, Minneman KP. Inducible expression of alpha 1B-adrenoceptors in DDT1 MF-2 cells: comparison of receptor density and response. Eur J Pharmacol 1995;289:305–10

    PubMed  CAS  Google Scholar 

  119. Kukkonen JP, Nasman J, Akerman KEO. Modelling of promiscuous receptor-G(i)/G(s) – protein coupling and effector response. Trends Pharmacol Sci 2001;22:616–22

    PubMed  CAS  Google Scholar 

  120. Theroux TL, Esbenshade TA, Peavy RD, Minneman KP. Coupling efficiencies of human alpha 1-adrenergic receptor subtypes: titration of receptor density and responsiveness with inducible and repressible expression vectors. Mol Pharmacol 1996;50:1376–87

    PubMed  CAS  Google Scholar 

  121. Johnson EA, Oldfield S, Braksator E et al. Agonist-selective mechanisms of mu-opioid receptor desensitization in human embryonic kidney 293 cells. Mol Pharmacol 2006;70:676–85

    PubMed  CAS  Google Scholar 

  122. Roy AA, Nunn C, Ming H et al. Up-regulation of endogenous RGS2 mediates cross-desensitization between Gs and Gq signaling in osteoblasts. J Biol Chem 2006;281:32684–93

    PubMed  CAS  Google Scholar 

  123. Kudlacek O, Just H, Korkhov VM et al. The human D2 dopamine receptor synergizes with the A2A adenosine receptor to stimulate adenylyl cyclase in PC12 cells. Neuropsychopharmacology 2003;28:1317–27

    PubMed  CAS  Google Scholar 

  124. Sato M, Blumer JB, Simon V, Lanier SM. Accessory proteins for G proteins: partners in signaling. Annu Rev Pharmacol Toxicol 2006;46:151–87

    PubMed  CAS  Google Scholar 

  125. Zhu X, Gilbert S, Birnbaumer M, Birnbaumer L. Dual signaling potential is common among Gs-coupled receptors and dependent on receptor density. Mol Pharmacol 1994;56:460–9

    Google Scholar 

  126. Sato M, Horinouchi T, Hutchinson DS, Evans BA, Summers RJ. Ligand-directed signaling at the beta3-adrenoceptor produced by 3-(2-ethylphenoxy)-1-[(1,S)-1,2,3,4-tetrahydronapth-1-ylamino]-2S-2-propan ol oxalate (SR59230A) relative to receptor agonists. Mol Pharmacol 2007;72:1359–68

    PubMed  CAS  Google Scholar 

  127. Nelson CP, Nahorski SR, Challiss RA. Constitutive activity and inverse agonism at the M2 muscarinic acetylcholine receptor. J Pharmacol Exp Ther 2006;316:279–88

    PubMed  CAS  Google Scholar 

  128. Kenakin T. Collateral efficacy in drug discovery: taking advantage of the good (allosteric) nature of 7TM receptors. Trends Pharmacol Sci 2007;28:407–15

    PubMed  CAS  Google Scholar 

  129. Kilts JD, Gerhardt MA, Richardson MD et al. Beta(2)-adrenergic and several other G protein-coupled receptors in human atrial membranes activate both G(s) and G(i). Circ Res 2000;87:705–9

    PubMed  CAS  Google Scholar 

  130. Klein J, Reymann KG, Riedel G. Activation of phospholipases C and D by the novel metabotropic glutamate receptor agonist tADA. Neuropharmacology 1997;36:261–3

    PubMed  CAS  Google Scholar 

  131. Laugwitz KL, Allgeier A, Offermanns S et al. The human thyrotropin receptor: a heptahelical receptor capable of stimulating members of all four G protein families. Proc Natl Acad Sci USA 1996;93:116–20

    PubMed  CAS  Google Scholar 

  132. Santos-Alvarez J, Sanchez-Margalet V. G protein G alpha(q/11) and G alpha(i1,2) are activated by pancreastatin receptors in rat liver: studies with GTP-gamma S- 35 and azido-GTP-alpha-P-32. J Cell Biochem 1999;73:469–77

    PubMed  CAS  Google Scholar 

  133. Bosier B, Tilleux S, Najimi M, Lambert DM, Hermans E. Agonist selective modulation of tyrosine hydroxylase expression by cannabinoid ligands in a murine neuroblastoma cell line. J Neurochem 2007;102:1996–2007

    PubMed  CAS  Google Scholar 

  134. Mottola DM, Kilts JD, Lewis MM et al. Functional selectivity of dopamine receptor agonists. I. Selective activation of postsynaptic dopamine D2 receptors linked to adenylate cyclase. J Pharmacol Exp Ther 2002;301:1166–78

