Skip to main content

Regulation of Dopamine Receptor Trafficking and Responsiveness

Part of the The Receptors book series (REC)

Abstract

The magnitude of cellular responses resulting from dopamine receptor activation is highly dependent on the balance between exocytic and endocytic trafficking pathways, which together, influence the level of receptor expression at the cell surface. Over the past decade, it has been revealed that the mechanisms involved in dopamine receptor transport are extremely complex, involving numerous protein–protein interactions that assist in targeting the receptors to distinct intracellular compartments. In addition, the importance of oligomerization in dopamine receptor trafficking is becoming increasingly evident, providing new perspectives on the mechanisms of receptor transport. This chapter will review the recent advances that have contributed to the understanding of the molecular mechanisms involved in dopamine receptor trafficking, their role in cellular responsiveness and discuss briefly the significance of receptor trafficking in health and disease.

Keywords

  • Receptorsensitivity
  • Receptortrafficking
  • Desensitization
  • Internalization
  • Post-translational modifications
  • Receptor oligomerization

Vaneeta Verma and Melissa L. Perreault are co-first authors and have contributed equally in the writing of this chapter

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-333-6_8
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-333-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 8.1

References

  1. Kabbani N, Jeromin A, Levenson R. Dynamin-2 associates with the dopamine receptor signalplex and regulates internalization of activated D2 receptors. Cell Signal 2004;16(4):497–503.

    PubMed  CAS  CrossRef  Google Scholar 

  2. Dong C, Filipeanu CM, Duvernay MT, Wu G. Regulation of G protein-coupled receptor export trafficking. Biochim Biophys Acta 2007;1768(4):853–70.

    PubMed  CAS  CrossRef  Google Scholar 

  3. Hasbi A, Nguyen T, Fan T, et al. Trafficking of preassembled opioid mu-delta heterooligomer-Gz signaling complexes to the plasma membrane: coregulation by agonists. Biochemistry 2007;46(45):12997–3009.

    PubMed  CAS  CrossRef  Google Scholar 

  4. Herrick-Davis K, Weaver BA, Grinde E, Mazurkiewicz JE. Serotonin 5-HT2C receptor homodimer biogenesis in the endoplasmic reticulum: real-time visualization with confocal fluorescence resonance energy transfer. J Biol Chem 2006;281(37):27109–16.

    PubMed  CAS  CrossRef  Google Scholar 

  5. Issafras H, Angers S, Bulenger S, et al. Constitutive agonist-independent CCR5 oligomerization and antibody-mediated clustering occurring at physiological levels of receptors. J Biol Chem 2002;277(38):34666–73.

    PubMed  CAS  CrossRef  Google Scholar 

  6. Hague C, Uberti MA, Chen Z, Hall RA, Minneman KP. Cell surface expression of alpha1D-adrenergic receptors is controlled by heterodimerization with alpha1B-adrenergic receptors. J Biol Chem 2004;279(15):15541–9.

    PubMed  CAS  CrossRef  Google Scholar 

  7. Kong MM, Fan T, Varghese G, O‘Dowd BF, George SR. Agonist-induced cell surface trafficking of an intracellularly sequestered D1 dopamine receptor homo-oligomer. Mol Pharmacol 2006;70(1):78–89.

    PubMed  CAS  Google Scholar 

  8. Lopez-Gimenez JF, Canals M, Pediani JD, Milligan G. The alpha1b-adrenoceptor exists as a higher-order oligomer: effective oligomerization is required for receptor maturation, surface delivery, and function. Mol Pharmacol 2007;71(4):1015–29.

    PubMed  CAS  CrossRef  Google Scholar 

  9. Salahpour A, Angers S, Mercier JF, Lagace M, Marullo S, Bouvier M. Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem 2004;279(32):33390–7.

    PubMed  CAS  CrossRef  Google Scholar 

  10. White JH, Wise A, Main MJ, et al. Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature 1998;396(6712):679–82.

    PubMed  CAS  CrossRef  Google Scholar 

  11. Ferguson SS. Evolving concepts in G protein-coupled receptor endocytosis: the role in receptor desensitization and signaling. Pharmacol Rev 2001;53(1):1–24.

    PubMed  CAS  Google Scholar 

  12. Moore CA, Milano SK, Benovic JL. Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 2007;69:451–82.

    PubMed  CAS  CrossRef  Google Scholar 

  13. Rashid AJ, O‘Dowd BF, Verma V, George SR. Neuronal Gq/11-coupled dopamine receptors: an uncharted role for dopamine. Trends Pharmacol Sci 2007;28(11):551–5.

    PubMed  CAS  CrossRef  Google Scholar 

  14. Free RB, Hazelwood LA, Cabrera DM, et al. D1 and D2 dopamine receptor expression is regulated by direct interaction with the chaperone protein calnexin. J Biol Chem 2007;282(29):21285–300.

