Skip to main content

Dopamine Receptor-Interacting Proteins

Part of the The Receptors book series (REC)

Abstract

Historically, dopamine receptors (DARs) and other G protein-coupled receptors (GPCRs) were believed to be independent signaling units in the plasma membrane, interacting only transiently with G proteins to initiate a downstream signaling cascade. However, in recent years it has become clear that DARs do not function in isolation, but in fact exist as members of macromolecular protein complexes. The DAR protein complex, or the signalplex, consists of a variety of protein interactors that may be transient or stable in nature and that are collectively referred to as dopamine receptor-interacting proteins (DRIPs). Ultimately, the goal of the signalplex is to organize the cellular machinery or signaling components that are critical to the DAR at any given time in an orderly fashion. This higher level of organization around the DAR enables the receptor to process all information, from extracellular ligands or intracellular signaling molecules, and propagate the necessary cellular response in a timely and efficient manner.

Keywords

  • Interacting proteins
  • Signalplex
  • Yeast two-hybrid
  • Immunoprecipitation
  • Proteomics

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-333-6_9
  • Chapter length: 36 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-333-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 9.1

References

  1. Kabbani N, Hannan MA, Levenson R. Unraveling the dopamine receptor signalplex by DRIPs and DRAPs. Curr Proteomics 2005;2(3):209–23.

    CAS  CrossRef  Google Scholar 

  2. Kabbani N, Levenson R. A proteomic approach to receptor signaling: molecular mechanisms and therapeutic implications derived from discovery of the dopamine D2 receptor signalplex. Eur J Pharmacol 2007;572(2–3):83–93.

    PubMed  CAS  CrossRef  Google Scholar 

  3. Free RB, Hazelwood LA, Cabrera DM, et al. D1 and D2 dopamine receptor expression is regulated by direct interaction with the chaperone protein calnexin. J Biol Chem 2007;282(29):21285–300.

    PubMed  CAS  CrossRef  Google Scholar 

  4. Smith FD, Oxford GS, Milgram SL. Association of the D2 dopamine receptor third cytoplasmic loop with spinophilin, a protein phosphatase-1-interacting protein. J Biol Chem 1999;274(28):19894–900.

    PubMed  CAS  CrossRef  Google Scholar 

  5. Adlersberg M, Hsiung SC, Glickstein SB, Liu KP, Tamir H, Schmauss C. Regulation of dopamine D-receptor activation in vivo by protein phosphatase 2B (calcineurin). J Neurochem 2004;90(4):865–73.

    PubMed  CAS  CrossRef  Google Scholar 

  6. Bartlett SE, Enquist J, Hopf FW, et al. Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci USA 2005;102(32):11521–6.

    PubMed  CAS  CrossRef  Google Scholar 

  7. Jeanneteau F, Diaz J, Sokoloff P, Griffon N. Interactions of GIPC with dopamine D2, D3 but not D4 receptors define a novel mode of regulation of G protein-coupled receptors. Mol Biol Cell 2004;15(2):696–705.

    PubMed  CAS  CrossRef  Google Scholar 

  8. Rasmussen SG, Choi HJ, Rosenbaum DM, et al. Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 2007;450(7168):383–7.

    PubMed  CAS  CrossRef  Google Scholar 

  9. Guo W, Urizar E, Kralikova M, et al. Dopamine D2 receptors form higher order oligomers at physiological expression levels. Embo J 2008;27(17):2293–304.

    PubMed  CAS  CrossRef  Google Scholar 

  10. Grefen C, Lalonde S, Obrdlik P. Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. In: Gerfen C, Holmes A, Rogawski M, Sibley D, Skolnick P, Wray S, eds. Current Protocols in Neuroscience. Hoboken, NJ: John Wiley & Sons; 2007.

    Google Scholar 

  11. Lentze N, Auerbach D. Membrane-based yeast two-hybrid system to detect protein interactors. In: Coligan JE, Dunn BM, Speicher DW, Wingfield PT, eds. Current Protocols in Protein Science. Hoboken, NJ: John Wiley & Sons; 2008.