    PubMed  CAS  Google Scholar 

  135. Sneddon WB, Yang Y, Ba J, Harinstein LM, Friedman PA. Extracellular signal-regulated kinase activation by parathyroid hormone in distal tubule cells. Am J Physiol Renal Physiol 2007;292:F1028–F1034

    PubMed  CAS  Google Scholar 

  136. Magocsi M, Vizi ES, Selmeczy Z, Brozik A, Szelenyi J. Multiple G-protein-coupling specificity of beta-adrenoceptor in macrophages. Immunology 2007;122:503–13

    PubMed  CAS  Google Scholar 

  137. Herrero I, Miras PM, Sanchez-Prieto J. Functional switch from facilitation to inhibition in the control of glutamate release by metabotropic glutamate receptors. J Biol Chem 1998;273:1951–8

    PubMed  CAS  Google Scholar 

  138. Palanche T, Ilien B, Zoffmann S et al. The neurokinin A receptor activates calcium and cAMP responses through distinct conformational states. J Biol Chem 2001;276:34853–61

    PubMed  CAS  Google Scholar 

  139. Paquette JJ, Wang HY, Bakshi K, Olmstead MC. Cannabinoid-induced tolerance is associated with a CB1 receptor G protein coupling switch that is prevented by ultra-low dose rimonabant. Behav Pharmacol 2007;18:767–76

    PubMed  CAS  Google Scholar 

  140. Mannoury LC, Elmestikawy S, Hanoun N, Hamon M, Lanfumey L. Regional differences in the coupling of 5-hydroxytryptamine-1A receptors to G proteins in the rat brain. Mol Pharmacol 2006;70:1013–21

    Google Scholar 

  141. Lefkowitz RJ, Cotecchia S, Samama P, Costa T. Constitutive activity of receptors coupled to guanine nucleotide regulatory proteins. Trends Pharmacol Sci 1993;14:303–7

    PubMed  CAS  Google Scholar 

  142. Kenakin T. Agonist-specific receptor conformations. Trends Pharmacol Sci 1997;18:416–7

    PubMed  CAS  Google Scholar 

  143. Daeffler L, Landry Y. Inverse agonism at heptahelical receptors: concept, experimental approach and therapeutic potential. Fund Clin Pharmacol 2000;14:73–87

    CAS  Google Scholar 

  144. Kenakin T. Inverse, protean, and ligand-selective agonism: matters of receptor conformation. FASEB J 2001;15:598–611

    PubMed  CAS  Google Scholar 

  145. Samama P, Cotecchia S, Costa T, Lefkowitz RJ. A mutation-induced activated state of the beta 2-adrenergic receptor. Extending the ternary complex model. J Biol Chem 1993;268:4625–36

    PubMed  CAS  Google Scholar 

  146. Kenakin T. Drug efficacy at G protein-coupled receptors. Annu Rev Pharmacol Toxicol 2002;42:349–79

    PubMed  CAS  Google Scholar 

  147. Kenakin T. Ligand-selective receptor conformations revisited: the promise and the problem. Trends Pharmacol Sci 2003;24:346–54

    PubMed  CAS  Google Scholar 

  148. Krumins AM, Barber R. The stability of the agonist beta2-adrenergic receptor-Gs complex: evidence for agonist-specific states. Mol Pharmacol 1997;52:144–54

    PubMed  CAS  Google Scholar 

  149. Scaramellini C, Leff P. A three-state receptor model: Predictions of multiple agonist pharmacology for the same receptor type. Ann N Y Acad Sci 1998;861:97–103

    PubMed  CAS  Google Scholar 

  150. Gether U. Uncovering molecular mechanisms involved in activation of G protein-coupled receptors. Endocr Rev 2000;21:90–113

    PubMed  CAS  Google Scholar 

  151. Gudermann T, Kalkbrenner F, Schultz G. Diversity and selectivity of receptor-G protein interaction. Annu Rev Pharmacol Toxicol 1996;36429:59-59

    Google Scholar 

  152. Wess J. G-protein-coupled receptors: Molecular mechanisms involved in receptor activation and selectivity of G-protein recognition. FASEB J 1997;11:346–54

    PubMed  CAS  Google Scholar 

  153. Wess J. Molecular basis of receptor/G-protein-coupling selectivity. Pharmacol Ther 1998;80:231–64

    PubMed  CAS  Google Scholar 

  154. Iida-Klein A, Guo J, Xie LY et al. Truncation of the carboxyl-terminal region of the rat parathyroid hormone (PTH)/PTH-related peptide receptor enhances PTH stimulation of adenylyl cyclase but not phospholipase C. J Biol Chem 1995;270:8458–65