    PubMed  CAS  CrossRef  Google Scholar 

  15. Brothers SP, Janovick JA, Conn PM. Calnexin regulated gonadotropin-releasing hormone receptor plasma membrane expression. J Mol Endocrinol 2006;37(3):479–88.

    PubMed  CAS  CrossRef  Google Scholar 

  16. Lanctot PM, Leclerc PC, Escher E, Guillemette G, Leduc R. Role of N-glycan-dependent quality control in the cell-surface expression of the AT1 receptor. Biochem Biophys Res Commun 2006;340(2):395–402.

    PubMed  CAS  CrossRef  Google Scholar 

  17. Ou WJ, Bergeron JJ, Li Y, Kang CY, Thomas DY. Conformational changes induced in the endoplasmic reticulum luminal domain of calnexin by Mg-ATP and Ca2+. J Biol Chem 1995;270(30):18051–9.

    PubMed  CAS  CrossRef  Google Scholar 

  18. Petaja-Repo UE, Hogue M, Laperriere A, Walker P, Bouvier M. Export from the endoplasmic reticulum represents the limiting step in the maturation and cell surface expression of the human delta opioid receptor. J Biol Chem 2000;275(18):13727–36.

    PubMed  CAS  CrossRef  Google Scholar 

  19. Duvernay MT, Zhou F, Wu G. A conserved motif for the transport of G protein-coupled receptors from the endoplasmic reticulum to the cell surface. J Biol Chem 2004;279(29):30741–50.

    PubMed  CAS  CrossRef  Google Scholar 

  20. Gaborik Z, Mihalik B, Jayadev S, Jagadeesh G, Catt KJ, Hunyady L. Requirement of membrane-proximal amino acids in the carboxyl-terminal tail for expression of the rat AT1a angiotensin receptor. FEBS Lett 1998;428(3):147–51.

    PubMed  CAS  CrossRef  Google Scholar 

  21. Oksche A, Dehe M, Schulein R, Wiesner B, Rosenthal W. Folding and cell surface expression of the vasopressin V2 receptor: requirement of the intracellular C-terminus. FEBS Lett 1998;424(1–2):57–62.

    PubMed  CAS  CrossRef  Google Scholar 

  22. Pankevych H, Korkhov V, Freissmuth M, Nanoff C. Truncation of the A1 adenosine receptor reveals distinct roles of the membrane-proximal carboxyl terminus in receptor folding and G protein coupling. J Biol Chem 2003;278(32):30283–93.

    PubMed  CAS  CrossRef  Google Scholar 

  23. Tetsuka M, Saito Y, Imai K, Doi H, Maruyama K. The basic residues in the membrane-proximal C-terminal tail of the rat melanin-concentrating hormone receptor 1 are required for receptor function. Endocrinology 2004;145(8):3712–23.

    PubMed  CAS  CrossRef  Google Scholar 

  24. Bermak JC, Li M, Bullock C, Zhou QY. Regulation of transport of the dopamine D1 receptor by a new membrane-associated ER protein. Nat Cell Biol 2001;3(5):492–8.

    PubMed  CAS  CrossRef  Google Scholar 

  25. Robert J, Clauser E, Petit PX, Ventura MA. A novel C-terminal motif is necessary for the export of the vasopressin V1b/V3 receptor to the plasma membrane. J Biol Chem 2005;280(3):2300–8.

    PubMed  CAS  CrossRef  Google Scholar 

  26. Schulein R, Hermosilla R, Oksche A, et al. A dileucine sequence and an upstream glutamate residue in the intracellular carboxyl terminus of the vasopressin V2 receptor are essential for cell surface transport in COS.M6 cells. Mol Pharmacol 1998;54(3):525–35.

    PubMed  CAS  Google Scholar 

  27. Bermak JC, Li M, Bullock C, Weingarten P, Zhou QY. Interaction of gamma-COP with a transport motif in the D1 receptor C-terminus. Eur J Cell Biol 2002;81(2):77–85.

    PubMed  CAS  CrossRef  Google Scholar 

  28. Bethune J, Wieland F, Moelleken J. COPI-mediated transport. J Membr Biol 2006;211(2):65–79.

    PubMed  CAS  CrossRef  Google Scholar 

  29. Bednarek SY, Ravazzola M, Hosobuchi M, et al. COPI- and COPII-coated vesicles bud directly from the endoplasmic reticulum in yeast. Cell 1995;83(7):1183–96.

    PubMed  CAS  CrossRef  Google Scholar 

  30. Fiedler K, Veit M, Stamnes MA, Rothman JE. Bimodal interaction of coatomer with the p24 family of putative cargo receptors. Science 1996;273(5280):1396–9.

    PubMed  CAS  CrossRef  Google Scholar 

  31. Nishimura N, Balch WE. A di-acidic signal required for selective export from the endoplasmic reticulum. Science 1997;277(5325):556–8.

