Balleine BW, Delgado MR, Hikosaka O. The role of the dorsal striatum in reward and decision-making. J Neurosci 2007;27:8161–5.
PubMed
CrossRef
CAS
Google Scholar
Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptive motor control. Science 1994;265:1826–31.
PubMed
CrossRef
CAS
Google Scholar
Schultz W. Predictive reward signal of dopamine neurons. J Neurophysiol 1998;80:1–27.
PubMed
CAS
Google Scholar
Yin HH, Knowlton BJ. The role of the basal ganglia in habit formation. Nat Rev Neurosci 2006;7:464–76.
PubMed
CrossRef
CAS
Google Scholar
Gerfen CR. The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. Annu Rev Neurosci 1992;15:285–320.
PubMed
CrossRef
CAS
Google Scholar
Surmeier DJ, Song WJ, Yan Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 1996;16:6579–91.
PubMed
CAS
Google Scholar
Wilson CJ. Basal ganglia. In: Shepherd GM, ed. The Synaptic Organization of the Brain. Oxford: Oxford UP; 2004:361–414.
CrossRef
Google Scholar
Ade KK, Janssen MJ, Ortinski PI, Vicini S. Differential tonic GABA conductances in striatal medium spiny neurons. J Neurosci 2008;28:1185–97.
PubMed
CrossRef
CAS
Google Scholar
Cepeda C, Andre VM, Yamazaki I, Wu N, Kleiman-Weiner M, Levine MS. Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur J Neurosci 2008;27:671–82.
PubMed
CrossRef
Google Scholar
Day M, Wang Z, Ding J, et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 2006;9:251–9.
PubMed
CrossRef
CAS
Google Scholar
Kreitzer AC, Malenka RC. Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson’s disease models. Nature 2007;445:643–7.
PubMed
CrossRef
CAS
Google Scholar
Shen W, Tian X, Day M, et al. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 2007;10:1458–66.
PubMed
CrossRef
CAS
Google Scholar
Wang Z, Kai L, Day M, et al. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 2006;50:443–52.
PubMed
CrossRef
CAS
Google Scholar
Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000;23:185–215.
PubMed
CrossRef
CAS
Google Scholar
Surmeier DJ. Microcircuits in the Striatum: Cell Types, Intrinsic Membrane Properties and Neuromodulation. In: Grillner S, Graybiel AM, eds. Microcircuits: The Interface between Neurons and Global Brain Function. Berlin: MIT Press; 2004:105–26.
Google Scholar
Arbuthnott GW, Wickens J. Space, time and dopamine. Trends Neurosci 2007;30:62–9.
PubMed
CrossRef
CAS
Google Scholar
Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 2007;30:228–35.
PubMed
CrossRef
CAS
Google Scholar
David HN, Ansseau M, Abraini JH. Dopamine-glutamate reciprocal modulation of release and motor responses in the rat caudate-putamen and nucleus accumbens of "intact" animals. Brain Res Brain Res Rev 2005;50:336–60.
PubMed
CrossRef
CAS
Google Scholar
Morari M, Marti M, Sbrenna S, Fuxe K, Bianchi C, Beani L. Reciprocal dopamine-glutamate modulation of release in the basal ganglia. Neurochem Int 1998;33:383–97.
PubMed
CrossRef
CAS
Google Scholar
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12:366–75.
PubMed
CrossRef
CAS
Google Scholar
Herve D, Rogard M, Levi-Strauss M. Molecular analysis of the multiple Golf alpha subunit mRNAs in the rat brain. Brain Res Mol Brain Res 1995;32:125–34.
PubMed
CrossRef
CAS
Google Scholar
Snyder GL, Allen PB, Fienberg AA, et al. Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 2000;20:4480–8.
PubMed
CAS
Google Scholar
Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 2006;26:4690–700.
PubMed
CrossRef
CAS
Google Scholar
Braithwaite SP, Paul S, Nairn AC, Lombroso PJ. Synaptic plasticity: one STEP at a time. Trends Neurosci 2006;29:452–8.
PubMed
CrossRef
CAS
Google Scholar
Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002;111:219–30.
PubMed
CrossRef
CAS
Google Scholar
Scott L, Zelenin S, Malmersjo S, et al. Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci USA 2006;103:762–7.