    PubMed  CAS  Google Scholar 

  155. Kosugi S, Mori T. The intracellular region adjacent to plasma membrane (residues 684-692) of the thyrotropin receptor is important for phosphoinositide signaling but not for agonist-induced adenylate cyclase activation. Biochem Biophys Res Commun 1994;199:1497–503

    PubMed  CAS  Google Scholar 

  156. Liggett SB, Caron MG, Lefkowitz RJ, Hnatowich M. Coupling of a mutated form of the human beta 2-adrenergic receptor to Gi and Gs. Requirement for multiple cytoplasmic domains in the coupling process. J Biol Chem 1991;266:4816–21

    PubMed  CAS  Google Scholar 

  157. Nussenzveig DR, Thaw CN, Gershengorn MC. Inhibition of inositol phosphate second messenger formation by intracellular loop one of a human calcitonin receptor. Expression and mutational analysis of synthetic receptor genes. J Biol Chem 1994;269:28123–9

    PubMed  CAS  Google Scholar 

  158. Wiens BL, Nelson CS, Neve KA. Contribution of serine residues to constitutive and agonist-induced signaling via the D2S dopamine receptor: evidence for multiple, agonist-specific active conformations. Mol Pharmacol 1998;54:435–44

    PubMed  CAS  Google Scholar 

  159. Conchon S, Barrault MB, Miserey S, Corvol P, Clauser E. The C-terminal third intracellular loop of the rat AT1A angiotensin receptor plays a key role in G protein coupling specificity and transduction of the mitogenic signal. J Biol Chem 1997;272:25566–72

    PubMed  CAS  Google Scholar 

  160. Eason MG, Liggett SB. Identification of a Gs coupling domain in the amino terminus of the third intracellular loop of the alpha 2A-adrenergic receptor. Evidence for distinct structural determinants that confer Gs versus Gi coupling. J Biol Chem 1995;270:24753–60

    PubMed  CAS  Google Scholar 

  161. Eason MG, Liggett SB. Chimeric mutagenesis of putative G-protein coupling domains of the alpha2A-adrenergic receptor. Localization of two redundant and fully competent gi coupling domains. J Biol Chem 1996;271:12826–32

    PubMed  CAS  Google Scholar 

  162. Francesconi A, Duvoisin RM. Role of the second and third intracellular loops of metabotropic glutamate receptors in mediating dual signal transduction activation. J Biol Chem 1998;273:5615–24

    PubMed  CAS  Google Scholar 

  163. Gilchrist RL, Ryu KS, Ji I, Ji TH. The luteinizing hormone/chorionic gonadotropin receptor has distinct transmembrane conductors for cAMP and inositol phosphate signals. J Biol Chem 1996;271:19283–7

    PubMed  CAS  Google Scholar 

  164. Wade SM, Lim WK, Lan KL, Chung DA, Nanamori M, Neubig RR. G(i) activator region of alpha(2A)-adrenergic receptors: Distinct basic residues mediate G(i) versus G(s) activation. Mol Pharmacol 1999;56:1005–13

    PubMed  CAS  Google Scholar 

  165. Lane JR, Powney B, Wise A, Rees S, Milligan G. G protein coupling and ligand selectivity of the D2L and D3 dopamine receptors. J Pharmacol Exp Ther 2008;325:319–30

    PubMed  CAS  Google Scholar 

  166. Kushwaha N, Harwood SC, Wilson AM et al. Molecular determinants in the second intracellular loop of the 5-hydroxytryptamine-1A receptor for G-protein coupling. Mol Pharmacol 2006;69:1518–26

    PubMed  CAS  Google Scholar 

  167. Hoare S, Copland JA, Strakova Z et al. The proximal portion of the COOH terminus of the oxytocin receptor is required for coupling to G(q), but not G(i) - Independent mechanisms for elevating intracellular calcium concentrations from intracellular stores. J Biol Chem 1999;274:28682–9

    PubMed  CAS  Google Scholar 

  168. Najimi M, Gailly P, Maloteaux JM, Hermans E. Distinct regions of the high affinity neurotensin receptor mediate the functional coupling with PTx sensitive and insensitive G proteins. FEBS Lett 2002;512:329–33

    PubMed  CAS  Google Scholar 

  169. Okamoto Y, Ninomiya H, Tanioka M, Sakamoto A, Miwa S, Masaki T. Cysteine residues in the carboxyl terminal domain of the endothelin-B receptor are required for coupling with G-proteins. J Cardiovasc Pharmacol 1998;31 Suppl 1:S230–S232

    PubMed  CAS  Google Scholar 

  170. Katada S, Tanaka M, Touhara K. Structural determinants for membrane trafficking and G protein selectivity of a mouse olfactory receptor. J Neurochem 2004;90:1453–63