    PubMed  CAS  CrossRef  Google Scholar 

  32. Yuan H, Michelsen K, Schwappach B. 14-3-3 dimers probe the assembly status of multimeric membrane proteins. Curr Biol 2003;13(8):638–46.

    PubMed  CAS  CrossRef  Google Scholar 

  33. Dupre DJ, Robitaille M, Richer M, Ethier N, Mamarbachi AM, Hebert TE. Dopamine receptor-interacting protein 78 acts as a molecular chaperone for Ggamma subunits before assembly with Gbeta. J Biol Chem 2007;282(18):13703–15.

    PubMed  CAS  CrossRef  Google Scholar 

  34. Karpa KD, Lidow MS, Pickering MT, Levenson R, Bergson C. N-linked glycosylation is required for plasma membrane localization of D5, but not D1, dopamine receptors in transfected mammalian cells. Mol Pharmacol 1999;56(5):1071–8.

    PubMed  CAS  Google Scholar 

  35. Prou D, Gu WJ, Le Crom S, Vincent JD, Salamero J, Vernier P. Intracellular retention of the two isoforms of the D(2) dopamine receptor promotes endoplasmic reticulum disruption. J Cell Sci 2001;114(Pt 19):3517–27.

    PubMed  CAS  Google Scholar 

  36. Fishburn CS, Elazar Z, Fuchs S. Differential glycosylation and intracellular trafficking for the long and short isoforms of the D2 dopamine receptor. J Biol Chem 1995;270(50): 29819–24.

    PubMed  CAS  CrossRef  Google Scholar 

  37. Sedaghat K, Nantel MF, Ginsberg S, Lalonde V, Tiberi M. Molecular characterization of dopamine D2 receptor isoforms tagged with green fluorescent protein. Mol Biotechnol 2006;34(1):1–14.

    PubMed  CAS  CrossRef  Google Scholar 

  38. Usiello A, Baik JH, Rouge-Pont F, et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000;408(6809):199–203.

    PubMed  CAS  CrossRef  Google Scholar 

  39. Jans DA, Peters R, Jans P, Fahrenholz F. Vasopressin V2-receptor mobile fraction and ligand-dependent adenylate cyclase activity are directly correlated in LLC-PK1 renal epithelial cells. J Cell Biol 1991;114(1):53–60.

    PubMed  CAS  CrossRef  Google Scholar 

  40. Pucadyil TJ, Kalipatnapu S, Harikumar KG, Rangaraj N, Karnik SS, Chattopadhyay A. G-protein-dependent cell surface dynamics of the human serotonin1A receptor tagged to yellow fluorescent protein. Biochemistry 2004;43(50):15852–62.

    PubMed  CAS  CrossRef  Google Scholar 

  41. Scott L, Zelenin S, Malmersjo S, et al. Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci USA 2006;103(3): 762–7.

    PubMed  CAS  CrossRef  Google Scholar 

  42. Scott L, Kruse MS, Forssberg H, Brismar H, Greengard P, Aperia A. Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc Natl Acad Sci USA 2002;99(3):1661–4.

    PubMed  CAS  CrossRef  Google Scholar 

  43. Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002;111(2):219–30.

    PubMed  CAS  CrossRef  Google Scholar 

  44. Binda AV, Kabbani N, Lin R, Levenson R. D2 and D3 dopamine receptor cell surface localization mediated by interaction with protein 4.1 N. Mol Pharmacol 2002;62(3): 507–13.

    PubMed  CAS  CrossRef  Google Scholar 

  45. Li M, Bermak JC, Wang ZW, Zhou QY. Modulation of dopamine D(2) receptor signaling by actin-binding protein (ABP-280). Mol Pharmacol 2000;57(3):446–52.

    PubMed  CAS  Google Scholar 

  46. Lin R, Canfield V, Levenson R. Dominant negative mutants of filamin A block cell surface expression of the D2 dopamine receptor. Pharmacology 2002;66(4):173–81.

    PubMed  CAS  CrossRef  Google Scholar 

  47. Lin R, Karpa K, Kabbani N, Goldman-Rakic P, Levenson R. Dopamine D2 and D3 receptors are linked to the actin cytoskeleton via interaction with filamin A. Proc Natl Acad Sci USA 2001;98(9):5258–63.

    PubMed  CAS  CrossRef  Google Scholar 

  48. Cho EY, Cho DI, Park JH, Kurose H, Caron MG, Kim KM. Roles of protein kinase C and actin-binding protein 280 in the regulation of intracellular trafficking of dopamine D3 receptor. Mol Endocrinol 2007;21(9):2242–54.