    Google Scholar 

  12. Joung JK. Identifying and modifying protein-DNA and protein-protein interactions using a bacterial two-hybrid selection system. J Cell Biochem Suppl 2001; 37(Suppl):53–7.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Brymora A. Protein-protein interactions identified by pull-down experiments and mass spectrometry. In: Bonifacino JS, Dasso M, Harford JB, Lippincott-Schwartz J, Yamada KM, eds. Current Protocols in Cell Biology. Hoboken, NJ: John Wiley & Sons; 2004.

    Google Scholar 

  14. Kramer S, Joos TO, Templin MF. Protein microarrays. In: Coligan JE, Dunn BM, Speicher DW, Wingfield PT, eds. Current Protocols in Protein Science. Hoboken, NJ: John Wiley & Sons; 2005.

    Google Scholar 

  15. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG. Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 2000;3(7):661–9.

    PubMed  CAS  CrossRef  Google Scholar 

  16. Kim M, Jiang LH, Wilson HL, North RA, Surprenant A. Proteomic and functional evidence for a P2X7 receptor signalling complex. Embo J 2001;20(22):6347–58.

    PubMed  CAS  CrossRef  Google Scholar 

  17. Becamel C, Alonso G, Galeotti N, et al. Synaptic multiprotein complexes associated with 5-HT(2C) receptors: a proteomic approach. Embo J 2002;21(10):2332–42.

    PubMed  CAS  CrossRef  Google Scholar 

  18. Free RB, Hazelwood LA, Sibley DR. Identifying novel protein-protein interactions using co-immunoprecipitation and mass spectroscopy. In: Gerfen C, Holmes A, Rogawski M, Sibley D, Skolnick P, Wray S, eds. Current Protocols in Neuroscience. Hoboken, NJ: John Wiley & Sons; 2008.

    Google Scholar 

  19. Liu Y, Buck DC, Neve KA. Novel interaction of the dopamine D2 receptor and the Ca2+ binding protein S100B: role in D2 receptor function. Mol Pharmacol 2008;74(2):371–8.

    PubMed  CAS  CrossRef  Google Scholar 

  20. Hazelwood LA, Free RB, Cabrera DM, Skinbjerg M, Sibley DR. Reciprocal modulation of function between the D1 and D2 dopamine receptors and the Na+,K+-ATPase. J Biol Chem 2008;283(52):36441–53.

    Google Scholar 

  21. Park SK, Nguyen MD, Fischer A, et al. Par-4 links dopamine signaling and depression. Cell 2005;122(2):275–87.

    PubMed  CAS  CrossRef  Google Scholar 

  22. Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F. Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. Embo J 2007;26(8):2127–36.

    PubMed  CAS  CrossRef  Google Scholar 

  23. Lavine N, Ethier N, Oak JN, et al. G protein-coupled receptors form stable complexes with inwardly rectifying potassium channels and adenylyl cyclase. J Biol Chem 2002;277(48):46010–9.

    PubMed  CAS  CrossRef  Google Scholar 

  24. Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002;111(2):219–30.

    PubMed  CAS  CrossRef  Google Scholar 

  25. Pfleger KD, Eidne KA. Monitoring the formation of dynamic G-protein-coupled receptor-protein complexes in living cells. Biochem J 2005;385(Pt 3):625–37.

    PubMed  CAS  Google Scholar 

  26. Hannan MA, Kabbani N, Paspalas CD, Levenson R. Interaction with dopamine D2 receptor enhances expression of transient receptor potential channel 1 at the cell surface. Biochim Biophys Acta 2008;1778(4):974–82.

    PubMed  CAS  CrossRef  Google Scholar 

  27. Klewe IV, Nielsen SM, Tarpo L, et al. Recruitment of beta-arrestin2 to the dopamine D2 receptor: insights into anti-psychotic and anti-parkinsonian drug receptor signaling. Neuropharmacology 2008;54(8):1215–22.

    PubMed  CAS  CrossRef  Google Scholar 

  28. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005;122(2):261–73.