    PubMed  CAS  Google Scholar 

  171. Tateyama M, Kubo Y. Coupling profile of the metabotropic glutamate receptor 1alpha is regulated by the C-terminal domain. Mol Cell Neurosci 2007;34:445–52

    PubMed  CAS  Google Scholar 

  172. Mukhopadhyay S, Howlett AC. CB1 receptor-G protein association. Subtype selectivity is determined by distinct intracellular domains. Eur J Biochem 2001;268:499–505

    PubMed  CAS  Google Scholar 

  173. Iida-Klein A, Guo J, Takemura M et al. Mutations in the second cytoplasmic loop of the rat parathyroid hormone (PTH)/PTH-related protein receptor result in selective loss of PTH-stimulated phospholipase C activity. J Biol Chem 1997;272:6882–9

    PubMed  CAS  Google Scholar 

  174. Hiltscher R, Seuwen K, Boddeke HW, Sommer B, Laurie DJ. Functional coupling of human metabotropic glutamate receptor hmGlu1d: comparison to splice variants hmGlu1a and -1b. Neuropharmacology 1998;37:827–37

    PubMed  CAS  Google Scholar 

  175. Joly C, Gomeza J, Brabet I, Curry K, Bockaert J, Pin JP. Molecular, functional, and pharmacological characterization of the metabotropic glutamate receptor type 5 splice variants: comparison with mGluR1. J Neurosci 1995;15:3970–81

    PubMed  CAS  Google Scholar 

  176. Shyu JF, Inoue D, Baron R, Horne WC. The deletion of 14 amino acids in the seventh transmembrane domain of a naturally occurring calcitonin receptor isoform alters ligand binding and selectively abolishes coupling to phospholipase C. J Biol Chem 1996;271:31127–34

    PubMed  CAS  Google Scholar 

  177. Mary S, Stephan D, Gomeza J, Bockaert J, Pruss RM, Pin JP. The rat mGlu1d receptor splice variant shares functional properties with the other short isoforms of mGlu1 receptor. Eur J Pharmacol 1997;335:65–72

    PubMed  CAS  Google Scholar 

  178. Pindon A, van-Hecke G, van-Gompel P, Lesage AS, Leysen JE, Jurzak M. Differences in signal transduction of two 5-HT4 receptor splice variants: compound specificity and dual coupling with Galphas- and Galphai/o-proteins. Mol Pharmacol 2002;61:85–96

    PubMed  CAS  Google Scholar 

  179. Namba T, Sugimoto Y, Negishi M et al. Alternative splicing of C-terminal tail of prostaglandin E receptor subtype EP3 determines G-protein specificity. Nature 1993;365:166–70

    PubMed  CAS  Google Scholar 

  180. Negishi M, Namba T, Sugimoto Y et al. Opposite coupling of prostaglandin E receptor EP3C with Gs and G(o). Stimulation of Gs and inhibition of G(o). J Biol Chem 1993;268:26067–70

    PubMed  CAS  Google Scholar 

  181. Hatae N, Aksentijevich N, Zemkova HW, Kretschmannova K, Tomic M, Stojilkovic SS. Cloning and functional identification of novel endothelin receptor type A isoforms in pituitary. Mol Endocrinol 2007;21:1192–204

    PubMed  CAS  Google Scholar 

  182. Germano PM, Le SV, Oh DS et al. Differential coupling of the PAC1 SV1 splice variant on human colonic tumors to the activation of intracellular cAMP but not intracellular Ca2+ does not activate tumor proliferation. J Mol Neurosci 2004;22:83–92

    PubMed  Google Scholar 

  183. Perez DM, Hwa J, Gaivin R, Mathur M, Brown F, Graham RM. Constitutive activation of a single effector pathway: evidence for multiple activation states of a G protein-coupled receptor. Mol Pharmacol 1996;49:112–22

    PubMed  CAS  Google Scholar 

  184. Swaminath G, Xiang Y, Lee TW, Steenhuis J, Parnot C, Kobilka BK. Sequential binding of agonists to the beta2 adrenoceptor. Kinetic evidence for intermediate conformational states. J Biol Chem 2004;279:686–91

    PubMed  CAS  Google Scholar 

  185. Abadji V, Lucas LJ, Chin C, Kendall DA. Involvement of the carboxyl terminus of the third intracellular loop of the cannabinoid CB1 receptor in constitutive activation of Gs. J Neurochem 1999;72:2032–8

    PubMed  CAS  Google Scholar 

  186. Barroso S, Richard F, Nicolas-Etheve D, Kitabgi P, Labbe-Jullie C. Constitutive activation of the neurotensin receptor 1 by mutation of Phe(358) in Helix seven. Br J Pharmacol 2002;135:997–1002