    PubMed  CAS  CrossRef  Google Scholar 

  49. Kim OJ, Ariano MA, Lazzarini RA, Levine MS, Sibley DR. Neurofilament-M interacts with the D1 dopamine receptor to regulate cell surface expression and desensitization. J Neurosci 2002;22(14):5920–30.

    PubMed  CAS  Google Scholar 

  50. Jackson A, Iwasiow RM, Chaar ZY, Nantel MF, Tiberi M. Homologous regulation of the heptahelical D1A receptor responsiveness: specific cytoplasmic tail regions mediate dopamine-induced phosphorylation, desensitization and endocytosis. J Neurochem 2002;82(3):683–97.

    PubMed  CAS  CrossRef  Google Scholar 

  51. Lamey M, Thompson M, Varghese G, et al. Distinct residues in the carboxyl tail mediate agonist-induced desensitization and internalization of the human dopamine D1 receptor. J Biol Chem 2002;277(11):9415–21.

    PubMed  CAS  CrossRef  Google Scholar 

  52. Mason JN, Kozell LB, Neve KA. Regulation of dopamine D(1) receptor trafficking by protein kinase A-dependent phosphorylation. Mol Pharmacol 2002;61(4):806–16.

    PubMed  CAS  CrossRef  Google Scholar 

  53. Ng GY, Varghese G, Chung HT, et al. Resistance of the dopamine D2L receptor to desensitization accompanies the up-regulation of receptors on to the surface of Sf9 cells. Endocrinology 1997;138(10):4199–206.

    PubMed  CAS  CrossRef  Google Scholar 

  54. Gardner B, Liu ZF, Jiang D, Sibley DR. The role of phosphorylation/dephosphorylation in agonist-induced desensitization of D1 dopamine receptor function: evidence for a novel pathway for receptor dephosphorylation. Mol Pharmacol 2001;59(2):310–21.

    PubMed  CAS  Google Scholar 

  55. Ng GY, Mouillac B, George SR, et al. Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor. Eur J Pharmacol 1994;267(1):7–19.

    PubMed  CAS  CrossRef  Google Scholar 

  56. Ng GY, Trogadis J, Stevens J, Bouvier M, O‘Dowd BF, George SR. Agonist-induced desensitization of dopamine D1 receptor-stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization. Proc Natl Acad Sci USA 1995;92(22):10157–61.

    PubMed  CAS  CrossRef  Google Scholar 

  57. Kim OJ, Gardner BR, Williams DB, et al. The role of phosphorylation in D1 dopamine receptor desensitization: evidence for a novel mechanism of arrestin association. J Biol Chem 2004;279(9):7999–8010.

    PubMed  CAS  CrossRef  Google Scholar 

  58. Ventura AL, Sibley DR. Altered regulation of the D(1) dopamine receptor in mutant Chinese hamster ovary cells deficient in cyclic AMP-dependent protein kinase activity. J Pharmacol Exp Ther 2000;293(2):426–34.

    PubMed  CAS  Google Scholar 

  59. Rankin ML, Marinec PS, Cabrera DM, Wang Z, Jose PA, Sibley DR. The D1 dopamine receptor is constitutively phosphorylated by G protein-coupled receptor kinase 4. Mol Pharmacol 2006;69(3):759–69.

    PubMed  CAS  Google Scholar 

  60. Jiang D, Sibley DR. Regulation of D(1) dopamine receptors with mutations of protein kinase phosphorylation sites: attenuation of the rate of agonist-induced desensitization. Mol Pharmacol 1999;56(4):675–83.

    PubMed  CAS  Google Scholar 

  61. Demchyshyn LL, McConkey F, Niznik HB. Dopamine D5 receptor agonist high affinity and constitutive activity profile conferred by carboxyl-terminal tail sequence. J Biol Chem 2000;275(31):23446–55.

    PubMed  CAS  CrossRef  Google Scholar 

  62. Iwasiow RM, Nantel MF, Tiberi M. Delineation of the structural basis for the activation properties of the dopamine D1 receptor subtypes. J Biol Chem 1999;274(45):31882–90.

    PubMed  CAS  CrossRef  Google Scholar 

  63. Sugamori KS, Scheideler MA, Vernier P, Niznik HB. Dopamine D1B receptor chimeras reveal modulation of partial agonist activity by carboxyl-terminal tail sequences. J Neurochem 1998;71(6):2593–9.

    PubMed  CAS  CrossRef  Google Scholar 

  64. Charpentier S, Jarvie KR, Severynse DM, Caron MG, Tiberi M. Silencing of the constitutive activity of the dopamine D1B receptor. Reciprocal mutations between D1 receptor subtypes delineate residues underlying activation properties. J Biol Chem 1996;271(45):28071–6.

    PubMed  CAS  CrossRef  Google Scholar 

  65. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998;78(1):189–225.