    PubMed  CAS  CrossRef  Google Scholar 

  29. Hammond C, Braakman I, Helenius A. Role of N-linked oligosaccharide recognition, glucose trimming, and calnexin in glycoprotein folding and quality control. Proc Natl Acad Sci USA 1994;91(3):913–7.

    PubMed  CAS  CrossRef  Google Scholar 

  30. Molinari M, Eriksson KK, Calanca V, et al. Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol Cell 2004;13(1):125–35.

    PubMed  CAS  CrossRef  Google Scholar 

  31. Swanton E, High S, Woodman P. Role of calnexin in the glycan-independent quality control of proteolipid protein. Embo J 2003;22(12):2948–58.

    PubMed  CAS  CrossRef  Google Scholar 

  32. Bermak JC, Li M, Bullock C, Zhou QY. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol 2001;3(5):492–8.

    PubMed  CAS  CrossRef  Google Scholar 

  33. Zhan L, Liu B, Jose-Lafuente M, et al. ALG-2 interacting protein AIP1: a novel link between D1 and D3 signalling. Eur J Neurosci 2008;27(7):1626–33.

    PubMed  CrossRef  Google Scholar 

  34. Katoh K, Shibata H, Suzuki H, et al. The ALG-2-interacting protein Alix associates with CHMP4b, a human homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol Chem 2003;278(40):39104–13.

    PubMed  CAS  CrossRef  Google Scholar 

  35. Kim OJ, Ariano MA, Lazzarini RA, Levine MS, Sibley DR. Neurofilament-M interacts with the D1 dopamine receptor to regulate cell surface expression and desensitization. J Neurosci 2002;22(14):5920–30.

    PubMed  CAS  Google Scholar 

  36. Kruger R, Fischer C, Schulte T, et al. Mutation analysis of the neurofilament M gene in Parkinson’s disease. Neurosci Lett 2003;351(2):125–9.

    PubMed  CAS  CrossRef  Google Scholar 

  37. Strous RD, Greenbaum L, Kanyas K, et al. Association of the dopamine receptor interacting protein gene, NEF3, with early response to antipsychotic medication. Int J Neuropsychopharmacol 2007;10(3):321–33.

    PubMed  CAS  CrossRef  Google Scholar 

  38. Lajoie P, Nabi IR. Regulation of raft-dependent endocytosis. J Cell Mol Med 2007;11(4):644–53.

    PubMed  CAS  CrossRef  Google Scholar 

  39. Robinet P, Fradagrada A, Monier MN, et al. Dynamin is involved in endolysosomal cholesterol delivery to the endoplasmic reticulum: role in cholesterol homeostasis. Traffic 2006;7(7):811–23.

    PubMed  CAS  CrossRef  Google Scholar 

  40. Kabbani N, Jeromin A, Levenson R. Dynamin-2 associates with the dopamine receptor signalplex and regulates internalization of activated D2 receptors. Cell Signal 2004;16(4): 497–503.

    PubMed  CAS  CrossRef  Google Scholar 

  41. De Vries L, Lou X, Zhao G, Zheng B, Farquhar MG. GIPC, a PDZ domain containing protein, interacts specifically with the C terminus of RGS-GAIP. Proc Natl Acad Sci USA 1998;95(21):12340–5.

    PubMed  CrossRef  Google Scholar 

  42. Blobe GC, Liu X, Fang SJ, How T, Lodish HF. A novel mechanism for regulating transforming growth factor beta (TGF-beta) signaling. Functional modulation of type III TGF-beta receptor expression through interaction with the PDZ domain protein, GIPC. J Biol Chem 2001;276(43):39608–17.

    PubMed  CAS  CrossRef  Google Scholar 

  43. Hu LA, Chen W, Martin NP, Whalen EJ, Premont RT, Lefkowitz RJ. GIPC interacts with the beta1-adrenergic receptor and regulates beta1-adrenergic receptor-mediated ERK activation. J Biol Chem 2003;278(28):26295–301.

    PubMed  CAS  CrossRef  Google Scholar 

  44. Bunn RC, Jensen MA, Reed BC. Protein interactions with the glucose transporter binding protein GLUT1CBP that provide a link between GLUT1 and the cytoskeleton. Mol Biol Cell 1999;10(4):819–32.