PubMed
CrossRef
CAS
Google Scholar
Blank T, Nijholt I, Teichert U, et al. The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses. Proc Natl Acad Sci USA 1997;94:14859–64.
PubMed
CrossRef
CAS
Google Scholar
Nicola SM, Malenka RC. Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. J Neurophysiol 1998;79:1768–76.
PubMed
CAS
Google Scholar
Cepeda C, Buchwald NA, Levine MS. Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 1993;90:9576–80.
PubMed
CrossRef
CAS
Google Scholar
Liu JC, DeFazio RA, Espinosa-Jeffrey A, Cepeda C, de Vellis J, Levine MS. Calcium modulates dopamine potentiation of N-methyl-D-aspartate responses: electrophysiological and imaging evidence. J Neurosci Res 2004;76:315–22.
PubMed
CrossRef
CAS
Google Scholar
Carter AG, Sabatini BL. State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 2004;44:483–93.
PubMed
CrossRef
CAS
Google Scholar
Carter AG, Soler-Llavina GJ, Sabatini BL. Timing and location of synaptic inputs determine modes of subthreshold integration in striatal medium spiny neurons. J Neurosci 2007;27:8967–77.
PubMed
CrossRef
CAS
Google Scholar
Kerr JN, Plenz D. Action potential timing determines dendritic calcium during striatal up-states. J Neurosci 2004;24:877–85.
PubMed
CrossRef
CAS
Google Scholar
Calabresi P, Mercuri N, Stanzione P, Stefani A, Bernardi G. Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience 1987;20:757–71.
PubMed
CrossRef
CAS
Google Scholar
Surmeier DJ, Kitai ST. D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. Prog Brain Res 1993;99:309–24.
PubMed
CrossRef
CAS
Google Scholar
Carr DB, Day M, Cantrell AR, et al. Transmitter modulation of slow, activity-dependent alterations in sodium channel availability endows neurons with a novel form of cellular plasticity. Neuron 2003;39:793–806.
PubMed
CrossRef
CAS
Google Scholar
Scheuer T, Catterall WA. Control of neuronal excitability by phosphorylation and dephosphorylation of sodium channels. Biochem Soc Trans 2006;34:1299–302.
PubMed
CrossRef
CAS
Google Scholar
Wickens JR, Wilson CJ. Regulation of action-potential firing in spiny neurons of the rat neostriatum in vivo. J Neurophysiol 1998;79:2358–64.
PubMed
CAS
Google Scholar
Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 1997;17:3334–42.
PubMed
CAS
Google Scholar
Gao T, Yatani A, Dell’Acqua ML, et al. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997;19:185–96.
PubMed
CrossRef
CAS
Google Scholar
Surmeier DJ, Bargas J, Hemmings HC, Jr., Nairn AC, Greengard P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 1995;14:385–97.
PubMed
CrossRef
CAS
Google Scholar
Olson PA, Tkatch T, Hernandez-Lopez S, et al. G-protein-coupled receptor modulation of striatal CaV1.3 L-type Ca2+ channels is dependent on a Shank-binding domain. J Neurosci 2005;25:1050–62.
PubMed
CrossRef
CAS
Google Scholar
Levine MS, Altemus KL, Cepeda C, et al. Modulatory actions of dopamine on NMDA receptor-mediated responses are reduced in D1A-deficient mutant mice. J Neurosci 1996;16:5870–82.
PubMed
CAS
Google Scholar
Snyder GL, Fienberg AA, Huganir RL, Greengard P. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 1998;18:10297–303.
PubMed
CAS
Google Scholar
Flores-Hernandez J, Cepeda C, Hernandez-Echeagaray E, et al. Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol 2002;88:3010–20.
PubMed
CrossRef
CAS
Google Scholar
Vergara R, Rick C, Hernandez-Lopez S, et al. Spontaneous voltage oscillations in striatal projection neurons in a rat corticostriatal slice. J Physiol 2003;553:169–82.
PubMed
CrossRef
CAS
Google Scholar
Tseng KY, O‘Donnell P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 2004;24:5131–9.
PubMed
CrossRef
CAS
Google Scholar
Vilchis C, Bargas J, Ayala GX, Galvan E, Galarraga E. Ca2+ channels that activate Ca2+-dependent K+ currents in neostriatal neurons. Neuroscience 2000;95:745–52.