    PubMed  CAS  Google Scholar 

  187. Chaipatikul V, Loh HH, Law PY. Ligand-selective activation of mu-oid receptor: demonstrated with deletion and single amino acid mutations of third intracellular loop domain. J Pharmacol Exp Ther 2003;305:909–18

    PubMed  CAS  Google Scholar 

  188. Surratt CK, Johnson PS, Moriwaki A et al. -mu opiate receptor. Charged transmembrane domain amino acids are critical for agonist recognition and intrinsic activity. J Biol Chem 1994;269:20548–53

    PubMed  CAS  Google Scholar 

  189. Hosohata Y, Varga EV, Stropova D et al. Mutation W284L of the human delta opioid receptor reveals agonist specific receptor conformations for G protein activation. Life Sci 2001;68:2233–42

    PubMed  CAS  Google Scholar 

  190. Kenakin T. New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov 2005;4:919–27

    PubMed  CAS  Google Scholar 

  191. Kobilka BK, Deupi X. Conformational complexity of G-protein-coupled receptors. Trends Pharmacol Sci 2007;28:397–406

    PubMed  CAS  Google Scholar 

  192. Hoffmann C, Zurn A, Bunemann M, Lohse MJ. Conformational changes in G-protein-coupled receptors-the quest for functionally selective conformations is open. Br J Pharmacol 2008;153 Suppl 1:S358–S366

    PubMed  CAS  Google Scholar 

  193. Vauquelin G, Van L, I. G protein-coupled receptors: a count of 1001 conformations. Fundam Clin Pharmacol 2005;19:45–56

    PubMed  CAS  Google Scholar 

  194. Perez DM, Karnik SS. Multiple signaling states of G-protein-coupled receptors. Pharmacol Rev 2005;57:147–61

    PubMed  CAS  Google Scholar 

  195. Lopez-Gimenez JF, Villazon M, Brea J et al. Multiple conformations of native and recombinant human 5-hydroxytryptamine(2a) receptors are labeled by agonists and discriminated by antagonists. Mol Pharmacol 2001;60:690–9

    PubMed  CAS  Google Scholar 

  196. Evans PD, Robb S, Cheek TR et al. Agonist-specific coupling of G-protein-coupled receptors to second-messenger systems. Prog Brain Res 1995;1062:59–68

    Google Scholar 

  197. Kenakin T. Agonist-receptor efficacy. II. Agonist trafficking of receptor signals. Trends Pharmacol Sci 1995;16:232–8

    PubMed  CAS  Google Scholar 

  198. Urban JD, Clarke WP, von Zastrow M et al. Functional selectivity and classical concepts of quantitative pharmacology. J Pharmacol Exp Ther 2007;320:1–13

    PubMed  CAS  Google Scholar 

  199. MacKinnon AC, Waters C, Jodrell D, Haslett C, Sethi T. Bombesin and substance P analogues differentially regulate G-protein coupling to the bombesin receptor. Direct evidence for biased agonism. J Biol Chem 2001;276:28083–91

    PubMed  CAS  Google Scholar 

  200. Robb S, Cheek TR, Hannan FL, Hall LM, Midgley JM, Evans PD. Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J 1994;13:1325–30

    PubMed  CAS  Google Scholar 

  201. Spengler D, Waeber C, Pantaloni C et al. Differential signal transduction by five splice variants of the PACAP receptor. Nature 1993;365:170–5

    PubMed  CAS  Google Scholar 

  202. Takasu H, Gardella TJ, Luck MD, Potts JT, Bringhurst FR. Amino-terminal modifications of human parathyroid hormone (PTH) selectively alter phospholipase C signaling via the type 1 PTH receptor: Implications for design of signal-specific PTH ligands. Biochemistry 1999;38:13453–60

    PubMed  CAS  Google Scholar 

  203. Brink CB, Wade SM, Neubig RR. Agonist-directed trafficking of porcine alpha(2A)-adrenergic receptor signaling in Chinese hamster ovary cells: l-isoproterenol selectively activates G(s). J Pharmacol Exp Ther 2000;294:539–47

    PubMed  CAS  Google Scholar 

  204. Eason MG, Jacinto MT, Liggett SB. Contribution of ligand structure to activation of alpha 2-adrenergic receptor subtype coupling to Gs. Mol Pharmacol 1994;45:696–702

    PubMed  CAS  Google Scholar 

  205. Rudling JE, Richardson J, Evans PD. A comparison of agonist-specific coupling of cloned human alpha(2)-adrenoceptor subtypes. Br J Pharmacol 2000;131:933–41

    PubMed  CAS  Google Scholar 

  206. Pauwels PJ, Rauly I, Wurch T. Dissimilar pharmacological responses by a new series of imidazoline derivatives at precoupled and ligand-activated alpha 2A-adrenoceptor states: evidence for effector pathway-dependent differential antagonism. J Pharmacol Exp Ther 2003;305:1015–23

    PubMed  CAS  Google Scholar 

  207. Galandrin S, Oligny-Longpre G, Bonin H, Ogawa K, Gales C, Bouvier M. Conformational rearrangements and signaling cascades involved in ligand-biased MAPK signaling through the {beta}1-adrenergic receptor. Mol Pharmacol 2008;74:162–72.

