Skip to main content

Dopaminergic Modulation of Glutamatergic Signaling in Striatal Medium Spiny Neurons

  • 2420 Accesses

Part of the The Receptors book series (REC)

Abstract

Dopamine (DA) controls a wide variety of striatal functions, including action selection and associative learning. This is achieved by modulating cortical and thalamic glutamatergic synapses formed on principal medium spiny neurons (MSNs) and the way in which these signals are processed. Accumulating evidence suggests that D1 receptor signaling enhances dendritic excitability and glutamatergic signaling in striatonigral MSNs, whereas D2 receptor signaling exerts the opposite effect in striatopallidal MSNs. The functional antagonism between these two major striatal DA receptors extends to the regulation of synaptic plasticity. Using brain slices from DA receptor transgenic mice, recent studies have uncovered important differences between MSNs that shape long-term alterations in glutamatergic signaling with experience. These results are consistent with network models of striatal function, suggesting that DA acts in a push–pull fashion in action selection. Work in models of Parkinson’s disease has shown this bidirectionality is lost following DA depletion, pointing to the mechanisms underlying network dysfunction in this disease as well as in others with strong DA determinants like drug abuse.

Keywords

  • Long-term potentiation
  • Long-term depression
  • Spike-timing-dependent plasticity
  • Basal ganglia
  • Voltage-dependent channels
  • Dendrites
  • Parkinson’s disease models

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-333-6_7
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-333-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 7.1
Fig. 7.2
Fig. 7.3

References

  1. Balleine BW, Delgado MR, Hikosaka O. The role of the dorsal striatum in reward and decision-making. J Neurosci 2007;27:8161–5.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptive motor control. Science 1994;265:1826–31.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998;80:1–27.

    PubMed  CAS  Google Scholar 

  4. Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci 2006;7:464–76.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 1992;15:285–320.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Surmeier DJ, Song WJ, Yan Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 1996;16:6579–91.

    PubMed  CAS  Google Scholar 

  7. Wilson CJ. Basal ganglia. In: Shepherd GM, ed. The Synaptic Organization of the Brain. Oxford: Oxford UP; 2004:361–414.

    CrossRef  Google Scholar 

  8. Ade KK, Janssen MJ, Ortinski PI, Vicini S. Differential tonic GABA conductances in striatal medium spiny neurons. J Neurosci 2008;28:1185–97.

    PubMed  CrossRef  CAS  Google Scholar 

  9. Cepeda C, Andre VM, Yamazaki I, Wu N, Kleiman-Weiner M, Levine MS. Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur J Neurosci 2008;27:671–82.

    PubMed  CrossRef  Google Scholar 

  10. Day M, Wang Z, Ding J, et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 2006;9:251–9.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Kreitzer AC, Malenka RC. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 2007;445:643–7.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Shen W, Tian X, Day M, et al. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 2007;10:1458–66.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Wang Z, Kai L, Day M, et al. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 2006;50:443–52.

    PubMed  CrossRef  CAS  Google Scholar 

  14. Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000;23:185–215.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Surmeier DJ. Microcircuits in the Striatum: Cell Types, Intrinsic Membrane Properties and Neuromodulation. In: Grillner S, Graybiel AM, eds. Microcircuits: The Interface between Neurons and Global Brain Function. Berlin: MIT Press; 2004:105–26.

    Google Scholar 

  16. Arbuthnott GW, Wickens J. Space, time and dopamine. Trends Neurosci 2007;30:62–9.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 2007;30:228–35.

    PubMed  CrossRef  CAS  Google Scholar 

  18. David HN, Ansseau M, Abraini JH. Dopamine-glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of "intact" animals. Brain Res Brain Res Rev 2005;50:336–60.

    PubMed  CrossRef  CAS  Google Scholar 

  19. Morari M, Marti M, Sbrenna S, Fuxe K, Bianchi C, Beani L. Reciprocal dopamine-glutamate modulation of release in the basal ganglia. Neurochem Int 1998;33:383–97.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12:366–75.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Herve D, Rogard M, Levi-Strauss M. Molecular analysis of the multiple Golf alpha subunit mRNAs in the rat brain. Brain Res Mol Brain Res 1995;32:125–34.