    PubMed  CAS  Google Scholar 

  66. Luttrell LM. Transmembrane signaling by G protein-coupled receptors. Methods Mol Biol 2006;332:3–49.

    PubMed  CAS  Google Scholar 

  67. Zhang LJ, Lachowicz JE, Sibley DR. The D2S and D2L dopamine receptor isoforms are differentially regulated in Chinese hamster ovary cells. Mol Pharmacol 1994;45(5):878–89.

    PubMed  CAS  Google Scholar 

  68. Ito K, Haga T, Lameh J, Sadee W. Sequestration of dopamine D2 receptors depends on coexpression of G-protein-coupled receptor kinases 2 or 5. Eur J Biochem 1999;260(1):112–9.

    PubMed  CAS  CrossRef  Google Scholar 

  69. Kim KM, Valenzano KJ, Robinson SR, Yao WD, Barak LS, Caron MG. Differential regulation of the dopamine D2 and D3 receptors by G protein-coupled receptor kinases and beta-arrestins. J Biol Chem 2001;276(40):37409–14.

    PubMed  CAS  CrossRef  Google Scholar 

  70. Kim KM, Gainetdinov RR, Laporte SA, Caron MG, Barak LS. G protein-coupled receptor kinase regulates dopamine D3 receptor signaling by modulating the stability of a receptor-filamin-beta-arrestin complex: a case of autoreceptor regulation. J Biol Chem 2005;280(13):12774–80.

    PubMed  CAS  CrossRef  Google Scholar 

  71. Gainetdinov RR, Bohn LM, Sotnikova TD, et al. Dopaminergic supersensitivity in G protein-coupled receptor kinase 6-deficient mice. Neuron 2003;38(2):291–303.

    PubMed  CAS  CrossRef  Google Scholar 

  72. Namkung Y, Sibley DR. Protein kinase C mediates phosphorylation, desensitization, and trafficking of the D2 dopamine receptor. J Biol Chem 2004;279(47):49533–41.

    PubMed  CAS  CrossRef  Google Scholar 

  73. Morris SJ, Van Ham II, Daigle M, Robillard L, Sajedi N, Albert PR. Differential desensitization of dopamine D2 receptor isoforms by protein kinase C: the importance of receptor phosphorylation and pseudosubstrate sites. Eur J Pharmacol 2007;577(1–3):44–53.

    PubMed  CAS  CrossRef  Google Scholar 

  74. Capper-Loup C, Canales JJ, Kadaba N, Graybiel AM. Concurrent activation of dopamine D1 and D2 receptors is required to evoke neural and behavioral phenotypes of cocaine sensitization. J Neurosci 2002;22(14):6218–27.

    PubMed  CAS  Google Scholar 

  75. Kita K, Shiratani T, Takenouchi K, Fukuzako H, Takigawa M. Effects of D1 and D2 dopamine receptor antagonists on cocaine-induced self-stimulation and locomotor activity in rats. Eur Neuropsychopharmacol 1999;9(1–2):1–7.

    PubMed  CAS  CrossRef  Google Scholar 

  76. Lee SP, So CH, Rashid AJ, et al. Dopamine D1 and D2 receptor Co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 2004;279(34):35671–8.

    PubMed  CAS  CrossRef  Google Scholar 

  77. So CH, Varghese G, Curley KJ, et al. D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol Pharmacol 2005;68(3):568–78.

    PubMed  CAS  Google Scholar 

  78. O‘Dowd BF, Ji X, Alijaniaram M, et al. Dopamine receptor oligomerization visualized in living cells. J Biol Chem 2005;280(44):37225–35.

    PubMed  CrossRef  CAS  Google Scholar 

  79. Rashid AJ, So CH, Kong MM, et al. D1–D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 2007;104(2):654–9.

    PubMed  CAS  CrossRef  Google Scholar 

  80. So CH, Verma V, O‘Dowd BF, George SR. Desensitization of the dopamine D1 and D2 receptor hetero-oligomer mediated calcium signal by agonist occupancy of either receptor. Mol Pharmacol 2007;72(2):450–62.

    PubMed  CAS  CrossRef  Google Scholar 

  81. Iwata K, Luo J, Penn RB, Benovic JL. Bimodal regulation of the human H1 histamine receptor by G protein-coupled receptor kinase 2. J Biol Chem 2005;280(3): 2197–204.

    PubMed  CAS  CrossRef  Google Scholar 

  82. Martin-Negrier M, Charron G, Bloch B. Agonist stimulation provokes dendritic and axonal dopamine D(1) receptor redistribution in primary cultures of striatal neurons. Neuroscience 2000;99(2):257–66.

    PubMed  CAS  CrossRef  Google Scholar 

  83. Martin-Negrier ML, Charron G, Bloch B. Receptor recycling mediates plasma membrane recovery of dopamine D1 receptors in dendrites and axons after agonist-induced endocytosis in primary cultures of striatal neurons. Synapse 2006;60(3):194–204.