    PubMed  CAS  Google Scholar 

  208. Ghanouni P, Gryczynski Z, Steenhuis JJ et al. Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J Biol Chem 2001;276:24433–6

    PubMed  CAS  Google Scholar 

  209. Rathz DA, Brown KM, Kramer LA, Liggett SB. Amino acid 49 polymorphisms of the human beta(1)-adrenergic receptor affect agonist-promoted trafficking. J Cardiovasc Pharmacol 2002;39:155–60

    PubMed  CAS  Google Scholar 

  210. Xiao RP. Beta-adrenergic signaling in the heart: dual coupling of the beta2-adrenergic receptor to G(s) and G(i) proteins. Sci STKE 2001;2001:RE15

    PubMed  CAS  Google Scholar 

  211. Watson C, Chen G, Irving P, Way J, Chen WJ, Kenakin T. The use of stimulus-biased assay systems to detect agonist-specific receptor active states: implications for the trafficking of receptor stimulus by agonists. Mol Pharmacol 2000;58:1230–8

    PubMed  CAS  Google Scholar 

  212. Bosier B, Hermans E, Lambert DM. Differential modulation of AP-1- and CRE-driven transcription by cannabinoid agonists emphasizes functional selectivity at the CB(1) receptor. Br J Pharmacol 2008212 Bosier B, Hermans E, Lambert DM. Differential modulation of AP-1- and CRE-driven transcription by cannabinoid agonists emphasizes functional selectivity at the CB(1) receptor. Br J Pharmacol 2008

    Google Scholar 

  213. Bonhaus DW, Chang LK, Kwan J, Martin GR. Dual activation and inhibition of adenylyl cyclase by cannabinoid receptor agonists: Evidence for agonist-specific trafficking of intracellular responses. J Pharmacol Exp Ther 1998;287:884–8

    PubMed  CAS  Google Scholar 

  214. Shoemaker JL, Ruckle MB, Mayeux PR, Prather PL. Agonist-directed trafficking of response by endocannabinoids acting at CB2 receptors. J Pharmacol Exp Ther 2005;315:828–38

    PubMed  CAS  Google Scholar 

  215. Fitzsimons CP, Gompels UA, Verzijl D et al. Chemokine-directed trafficking of receptor stimulus to different g proteins: selective inducible and constitutive signaling by human herpesvirus 6-encoded chemokine receptor U51. Mol Pharmacol 2006;69:888–98

    PubMed  CAS  Google Scholar 

  216. Beyermann M, Heinrich N, Fechner K et al. Achieving signalling selectivity of ligands for the corticotropin-releasing factor type 1 receptor by modifying the agonist's signalling domain. Br J Pharmacol 2007;151:851–9

    PubMed  CAS  Google Scholar 

  217. Reale V, Hannan F, Hall LM, Evans PD. Agonist-specific coupling of a cloned Drosophila melanogaster D1-like dopamine receptor to multiple second messenger pathways by synthetic agonists. J Neurosci 1997;17:6545–53

    PubMed  CAS  Google Scholar 

  218. Panchalingam S, Undie AS. SKF83959 exhibits biochemical agonism by stimulating [S-35]GTP gamma S binding and phosphoinositide hydrolysis in rat and monkey brain. Neuropharmacology 2001;40:826–37

    PubMed  CAS  Google Scholar 

  219. Ryman-Rasmussen JP, Nichols DE, Mailman RB. Differential activation of adenylate cyclase and receptor internalization by novel dopamine D1 receptor agonists. Mol Pharmacol 2005;68:1039–48

    PubMed  CAS  Google Scholar 

  220. Urban JD, Vargas GA, von Zastrow M, Mailman RB. Aripiprazole has functionally selective actions at dopamine D2 receptor-mediated signaling pathways. Neuropsychopharmacology 2007;32:67–77

    PubMed  CAS  Google Scholar 

  221. Kilts JD, Connery HS, Arrington EG et al. Functional selectivity of dopamine receptor agonists. II. Actions of dihydrexidine in D2L receptor-transfected MN9D cells and pituitary lactotrophs. J Pharmacol Exp Ther 2002;301:1179–89