    PubMed  CAS  Google Scholar 

  45. Zhao C, Slevin JT, Whiteheart SW. Cellular functions of NSF: not just SNAPs and SNAREs. FEBS Lett 2007;581(11):2140–9.

    PubMed  CAS  CrossRef  Google Scholar 

  46. Cong M, Perry SJ, Hu LA, Hanson PI, Claing A, Lefkowitz RJ. Binding of the beta2 adrenergic receptor to N-ethylmaleimide-sensitive factor regulates receptor recycling. J Biol Chem 2001;276(48):45145–52.

    PubMed  CAS  CrossRef  Google Scholar 

  47. Heydorn A, Sondergaard BP, Hadrup N, Holst B, Haft CR, Schwartz TW. Distinct in vitro interaction pattern of dopamine receptor subtypes with adaptor proteins involved in post-endocytotic receptor targeting. FEBS Lett 2004;556(1–3):276–80.

    PubMed  CAS  CrossRef  Google Scholar 

  48. Zou S, Li L, Pei L, et al. Protein-protein coupling/uncoupling enables dopamine D2 receptor regulation of AMPA receptor-mediated excitotoxicity. J Neurosci 2005;25(17): 4385–95.

    PubMed  CAS  CrossRef  Google Scholar 

  49. Wang Y, Zhou Y, Szabo K, Haft CR, Trejo J. Down-regulation of protease-activated receptor-1 is regulated by sorting nexin 1. Mol Biol Cell 2002;13(6):1965–76.

    PubMed  CAS  CrossRef  Google Scholar 

  50. Whistler JL, Enquist J, Marley A, et al. Modulation of postendocytic sorting of G protein-coupled receptors. Science 2002;297(5581):615–20.

    PubMed  CAS  CrossRef  Google Scholar 

  51. Thompson D, Pusch M, Whistler JL. Changes in G protein-coupled receptor sorting protein affinity regulate postendocytic targeting of G protein-coupled receptors. J Biol Chem 2007;282(40):29178–85.

    PubMed  CAS  CrossRef  Google Scholar 

  52. Li M, Bermak JC, Wang ZW, Zhou QY. Modulation of dopamine D(2) receptor signaling by actin-binding protein (ABP-280). Mol Pharmacol 2000;57(3):446–52.

    PubMed  CAS  Google Scholar 

  53. Li M, Li C, Weingarten P, Bunzow JR, Grandy DK, Zhou QY. Association of dopamine D(3) receptors with actin-binding protein 280 (ABP-280). Biochem Pharmacol 2002;63(5): 859–63.

    PubMed  CAS  CrossRef  Google Scholar 

  54. Lin R, Karpa K, Kabbani N, Goldman-Rakic P, Levenson R. Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc Natl Acad Sci USA 2001;98(9):5258–63.

    PubMed  CAS  CrossRef  Google Scholar 

  55. Binda AV, Kabbani N, Lin R, Levenson R. D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1 N. Mol Pharmacol 2002;62(3):507–13.

    PubMed  CAS  CrossRef  Google Scholar 

  56. Niggli V, Rossy J. Ezrin/radixin/moesin: versatile controllers of signaling molecules and of the cortical cytoskeleton. Int J Biochem Cell Biol 2008;40(3):344–9.

    PubMed  CAS  CrossRef  Google Scholar 

  57. Griffon N, Jeanneteau F, Prieur F, Diaz J, Sokoloff P. CLIC6, a member of the intracellular chloride channel family, interacts with dopamine D(2)-like receptors. Brain Res Mol Brain Res 2003;117(1):47–57.

    PubMed  CAS  CrossRef  Google Scholar 

  58. Parker LL, Backstrom JR, Sanders-Bush E, Shieh BH. Agonist-induced phosphorylation of the serotonin 5-HT2C receptor regulates its interaction with multiple PDZ protein 1. J Biol Chem 2003;278(24):21576–83.