    PubMed  CAS  CrossRef  Google Scholar 

  84. Dumartin B, Caille I, Gonon F, Bloch B. Internalization of D1 dopamine receptor in striatal neurons in vivo as evidence of activation by dopamine agonists. J Neurosci 1998;18(5):1650–61.

    PubMed  CAS  Google Scholar 

  85. Vickery RG, von Zastrow M. Distinct dynamin-dependent and -independent mechanisms target structurally homologous dopamine receptors to different endocytic membranes. J Cell Biol 1999;144(1):31–43.

    PubMed  CAS  CrossRef  Google Scholar 

  86. Bates MD, Olsen CL, Becker BN, et al. Elevation of cAMP is required for down-regulation, but not agonist-induced desensitization, of endogenous dopamine D1 receptors in opossum kidney cells. Studies in cells that stably express a rat cAMP phosphodiesterase (rPDE3) cDNA. J Biol Chem 1993;268(20):14757–63.

    PubMed  CAS  Google Scholar 

  87. Luttrell LM, Lefkowitz RJ. The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci 2002;115(Pt 3):455–65.

    PubMed  CAS  Google Scholar 

  88. Oakley RH, Laporte SA, Holt JA, Caron MG, Barak LS. Differential affinities of visual arrestin, beta arrestin1, and beta arrestin2 for G protein-coupled receptors delineate two major classes of receptors. J Biol Chem 2000;275(22):17201–10.

    PubMed  CAS  CrossRef  Google Scholar 

  89. Zhang J, Barak LS, Anborgh PH, Laporte SA, Caron MG, Ferguson SS. Cellular trafficking of G protein-coupled receptor/beta-arrestin endocytic complexes. J Biol Chem 1999;274(16):10999–1006.

    PubMed  CAS  CrossRef  Google Scholar 

  90. Macey TA, Liu Y, Gurevich VV, Neve KA. Dopamine D1 receptor interaction with arrestin3 in neostriatal neurons. J Neurochem 2005;93(1):128–34.

    PubMed  CAS  CrossRef  Google Scholar 

  91. Kong MM, Hasbi A, Mattocks M, Fan T, O‘Dowd BF, George SR. Regulation of D1 dopamine receptor trafficking and signaling by caveolin-1. Mol Pharmacol 2007;72(5):1157–70.

    PubMed  CAS  CrossRef  Google Scholar 

  92. Zhang J, Vinuela A, Neely MH, et al. Inhibition of the dopamine D1 receptor signaling by PSD-95. J Biol Chem 2007;282(21):15778–89.

    PubMed  CAS  CrossRef  Google Scholar 

  93. Iwata K, Ito K, Fukuzaki A, Inaki K, Haga T. Dynamin and rab5 regulate GRK2-dependent internalization of dopamine D2 receptors. Eur J Biochem 1999;263(2):596–602.

    PubMed  CAS  CrossRef  Google Scholar 

  94. Itokawa M, Toru M, Ito K, et al. Sequestration of the short and long isoforms of dopamine D2 receptors expressed in Chinese hamster ovary cells. Mol Pharmacol 1996;49(3):560–6.

    PubMed  CAS  Google Scholar 

  95. Macey TA, Gurevich VV, Neve KA. Preferential Interaction between the dopamine D2 receptor and Arrestin2 in neostriatal neurons. Mol Pharmacol 2004;66(6):1635–42.

    PubMed  CAS  CrossRef  Google Scholar 

  96. Cho DI, Beom S, Van Tol HH, Caron MG, Kim KM. Characterization of the desensitization properties of five dopamine receptor subtypes and alternatively spliced variants of dopamine D2 and D4 receptors. Biochem Biophys Res Commun 2006;350(3):634–40.

    PubMed  CAS  CrossRef  Google Scholar 

  97. Paspalas CD, Rakic P, Goldman-Rakic PS. Internalization of D2 dopamine receptors is clathrin-dependent and select to dendro-axonic appositions in primate prefrontal cortex. Eur J Neurosci 2006;24(5):1395–403.

    PubMed  CrossRef  Google Scholar 

  98. Oldenhof J, Vickery R, Anafi M, et al. SH3 binding domains in the dopamine D4 receptor. Biochemistry 1998;37(45):15726–36.

    PubMed  CAS  CrossRef  Google Scholar 

  99. Vargas GA, Von Zastrow M. Identification of a novel endocytic recycling signal in the D1 dopamine receptor. J Biol Chem 2004;279(36):37461–9.

    PubMed  CAS  CrossRef  Google Scholar 

  100. Bartlett SE, Enquist J, Hopf FW, et al. Dopamine responsiveness is regulated by targeted sorting of D2 receptors. Proc Natl Acad Sci USA 2005;102(32):11521–6.