    PubMed  CrossRef  CAS  Google Scholar 

  22. Snyder GL, Allen PB, Fienberg AA, et al. Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 2000;20:4480–8.

    PubMed  CAS  Google Scholar 

  23. Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 2006;26:4690–700.

    PubMed  CrossRef  CAS  Google Scholar 

  24. Braithwaite SP, Paul S, Nairn AC, Lombroso PJ. Synaptic plasticity: one STEP at a time. Trends Neurosci 2006;29:452–8.

    PubMed  CrossRef  CAS  Google Scholar 

  25. Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002;111:219–30.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Scott L, Zelenin S, Malmersjo S, et al. Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci USA 2006;103:762–7.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Blank T, Nijholt I, Teichert U, et al. The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses. Proc Natl Acad Sci USA 1997;94:14859–64.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Nicola SM, Malenka RC. Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. J Neurophysiol 1998;79:1768–76.

    PubMed  CAS  Google Scholar 

  29. Cepeda C, Buchwald NA, Levine MS. Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 1993;90:9576–80.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Liu JC, DeFazio RA, Espinosa-Jeffrey A, Cepeda C, de Vellis J, Levine MS. Calcium modulates dopamine potentiation of N-methyl-D-aspartate responses: electrophysiological and imaging evidence. J Neurosci Res 2004;76:315–22.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Carter AG, Sabatini BL. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 2004;44:483–93.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Carter AG, Soler-Llavina GJ, Sabatini BL. Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J Neurosci 2007;27:8967–77.

    PubMed  CrossRef  CAS  Google Scholar 

  33. Kerr JN, Plenz D. Action potential timing determines dendritic calcium during striatal up-states. J Neurosci 2004;24:877–85.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Calabresi P, Mercuri N, Stanzione P, Stefani A, Bernardi G. Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience 1987;20:757–71.

    PubMed  CrossRef  CAS  Google Scholar 

  35. Surmeier DJ, Kitai ST. D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. Prog Brain Res 1993;99:309–24.

    PubMed  CrossRef  CAS  Google Scholar 

  36. Carr DB, Day M, Cantrell AR, et al. Transmitter modulation of slow, activity-dependent alterations in sodium channel availability endows neurons with a novel form of cellular plasticity. Neuron 2003;39:793–806.

    PubMed  CrossRef  CAS  Google Scholar 

  37. Scheuer T, Catterall WA. Control of neuronal excitability by phosphorylation and dephosphorylation of sodium channels. Biochem Soc Trans 2006;34:1299–302.

    PubMed  CrossRef  CAS  Google Scholar 

  38. Wickens JR, Wilson CJ. Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo. J Neurophysiol 1998;79:2358–64.

    PubMed  CAS  Google Scholar 

  39. Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 1997;17:3334–42.

    PubMed  CAS  Google Scholar 

  40. Gao T, Yatani A, Dell’Acqua ML, et al. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997;19:185–96.

    PubMed  CrossRef  CAS  Google Scholar 

  41. Surmeier DJ, Bargas J, Hemmings HC, Jr., Nairn AC, Greengard P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 1995;14:385–97.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Olson PA, Tkatch T, Hernandez-Lopez S, et al. G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J Neurosci 2005;25:1050–62.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Levine MS, Altemus KL, Cepeda C, et al. Modulatory actions of dopamine on NMDA receptor-mediated responses are reduced in D1A-deficient mutant mice. J Neurosci 1996;16:5870–82.

    PubMed  CAS  Google Scholar 

  44. Snyder GL, Fienberg AA, Huganir RL, Greengard P. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 1998;18:10297–303.

    PubMed  CAS  Google Scholar 

  45. Flores-Hernandez J, Cepeda C, Hernandez-Echeagaray E, et al. Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol 2002;88:3010–20.