    PubMed  CAS  CrossRef  Google Scholar 

  59. Ullmer C, Schmuck K, Figge A, Lubbert H. Cloning and characterization of MUPP1, a novel PDZ domain protein. FEBS Lett 1998;424(1–2):63–8.

    PubMed  CAS  CrossRef  Google Scholar 

  60. Heuckeroth RO, Birkenmeier EH, Levin MS, Gordon JI. Analysis of the tissue-specific expression, developmental regulation, and linkage relationships of a rodent gene encoding heart fatty acid binding protein. J Biol Chem 1987;262(20):9709–17.

    PubMed  CAS  Google Scholar 

  61. Schroeder F, Jolly CA, Cho TH, Frolov A. Fatty acid binding protein isoforms: structure and function. Chem Phys Lipids 1998;92(1):1–25.

    PubMed  CAS  CrossRef  Google Scholar 

  62. Takeuchi Y, Fukunaga K. Differential subcellular localization of two dopamine D2 receptor isoforms in transfected NG108-15 cells. J Neurochem 2003;85(4):1064–74.

    PubMed  CAS  CrossRef  Google Scholar 

  63. Williams TM, Lisanti MP. The Caveolin genes: from cell biology to medicine. Ann Med 2004;36(8):584–95.

    PubMed  CAS  CrossRef  Google Scholar 

  64. Kong MM, Hasbi A, Mattocks M, Fan T, O‘Dowd BF, George SR. Regulation of D1 dopamine receptor trafficking and signaling by caveolin-1. Mol Pharmacol 2007;72(5): 1157–70.

    PubMed  CAS  CrossRef  Google Scholar 

  65. Macey TA, Gurevich VV, Neve KA. Preferential Interaction between the dopamine D2 receptor and Arrestin2 in neostriatal neurons. Mol Pharmacol 2004;66(6):1635–42.

    PubMed  CAS  CrossRef  Google Scholar 

  66. Macey TA, Liu Y, Gurevich VV, Neve KA. Dopamine D1 receptor interaction with arrestin3 in neostriatal neurons. J Neurochem 2005;93(1):128–34.

    PubMed  CAS  CrossRef  Google Scholar 

  67. Beaulieu JM, Sotnikova TD, Yao WD, et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 2004;101(14):5099–104.

    PubMed  CAS  CrossRef  Google Scholar 

  68. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3beta signaling in schizophrenia. Nat Genet 2004;36(2):131–7.

    PubMed  CAS  CrossRef  Google Scholar 

  69. Ahn S, Shenoy SK, Wei H, Lefkowitz RJ. Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J Biol Chem 2004;279(34):35518–25.

    PubMed  CAS  CrossRef  Google Scholar 

  70. Luttrell LM, Roudabush FL, Choy EW, et al. Activation and targeting of extracellular signal-regulated kinases by beta-arrestin scaffolds. Proc Natl Acad Sci USA 2001;98(5): 2449–54.

    PubMed  CAS  CrossRef  Google Scholar 

  71. Ann K, Kowalchyk JA, Loyet KM, Martin TF. Novel Ca2+-binding protein (CAPS) related to UNC-31 required for Ca2+-activated exocytosis. J Biol Chem 1997;272(32): 19637–40.

    PubMed  CAS  CrossRef  Google Scholar 

  72. Binda AV, Kabbani N, Levenson R. Regulation of dense core vesicle release from PC12 cells by interaction between the D2 dopamine receptor and calcium-dependent activator protein for secretion (CAPS). Biochem Pharmacol 2005;69(10):1451–61.

    PubMed  CAS  CrossRef  Google Scholar 

  73. Burgoyne RD, Weiss JL. The neuronal calcium sensor family of Ca2+-binding proteins. Biochem J 2001;353(Pt 1):1–12.

    PubMed  CAS  Google Scholar 

  74. Calvert PD, Klenchin VA, Bownds MD. Rhodopsin kinase inhibition by recoverin. Function of recoverin myristoylation. J Biol Chem 1995;270(41):24127–9.

    PubMed  CAS  CrossRef  Google Scholar 

  75. Kabbani N, Negyessy L, Lin R, Goldman-Rakic P, Levenson R. Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 2002;22(19):8476–86.