    PubMed  CAS  Google Scholar 

  222. Gay EA, Urban JD, Nichols DE, Oxford GS, Mailman RB. Functional selectivity of D2 receptor ligands in a Chinese hamster ovary hD2L cell line: evidence for induction of ligand-specific receptor states. Mol Pharmacol 2004;66:97–105

    PubMed  CAS  Google Scholar 

  223. Moniri NH, Covington-Strachan D, Booth RG. Ligand-directed functional heterogeneity of histamine H1 receptors: novel dual-function ligands selectively activate and block H1-mediated phospholipase C and adenylyl cyclase signaling. J Pharmacol Exp Ther 2004;311:274–81

    PubMed  CAS  Google Scholar 

  224. Gurwitz D, Haring R, Heldman E, Fraser CM, Manor D, Fisher A. Discrete activation of transduction pathways associated with acetylcholine m1 receptor by several muscarinic ligands. Eur J Pharmacol 1994;267:21–31

    PubMed  CAS  Google Scholar 

  225. Akam EC, Challiss RAJ, Nahorski SR. G(q/11) and G(i/o) activation profiles in CHO cells expressing human muscarinic acetylcholine receptors: dependence on agonist as well as receptor-subtype. Br J Pharmacol 2001;132:950–8

    PubMed  CAS  Google Scholar 

  226. Nickolls SA, Fleck B, Hoare SR, Maki RA. Functional selectivity of melanocortin 4 receptor peptide and nonpeptide agonists: evidence for ligand-specific conformational states. J Pharmacol Exp Ther 2005;313:1281–8

    PubMed  CAS  Google Scholar 

  227. Allouche S, Polastron J, Hasbi A, Homburger V, Jauzac P. Differential G-protein activation by alkaloid and peptide opioid agonists in the human neuroblastoma cell line SK-N-BE. Biochem J 1999;342 (Pt 1):71–8

    PubMed  CAS  Google Scholar 

  228. Pineyro G, Azzi M, De Lean A, Schiller P, Bouvier M. Short-term inverse-agonist treatment induces reciprocal changes in delta-opioid agonist and inverse-agonist binding capacity. Mol Pharmacol 2001;60:816–27

    PubMed  CAS  Google Scholar 

  229. Reversi A, Rimoldi V, Marrocco T et al. The oxytocin receptor antagonist atosiban inhibits cell growth via a “biased agonist” mechanism. J Biol Chem 2005;280:16311–8

    PubMed  CAS  Google Scholar 

  230. Negishi M, Irie A, Sugimoto Y, Namba T, Ichikawa A. Selective coupling of prostaglandin E receptor EP3D to Gi and Gs through interaction of alpha-carboxylic acid of agonist and arginine residue of seventh transmembrane domain. J Biol Chem 1995;270:16122–7

    PubMed  CAS  Google Scholar 

  231. Heusler P, Pauwels PJ, Wurch T et al. Differential ion current activation by human 5-HT(1A) receptors in Xenopus oocytes: evidence for agonist-directed trafficking of receptor signalling. Neuropharmacology 2005;49:963–76

    PubMed  CAS  Google Scholar 

  232. Palmer TM, Gettys TW, Jacobson KA, Stiles GL. Desensitization of the canine A2a adenosine receptor: delineation of multiple processes. Mol Pharmacol 1994;45:1082–94

    PubMed  CAS  Google Scholar 

  233. Kurrasch-Orbaugh DM, Watts VJ, Barker EL, Nichols DE. Serotonin 5-hydroxytryptamine 2A receptor-coupled phospholipase C and phospholipase A2 signaling pathways have different receptor reserves. J Pharmacol Exp Ther 2003;304:229–37

    PubMed  CAS  Google Scholar 

  234. Rosenzweig-Lipson S, Zhang J, Mazandarani H et al. Antiobesity-like effects of the 5-HT2C receptor agonist WAY-161503. Brain Res 2006;1073–1074:240–51

    PubMed  Google Scholar 

  235. Berg KA, Maayani S, Goldfarb J, Scaramellini C, Leff P, Clarke WP. Effector pathway-dependent relative efficacy at serotonin type 2A and 2C receptors: evidence for agonist-directed trafficking of receptor stimulus. Mol Pharmacol 1998;54:94–104

    PubMed  CAS  Google Scholar 

  236. Berg KA, Cropper JD, Niswender CM, Sanders-Bush E, Emeson RB, Clarke WP. RNA-editing of the 5-HT(2C) receptor alters agonist-receptor-effector coupling specificity. Br J Pharmacol 2001;134:386–92

    PubMed  CAS  Google Scholar 

  237. Malmberg A, Strange PG. Site-directed mutations in the third intracellular loop of the serotonin 5-HT1A receptor alter G protein coupling from G(i) to G(s) in a ligand-dependent manner. J Neurochem 2000;75:1283–93