    PubMed  CrossRef  CAS  Google Scholar 

  46. Vergara R, Rick C, Hernandez-Lopez S, et al. Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol 2003;553:169–82.

    PubMed  CrossRef  CAS  Google Scholar 

  47. Tseng KY, O‘Donnell P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 2004;24:5131–9.

    PubMed  CrossRef  CAS  Google Scholar 

  48. Vilchis C, Bargas J, Ayala GX, Galvan E, Galarraga E. Ca2+ channels that activate Ca2+-dependent K+ currents in neostriatal neurons. Neuroscience 2000;95:745–52.

    PubMed  CrossRef  CAS  Google Scholar 

  49. Stoof JC, Kebabian JW. Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 1984;35:2281–96.

    PubMed  CrossRef  CAS  Google Scholar 

  50. Hernandez-Lopez S, Tkatch T, Perez-Garci E, et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 2000;20:8987–95.

    PubMed  CAS  Google Scholar 

  51. Nishi A, Snyder GL, Greengard P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 1997;17:8147–55.

    PubMed  CAS  Google Scholar 

  52. Kotecha SA, Oak JN, Jackson MF, et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 2002;35:1111–22.

    PubMed  CrossRef  CAS  Google Scholar 

  53. Hernandez-Echeagaray E, Starling AJ, Cepeda C, Levine MS. Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neurons: are dendrites necessary? Eur J Neurosci 2004;19:2455–63.

    PubMed  CrossRef  Google Scholar 

  54. Hakansson K, Galdi S, Hendrick J, Snyder G, Greengard P, Fisone G. Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 2006;96:482–8.

    PubMed  CrossRef  Google Scholar 

  55. Bamford NS, Zhang H, Schmitz Y, et al. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 2004;42:653–63.

    PubMed  CrossRef  CAS  Google Scholar 

  56. Yin HH, Lovinger DM. Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc Natl Acad Sci USA 2006;103:8251–6.

    PubMed  CrossRef  CAS  Google Scholar 

  57. Brebner K, Wong TP, Liu L, et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 2005;310:1340–3.

    PubMed  CrossRef  CAS  Google Scholar 

  58. Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 2001;13:1071–7.

    PubMed  CrossRef  CAS  Google Scholar 

  59. Kreitzer AC, Malenka RC. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J Neurosci 2005;25:10537–45.

    PubMed  CrossRef  CAS  Google Scholar 

  60. Lovinger DM, Tyler EC, Merritt A. Short- and long-term synaptic depression in rat neostriatum. J Neurophysiol 1993;70:1937–49.

    PubMed  CAS  Google Scholar 

  61. Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 1999;2:358–63.

    PubMed  CrossRef  CAS  Google Scholar 

  62. Calabresi P, Picconi B, Tozzi A, Di Filippo M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 2007;30:211–9.

    PubMed  CrossRef  CAS  Google Scholar 

  63. Kawaguchi Y, Wilson CJ, Emson PC. Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J Neurophysiol 1989;62:1052–68.

    PubMed  CAS  Google Scholar 

  64. Bacci JJ, Kachidian P, Kerkerian-Le Goff L, Salin P. Intralaminar thalamic nuclei lesions: widespread impact on dopamine denervation-mediated cellular defects in the rat basal ganglia. J Neuropathol Exp Neurol 2004;63:20–31.

    PubMed  Google Scholar 

  65. Smith Y, Raju DV, Pare JF, Sidibe M. The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 2004;27:520–7.

    PubMed  CrossRef  CAS  Google Scholar 

  66. Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci 2005;8:1491–3.

    PubMed  CrossRef  CAS  Google Scholar 

  67. Lei W, Jiao Y, Del Mar N, Reiner A. Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 2004;24:8289–99.

    PubMed  CrossRef  CAS  Google Scholar 

  68. Ding J, Peterson JD, Surmeier DJ. Corticostriatal and thalamostriatal synapses have distinctive properties. J Neurosci 2008;28:6483–92.

    PubMed  CrossRef  CAS  Google Scholar 

  69. Smeal RM, Gaspar RC, Keefe KA, Wilcox KS. A rat brain slice preparation for characterizing both thalamostriatal and corticostriatal afferents. J Neurosci Methods 2007;159:224–35.