PubMed
CrossRef
CAS
Google Scholar
Stoof JC, Kebabian JW. Two dopamine receptors: biochemistry, physiology and pharmacology. Life Sci 1984;35:2281–96.
PubMed
CrossRef
CAS
Google Scholar
Hernandez-Lopez S, Tkatch T, Perez-Garci E, et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 2000;20:8987–95.
PubMed
CAS
Google Scholar
Nishi A, Snyder GL, Greengard P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 1997;17:8147–55.
PubMed
CAS
Google Scholar
Kotecha SA, Oak JN, Jackson MF, et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 2002;35:1111–22.
PubMed
CrossRef
CAS
Google Scholar
Hernandez-Echeagaray E, Starling AJ, Cepeda C, Levine MS. Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neurons: are dendrites necessary? Eur J Neurosci 2004;19:2455–63.
PubMed
CrossRef
Google Scholar
Hakansson K, Galdi S, Hendrick J, Snyder G, Greengard P, Fisone G. Regulation of phosphorylation of the GluR1 AMPA receptor by dopamine D2 receptors. J Neurochem 2006;96:482–8.
PubMed
CrossRef
Google Scholar
Bamford NS, Zhang H, Schmitz Y, et al. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 2004;42:653–63.
PubMed
CrossRef
CAS
Google Scholar
Yin HH, Lovinger DM. Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc Natl Acad Sci USA 2006;103:8251–6.
PubMed
CrossRef
CAS
Google Scholar
Brebner K, Wong TP, Liu L, et al. Nucleus accumbens long-term depression and the expression of behavioral sensitization. Science 2005;310:1340–3.
PubMed
CrossRef
CAS
Google Scholar
Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 2001;13:1071–7.
PubMed
CrossRef
CAS
Google Scholar
Kreitzer AC, Malenka RC. Dopamine modulation of state-dependent endocannabinoid release and long-term depression in the striatum. J Neurosci 2005;25:10537–45.
PubMed
CrossRef
CAS
Google Scholar
Lovinger DM, Tyler EC, Merritt A. Short- and long-term synaptic depression in rat neostriatum. J Neurophysiol 1993;70:1937–49.
PubMed
CAS
Google Scholar
Giuffrida A, Parsons LH, Kerr TM, Rodriguez de Fonseca F, Navarro M, Piomelli D. Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nat Neurosci 1999;2:358–63.
PubMed
CrossRef
CAS
Google Scholar
Calabresi P, Picconi B, Tozzi A, Di Filippo M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 2007;30:211–9.
PubMed
CrossRef
CAS
Google Scholar
Kawaguchi Y, Wilson CJ, Emson PC. Intracellular recording of identified neostriatal patch and matrix spiny cells in a slice preparation preserving cortical inputs. J Neurophysiol 1989;62:1052–68.
PubMed
CAS
Google Scholar
Bacci JJ, Kachidian P, Kerkerian-Le Goff L, Salin P. Intralaminar thalamic nuclei lesions: widespread impact on dopamine denervation-mediated cellular defects in the rat basal ganglia. J Neuropathol Exp Neurol 2004;63:20–31.
PubMed
Google Scholar
Smith Y, Raju DV, Pare JF, Sidibe M. The thalamostriatal system: a highly specific network of the basal ganglia circuitry. Trends Neurosci 2004;27:520–7.
PubMed
CrossRef
CAS
Google Scholar
Hoshi E, Tremblay L, Feger J, Carras PL, Strick PL. The cerebellum communicates with the basal ganglia. Nat Neurosci 2005;8:1491–3.
PubMed
CrossRef
CAS
Google Scholar
Lei W, Jiao Y, Del Mar N, Reiner A. Evidence for differential cortical input to direct pathway versus indirect pathway striatal projection neurons in rats. J Neurosci 2004;24:8289–99.
PubMed
CrossRef
CAS
Google Scholar
Ding J, Peterson JD, Surmeier DJ. Corticostriatal and thalamostriatal synapses have distinctive properties. J Neurosci 2008;28:6483–92.
PubMed
CrossRef
CAS
Google Scholar
Smeal RM, Gaspar RC, Keefe KA, Wilcox KS. A rat brain slice preparation for characterizing both thalamostriatal and corticostriatal afferents. J Neurosci Methods 2007;159:224–35.