    PubMed  CAS  CrossRef  Google Scholar 

  101. Cao TT, Deacon HW, Reczek D, Bretscher A, von Zastrow M. A kinase-regulated PDZ-domain interaction controls endocytic sorting of the beta2-adrenergic receptor. Nature 1999;401(6750):286–90.

    PubMed  CAS  CrossRef  Google Scholar 

  102. Cong M, Perry SJ, Hu LA, Hanson PI, Claing A, Lefkowitz RJ. Binding of the beta2 adrenergic receptor to N-ethylmaleimide-sensitive factor regulates receptor recycling. J Biol Chem 2001;276(48):45145–52.

    PubMed  CAS  CrossRef  Google Scholar 

  103. Gage RM, Kim KA, Cao TT, von Zastrow M. A transplantable sorting signal that is sufficient to mediate rapid recycling of G protein-coupled receptors. J Biol Chem 2001;276(48):44712–20.

    PubMed  CAS  CrossRef  Google Scholar 

  104. Kishi M, Liu X, Hirakawa T, Reczek D, Bretscher A, Ascoli M. Identification of two distinct structural motifs that, when added to the C-terminal tail of the rat LH receptor, redirect the internalized hormone-receptor complex from a degradation to a recycling pathway. Mol Endocrinol 2001;15(9):1624–35.

    PubMed  CAS  CrossRef  Google Scholar 

  105. Tanowitz M, von Zastrow M. A novel endocytic recycling signal that distinguishes the membrane trafficking of naturally occurring opioid receptors. J Biol Chem 2003;278(46): 45978–86.

    PubMed  CAS  CrossRef  Google Scholar 

  106. Thompson D, Pusch M, Whistler JL. Changes in G protein-coupled receptor sorting protein affinity regulate postendocytic targeting of G protein-coupled receptors. J Biol Chem 2007;282(40):29178–85.

    PubMed  CAS  CrossRef  Google Scholar 

  107. Heydom A, Sondergarrd BP, Hadrupn N, Holst B, Haft CR, Schwartz TW. Distinct in vitro interaction pattern of dopamine receptor subtypes with adaptor proteins involved in post-endocytotic receptor targeting. FEBS LETT 2004;556 (1-3):276–80.

    PubMed  CAS  CrossRef  Google Scholar 

  108. Gullapalli A, Wolfe BL, Griffin CT, Magnuson T, Trejo J. An essential role for SNX1 in lysosomal sorting of protease-activated receptor-1: evidence for retromer-, Hrs-, and Tsg101-independent functions of sorting nexins. Mol Biol Cell 2006;17(3):1228–38.

    PubMed  CAS  CrossRef  Google Scholar 

  109. Kim OJ, Ariano MA, Namkung Y, et al. D(2) dopamine receptor expression and trafficking is regulated through direct interactions with ZIP. J Neurochem 2008;106(1):83–95.

    PubMed  CAS  CrossRef  Google Scholar 

  110. Seeman P, Kapur S. Schizophrenia: more dopamine, more D2 receptors. Proc Natl Acad Sci USA 2000;97(14):7673–5.

    PubMed  CAS  CrossRef  Google Scholar 

  111. Hurley MJ, Jenner P. What has been learnt from study of dopamine receptors in Parkinson’s disease? Pharmacol Ther 2006;111(3):715–28.

    PubMed  CAS  CrossRef  Google Scholar 

  112. Martinez D, Broft A, Foltin RW, et al. Cocaine dependence and d2 receptor availability in the functional subdivisions of the striatum: relationship with cocaine-seeking behavior. Neuropsychopharmacology 2004;29(6):1190–202.

    PubMed  CAS  CrossRef  Google Scholar 

  113. Dumartin B, Jaber M, Gonon F, Caron MG, Giros B, Bloch B. Dopamine tone regulates D1 receptor trafficking and delivery in striatal neurons in dopamine transporter-deficient mice. Proc Natl Acad Sci USA 2000;97(4):1879–84.

    PubMed  CAS  CrossRef  Google Scholar 

  114. Stefanski R, Ziolkowska B, Kusmider M, et al. Active versus passive cocaine administration: differences in the neuroadaptive changes in the brain dopaminergic system. Brain Res 2007;1157:1–10.

    PubMed  CAS  CrossRef  Google Scholar 

  115. Thanos PK, Michaelides M, Benveniste H, Wang GJ, Volkow ND. Effects of chronic oral methylphenidate on cocaine self-administration and striatal dopamine D2 receptors in rodents. Pharmacol Biochem Behav 2007;87(4):426–33.

    PubMed  CAS  CrossRef  Google Scholar 

  116. Guigoni C, Doudnikoff E, Li Q, Bloch B, Bezard E. Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiol Dis 2007;26(2):452–63.