    PubMed  CAS  Google Scholar 

  238. Siehler S, Nunn C, Zupanc GK, Hoyer D. Fish somatostatin sst3 receptor: comparison of radioligand and GTPgammaS binding, adenylate cyclase and phospholipase C activities reveals different agonist-dependent pharmacological signatures. Auton Autacoid Pharmacol 2005;25:1–16

    PubMed  CAS  Google Scholar 

  239. McLaughlin JN, Shen L, Holinstat M, Brooks JD, Dibenedetto E, Hamm HE. Functional selectivity of G protein signaling by agonist peptides and thrombin for the protease-activated receptor-1. J Biol Chem 2005;280:25048–59

    PubMed  CAS  Google Scholar 

  240. Azzi M, Charest PG, Angers S et al. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci USA 2003;100:11406–11

    PubMed  CAS  Google Scholar 

  241. Arey BJ, Stevis PE, Deecher DC et al. Induction of promiscuous G protein coupling of the follicle-stimulating hormone (FSH) receptor: a novel mechanism for transducing pleiotropic actions of FSH isoforms. Mol Endocrinol 1997;11:517–26

    PubMed  CAS  Google Scholar 

  242. Nichols DE. Hallucinogens. Pharmacol Ther 2004;101:131–81

    PubMed  CAS  Google Scholar 

  243. Galandrin S, Bouvier M. Distinct signaling profiles of beta1 and beta2 adrenergic receptor ligands toward adenylyl cyclase and mitogen-activated protein kinase reveals the pluridimensionality of efficacy. Mol Pharmacol 2006;70:1575–84

    PubMed  CAS  Google Scholar 

  244. Lefkowitz RJ, Pierce KL, Luttrell LM. Dancing with different partners: protein kinase a phosphorylation of seven membrane-spanning receptors regulates their g protein-coupling specificity. Mol Pharmacol 2002;62:971–4

    PubMed  CAS  Google Scholar 

  245. Engstrom M, Savola JM, Wurster S. Differential efficacies of somatostatin receptor agonists for G-protein activation and desensitization of somatostatin receptor subtype 4-mediated responses. J Pharmacol Exp Ther 2006;316:1262–8

    PubMed  CAS  Google Scholar 

  246. Nemeth K, Chollet A. A single mutation of the neurokinin-2 (NK2) receptor prevents agonist-induced desensitization. Divergent conformational requirements for NK2 receptor signaling and agonist-induced desensitization in Xenopus oocytes. J Biol Chem 1995;270:27601–5

    PubMed  CAS  Google Scholar 

  247. Stout BD, Clarke WP, Berg KA. Rapid desensitization of the serotonin(2C) receptor system: Effector pathway and agonist dependence. J Pharmacol Exp Ther 2002;302:957–62

    PubMed  CAS  Google Scholar 

  248. Roettger BF, Ghanekar D, Rao R et al. Antagonist-stimulated internalization of the G protein-coupled cholecystokinin receptor. Mol Pharmacol 1997;51:357–62

    PubMed  CAS  Google Scholar 

  249. Holloway AC, Qian H, Pipolo L et al. Side-chain substitutions within angiotensin II reveal different requirements for signaling, internalization, and phosphorylation of type 1A angiotensin receptors. Mol Pharmacol 2002;61:768–77

    PubMed  CAS  Google Scholar 

  250. Este JA. Virus entry as a target for anti-HIV intervention. Curr Med Chem 2003;10:1617–32

    PubMed  CAS  Google Scholar 

  251. Gray JA, Roth BL. Paradoxical trafficking and regulation of 5-HT(2A) receptors by agonists and antagonists. Brain Res Bull 2001;56:441–51

    PubMed  CAS  Google Scholar 

  252. Maillet EL, Pellegrini N, Valant C et al. A novel, conformation-specific allosteric inhibitor of the tachykinin NK2 receptor (NK2R) with functionally selective properties. FASEB J 2007;21:2124–34

    PubMed  CAS  Google Scholar 

  253. Hoare SR, Fleck BA, Gross RS, Crowe PD, Williams JP, Grigoriadis DE. Allosteric ligands for the corticotropin releasing factor type 1 receptor modulate conformational states involved in receptor activation. Mol Pharmacol 2008;73:1371–80

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Fund for Scientific Research. EH is Research Director of the F.N.R.S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Hermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Bosier, B., Hermans, E. (2009). Agonist-Selective Coupling of G Protein-Coupled Receptors . In: Neve, K.A. (eds) Functional Selectivity of G Protein-Coupled Receptor Ligands. The Receptors. Humana Press. https://doi.org/10.1007/978-1-60327-335-0_3

Download citation

Publish with us

Policies and ethics