    PubMed  CAS  Google Scholar 

  76. Donato R. Functional roles of S100 proteins, calcium-binding proteins of the EF-hand type. Biochim Biophys Acta 1999;1450(3):191–231.

    PubMed  CAS  CrossRef  Google Scholar 

  77. Rex EB, Rankin ML, Ariano MA, Sibley DR. Ethanol Regulation of D(1) Dopamine Receptor Signaling is Mediated by Protein Kinase C in an Isozyme-Specific Manner. Neuropsychopharmacology 2008;32:2900–2911.

    CrossRef  CAS  Google Scholar 

  78. Hoeflich KP, Ikura M. Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 2002;108(6):739–42.

    PubMed  CAS  CrossRef  Google Scholar 

  79. Bofill-Cardona E, Kudlacek O, Yang Q, Ahorn H, Freissmuth M, Nanoff C. Binding of calmodulin to the D2-dopamine receptor reduces receptor signaling by arresting the G protein activation switch. J Biol Chem 2000;275(42):32672–80.

    PubMed  CAS  CrossRef  Google Scholar 

  80. Liu Y, Buck DC, Macey TA, Lan H, Neve KA. Evidence that calmodulin binding to the dopamine D2 receptor enhances receptor signaling. J Recept Signal Transduct Res 2007;27(1):47–65.

    PubMed  CrossRef  CAS  Google Scholar 

  81. Kim E, Sheng M. PDZ domain proteins of synapses. Nat Rev Neurosci 2004;5(10):771–81.

    PubMed  CAS  CrossRef  Google Scholar 

  82. Yao WD, Gainetdinov RR, Arbuckle MI, et al. Identification of PSD-95 as a regulator of dopamine-mediated synaptic and behavioral plasticity. Neuron 2004;41(4):625–38.

    PubMed  CAS  CrossRef  Google Scholar 

  83. Zhang J, Vinuela A, Neely MH, et al. Inhibition of the dopamine D1 receptor signaling by PSD-95. J Biol Chem 2007;282(21):15778–89.

    PubMed  CAS  CrossRef  Google Scholar 

  84. Jiang D, Sibley DR. Regulation of D(1) dopamine receptors with mutations of protein kinase phosphorylation sites: attenuation of the rate of agonist-induced desensitization. Mol Pharmacol 1999;56(4):675–83.

    PubMed  CAS  Google Scholar 

  85. Namkung Y, Sibley DR. Protein kinase C mediates phosphorylation, desensitization, and trafficking of the D2 dopamine receptor. J Biol Chem 2004;279(47):49533–41.

    PubMed  CAS  CrossRef  Google Scholar 

  86. Fraga S, Jose PA, Soares-da-Silva P. Involvement of G protein-coupled receptor kinase 4 and 6 in rapid desensitization of dopamine D1 receptor in rat IEC-6 intestinal epithelial cells. Am J Physiol Regul Integr Comp Physiol 2004;287(4):R772–9.

    PubMed  CAS  CrossRef  Google Scholar 

  87. Ito K, Haga T, Lameh J, Sadee W. Sequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinases 2 or 5. Eur J Biochem 1999;260(1):112–9.

    PubMed  CAS  CrossRef  Google Scholar 

  88. Rankin ML, Marinec PS, Cabrera DM, Wang Z, Jose PA, Sibley DR. The D1 dopamine receptor is constitutively phosphorylated by G protein-coupled receptor kinase 4. Mol Pharmacol 2006;69(3):759–69.

    PubMed  CAS  Google Scholar 

  89. Tiberi M, Nash SR, Bertrand L, Lefkowitz RJ, Caron MG. Differential regulation of dopamine D1A receptor responsiveness by various G protein-coupled receptor kinases. J Biol Chem 1996;271(7):3771–8.

    PubMed  CAS  CrossRef  Google Scholar 

  90. Krupnick JG, Benovic JL. The role of receptor kinases and arrestins in G protein-coupled receptor regulation. Annu Rev Pharmacol Toxicol 1998;38:289–319.