    PubMed  CAS  CrossRef  Google Scholar 

  117. Gao K, Kemp DE, Ganocy SJ, Gajwani P, Xia G, Calabrese JR. Antipsychotic-induced extrapyramidal side effects in bipolar disorder and schizophrenia: a systematic review. J Clin Psychopharmacol 2008;28(2):203–9.

    PubMed  CrossRef  CAS  Google Scholar 

  118. Haddad PM, Dursun SM. Neurological complications of psychiatric drugs: clinical features and management. Hum Psychopharmacol 2008;23(Suppl 1):15–26.

    PubMed  CrossRef  Google Scholar 

  119. Dean B, Hussain T, Scarr E, Pavey G, Copolov DL. Extended treatment with typical and atypical antipsychotic drugs differential effects on the densities of dopamine D2-like and GABAA receptors in rat striatum. Life Sci 2001;69(11):1257–68.

    PubMed  CAS  CrossRef  Google Scholar 

  120. Florijn WJ, Tarazi FI, Creese I. Dopamine receptor subtypes: differential regulation after 8 months treatment with antipsychotic drugs. J Pharmacol Exp Ther 1997;280(2):561–9.

    PubMed  CAS  Google Scholar 

  121. Moran-Gates T, Gan L, Park YS, Zhang K, Baldessarini RJ, Tarazi FI. Repeated antipsychotic drug exposure in developing rats: dopamine receptor effects. Synapse 2006;59(2):92–100.

    PubMed  CAS  CrossRef  Google Scholar 

  122. Tarazi FI, Florijn WJ, Creese I. Differential regulation of dopamine receptors after chronic typical and atypical antipsychotic drug treatment. Neuroscience 1997;78(4):985–96.

    PubMed  CAS  CrossRef  Google Scholar 

  123. Ryman-Rasmussen JP, Griffith A, Oloff S, et al. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors. Neuropharmacology 2007;52(2):562–75.

    PubMed  CAS  CrossRef  Google Scholar 

  124. Ryman-Rasmussen JP, Nichols DE, Mailman RB. Differential activation of adenylate cyclase and receptor internalization by novel dopamine D1 receptor agonists. Mol Pharmacol 2005;68(4):1039–48.

    PubMed  CAS  CrossRef  Google Scholar 

  125. Laruelle M, Frankle WG, Narendran R, Kegeles LS, Abi-Dargham A. Mechanism of action of antipsychotic drugs: from dopamine D(2) receptor antagonism to glutamate NMDA facilitation. Clin Ther 2005;27(Suppl A):S16–24.

    PubMed  CAS  CrossRef  Google Scholar 

  126. Kikuchi T, Tottori K, Uwahodo Y, et al. 7-(4-[4-(2,3-Dichlorophenyl)-1-piperazinyl]butyloxy)-3,4-dihydro-2(1H)-qui nolinone (OPC-14597), a new putative antipsychotic drug with both presynaptic dopamine autoreceptor agonistic activity and postsynaptic D2 receptor antagonistic activity. J Pharmacol Exp Ther 1995;274(1):329–36.

    PubMed  CAS  Google Scholar 

  127. Burris KD, Molski TF, Xu C, et al. Aripiprazole, a novel antipsychotic, is a high-affinity partial agonist at human dopamine D2 receptors. J Pharmacol Exp Ther 2002;302(1):381–9.

    PubMed  CAS  CrossRef  Google Scholar 

  128. Shapiro DA, Renock S, Arrington E, et al. Aripiprazole, a novel atypical antipsychotic drug with a unique and robust pharmacology. Neuropsychopharmacology 2003;28(8):1400–11.

    PubMed  CAS  CrossRef  Google Scholar 

  129. Urban JD, Vargas GA, von Zastrow M, Mailman RB. Aripiprazole has functionally selective actions at dopamine D2 receptor-mediated signaling pathways. Neuropsychopharmacology 2007;32(1):67–77.

    PubMed  CAS  CrossRef  Google Scholar 

  130. Swainston Harrison T, Perry CM. Aripiprazole: a review of its use in schizophrenia and schizoaffective disorder. Drugs 2004;64(15):1715–36.

    PubMed  CrossRef  Google Scholar 

  131. Van Craenenbroeck K, Gellynck E, Lintermans B, et al. Influence of the antipsychotic drug pipamperone on the expression of the dopamine D4 receptor. Life Sci 2006;80(1):74–81.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Acknowledgements

The authors’ research is supported by the National Institute on Drug Abuse and the Canadian Institutes of Health Research. S.R.G. holds a Tier 1 Canada Research Chair in Molecular Neuroscience. V.V. is supported by the Natural Sciences and Engineering Research Council of Canada. M.L.P. is supported by the Ontario Mental Health Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan R. George .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Perreault, M.L., Verma, V., O’Dowd, B.F., George, S.R. (2010). Regulation of Dopamine Receptor Trafficking and Responsiveness. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_8

Download citation