    PubMed  CrossRef  CAS  Google Scholar 

  70. Centonze D, Grande C, Saulle E, et al. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci 2003;23:8506–12.

    PubMed  CAS  Google Scholar 

  71. Kerr JN, Wickens JR. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 2001;85:117–24.

    PubMed  CAS  Google Scholar 

  72. Mahon S, Deniau JM, Charpier S. Corticostriatal plasticity: life after the depression. Trends Neurosci 2004;27:460–7.

    PubMed  CrossRef  CAS  Google Scholar 

  73. Hersch SM, Ciliax BJ, Gutekunst CA, et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 1995;15:5222–37.

    PubMed  CAS  Google Scholar 

  74. Dan Y, Poo MM. Spike timing-dependent plasticity of neural circuits. Neuron 2004;44:23–30.

    PubMed  CrossRef  CAS  Google Scholar 

  75. Kampa BM, Letzkus JJ, Stuart GJ. Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity. Trends Neurosci 2007;30:456–63.

    PubMed  CrossRef  CAS  Google Scholar 

  76. Sjostrom PJ, Rancz EA, Roth A, Hausser M. Dendritic excitability and synaptic plasticity. Physiol Rev 2008;88:769–840.

    PubMed  CrossRef  CAS  Google Scholar 

  77. Sjostrom PJ, Nelson SB. Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 2002;12:305–14.

    PubMed  CrossRef  CAS  Google Scholar 

  78. Letzkus JJ, Kampa BM, Stuart GJ. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 2006;26:10420–9.

    PubMed  CrossRef  CAS  Google Scholar 

  79. Nevian T, Sakmann B. Spine Ca2+ signaling in spike-timing-dependent plasticity. J Neurosci 2006;26:11001–13.

    PubMed  CrossRef  CAS  Google Scholar 

  80. Pawlak V, Kerr JN. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 2008;28:2435–46.

    PubMed  CrossRef  CAS  Google Scholar 

  81. Shen W, Flajolet M, Greengard P, Surmeier DJ. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 2008;321:848–51.

    PubMed  CrossRef  CAS  Google Scholar 

  82. Seol GH, Ziburkus J, Huang S, et al. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 2007;55:919–29.

    PubMed  CrossRef  CAS  Google Scholar 

  83. Tzounopoulos T, Rubio ME, Keen JE, Trussell LO. Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 2007;54:291–301.

    PubMed  CrossRef  CAS  Google Scholar 

  84. Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M. Targeting adenosine A2a receptors in Parkinson’s disease. Trends Neurosci 2006;29:647–54.

    PubMed  CrossRef  CAS  Google Scholar 

  85. Fuxe K, Marcellino D, Genedani S, Agnati L. Adenosine A2A receptors, dopamine D2 receptors and their interactions in Parkinson’s disease. Mov Disord 2007;22:1990–2017.

    PubMed  CrossRef  Google Scholar 

  86. Fino E, Glowinski J, Venance L. Bidirectional activity-dependent plasticity at corticostriatal synapses. J Neurosci 2005;25:11279–87.

    PubMed  CrossRef  CAS  Google Scholar 

  87. Fino E, Deniau JM, Venance L. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J Physiol 2008;586:265–82.

    PubMed  CrossRef  CAS  Google Scholar 

  88. Frank MJ, Scheres A, Sherman SJ. Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc Lond B Biol Sci 2007;362:1641–54.

    PubMed  CrossRef  Google Scholar 

  89. Mink JW. The Basal Ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol 2003;60:1365–8.

    PubMed  CrossRef  Google Scholar 

  90. O‘Reilly RC, Frank MJ. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 2006;18:283–328.

    PubMed  CrossRef  Google Scholar 

  91. Mirenowicz J, Schultz W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 1996;379:449–51.

    PubMed  CrossRef  CAS  Google Scholar 

  92. Wilson CJ, Kawaguchi Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 1996;16:2397–410.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. James Surmeier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Shen, W., Surmeier, D.J. (2010). Dopaminergic Modulation of Glutamatergic Signaling in Striatal Medium Spiny Neurons. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_7

Download citation