    PubMed  CAS  CrossRef  Google Scholar 

  91. Tobin AB. G-protein-coupled receptor phosphorylation: where, when and by whom. Br J Pharmacol 2008;153(Suppl 1):S167–76.

    PubMed  CAS  Google Scholar 

  92. Kim OJ, Ariano MA, Namkung Y, et al. D2 dopamine receptor expression and trafficking is regulated through direct interactions with ZIP. J Neurochem 2008;106(1):83–95.

    PubMed  CAS  CrossRef  Google Scholar 

  93. Jeanneteau F, Guillin O, Diaz J, Griffon N, Sokoloff P. GIPC recruits GAIP (RGS19) to attenuate dopamine D2 receptor signaling. Mol Biol Cell 2004;15(11):4926–37.

    PubMed  CAS  CrossRef  Google Scholar 

  94. Beech DJ. TRPC1: store-operated channel and more. Pflugers Arch 2005;451(1):53–60.

    PubMed  CAS  CrossRef  Google Scholar 

  95. Ramsey IS, Delling M, Clapham DE. An introduction to TRP channels. Annu Rev Physiol 2006;68:619–47.

    PubMed  CAS  CrossRef  Google Scholar 

  96. Werner P, Hussy N, Buell G, Jones KA, North RA. D2, D3, and D4 dopamine receptors couple to G protein-regulated potassium channels in Xenopus oocytes. Mol Pharmacol 1996;49(4):656–61.

    PubMed  CAS  Google Scholar 

  97. Barnard ML, Olivera WG, Rutschman DM, Bertorello AM, Katz AI, Sznajder JI. Dopamine stimulates sodium transport and liquid clearance in rat lung epithelium. Am J Respir Crit Care Med 1997;156(3 Pt 1):709–14.

    PubMed  CAS  CrossRef  Google Scholar 

  98. Brismar H, Asghar M, Carey RM, Greengard P, Aperia A. Dopamine-induced recruitment of dopamine D1 receptors to the plasma membrane. Proc Natl Acad Sci USA 1998;95(10):5573–8.

    PubMed  CAS  CrossRef  Google Scholar 

  99. Anderson SM, Famous KR, Sadri-Vakili G, et al. CaMKII: a biochemical bridge linking accumbens dopamine and glutamate systems in cocaine seeking. Nat Neurosci 2008;11(3):344–53.

    PubMed  CAS  CrossRef  Google Scholar 

  100. Mangiavacchi S, Wolf ME. D1 dopamine receptor stimulation increases the rate of AMPA receptor insertion onto the surface of cultured nucleus accumbens neurons through a pathway dependent on protein kinase A. J Neurochem 2004;88(5):1261–71.

    PubMed  CAS  CrossRef  Google Scholar 

  101. Cepeda C, Levine MS. Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci 1998;20(1):1–18.

    PubMed  CAS  CrossRef  Google Scholar 

  102. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 2003;278(22):20196–202.

    PubMed  CAS  CrossRef  Google Scholar 

  103. Pei L, Lee FJ, Moszczynska A, Vukusic B, Liu F. Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 2004;24(5):1149–58.

    PubMed  CAS  CrossRef  Google Scholar 

  104. Liu F, Wan Q, Pristupa ZB, Yu XM, Wang YT, Niznik HB. Direct protein-protein coupling enables cross-talk between dopamine D5 and gamma-aminobutyric acid A receptors. Nature 2000;403(6767):274–80.

    PubMed  CAS  CrossRef  Google Scholar 

  105. Mortensen OV, Amara SG. Dynamic regulation of the dopamine transporter. Eur J Pharmacol 2003;479(1–3):159–70.

    PubMed  CAS  CrossRef  Google Scholar 

  106. Bai J, He F, Novikova SI, et al. Abnormalities in the dopamine system in schizophrenia may lie in altered levels of dopamine receptor-interacting proteins. Biol Psychiatry 2004;56(6):427–40.

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David R. Sibley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Hazelwood, L.A., Free, R.B., Sibley, D.R. (2010). Dopamine Receptor-Interacting Proteins. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_9

Download citation