PubMed
CrossRef
CAS
Google Scholar
Centonze D, Grande C, Saulle E, et al. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci 2003;23:8506–12.
PubMed
CAS
Google Scholar
Kerr JN, Wickens JR. Dopamine D-1/D-5 receptor activation is required for long-term potentiation in the rat neostriatum in vitro. J Neurophysiol 2001;85:117–24.
PubMed
CAS
Google Scholar
Mahon S, Deniau JM, Charpier S. Corticostriatal plasticity: life after the depression. Trends Neurosci 2004;27:460–7.
PubMed
CrossRef
CAS
Google Scholar
Hersch SM, Ciliax BJ, Gutekunst CA, et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 1995;15:5222–37.
PubMed
CAS
Google Scholar
Dan Y, Poo MM. Spike timing-dependent plasticity of neural circuits. Neuron 2004;44:23–30.
PubMed
CrossRef
CAS
Google Scholar
Kampa BM, Letzkus JJ, Stuart GJ. Dendritic mechanisms controlling spike-timing-dependent synaptic plasticity. Trends Neurosci 2007;30:456–63.
PubMed
CrossRef
CAS
Google Scholar
Sjostrom PJ, Rancz EA, Roth A, Hausser M. Dendritic excitability and synaptic plasticity. Physiol Rev 2008;88:769–840.
PubMed
CrossRef
CAS
Google Scholar
Sjostrom PJ, Nelson SB. Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 2002;12:305–14.
PubMed
CrossRef
CAS
Google Scholar
Letzkus JJ, Kampa BM, Stuart GJ. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location. J Neurosci 2006;26:10420–9.
PubMed
CrossRef
CAS
Google Scholar
Nevian T, Sakmann B. Spine Ca2+ signaling in spike-timing-dependent plasticity. J Neurosci 2006;26:11001–13.
PubMed
CrossRef
CAS
Google Scholar
Pawlak V, Kerr JN. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 2008;28:2435–46.
PubMed
CrossRef
CAS
Google Scholar
Shen W, Flajolet M, Greengard P, Surmeier DJ. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 2008;321:848–51.
PubMed
CrossRef
CAS
Google Scholar
Seol GH, Ziburkus J, Huang S, et al. Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron 2007;55:919–29.
PubMed
CrossRef
CAS
Google Scholar
Tzounopoulos T, Rubio ME, Keen JE, Trussell LO. Coactivation of pre- and postsynaptic signaling mechanisms determines cell-specific spike-timing-dependent plasticity. Neuron 2007;54:291–301.
PubMed
CrossRef
CAS
Google Scholar
Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M. Targeting adenosine A2a receptors in Parkinson’s disease. Trends Neurosci 2006;29:647–54.
PubMed
CrossRef
CAS
Google Scholar
Fuxe K, Marcellino D, Genedani S, Agnati L. Adenosine A2A receptors, dopamine D2 receptors and their interactions in Parkinson’s disease. Mov Disord 2007;22:1990–2017.
PubMed
CrossRef
Google Scholar
Fino E, Glowinski J, Venance L. Bidirectional activity-dependent plasticity at corticostriatal synapses. J Neurosci 2005;25:11279–87.
PubMed
CrossRef
CAS
Google Scholar
Fino E, Deniau JM, Venance L. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J Physiol 2008;586:265–82.
PubMed
CrossRef
CAS
Google Scholar
Frank MJ, Scheres A, Sherman SJ. Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc Lond B Biol Sci 2007;362:1641–54.
PubMed
CrossRef
Google Scholar
Mink JW. The Basal Ganglia and involuntary movements: impaired inhibition of competing motor patterns. Arch Neurol 2003;60:1365–8.
PubMed
CrossRef
Google Scholar
O‘Reilly RC, Frank MJ. Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 2006;18:283–328.
PubMed
CrossRef
Google Scholar
Mirenowicz J, Schultz W. Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 1996;379:449–51.
PubMed
CrossRef
CAS
Google Scholar
Wilson CJ, Kawaguchi Y. The origins of two-state spontaneous membrane potential fluctuations of neostriatal spiny neurons. J Neurosci 1996;16:2397–410.
PubMed
CAS
Google Scholar