Skip to main content

Dopamine Receptor Signaling: Intracellular Pathways to Behavior

Part of the The Receptors book series (REC)

Abstract

Dopamine receptors belong to the large family of heptahelical transmembrane spanning G protein-coupled receptors (GPCRs). Five mammalian dopamine receptor subtypes have been identified and are classified into two major groups, the D1-like (D1 and D5) and D2-like (D2, D3, and D4) receptors. Two splice variants of the D2 receptor exist, D2-Long (D2L) and D2-Short (D2S), which differ by an insertion of 29 amino acids in the third intracellular loop of D2L. In this chapter, we discuss canonical and non-canonical signaling pathways regulated by individual dopamine receptor subtypes and the contribution of these pathways to dopamine-induced behaviors. Particular focus is given to the behavioral effects of drugs of abuse, including the psychostimulants cocaine, amphetamine, and methamphetamine.

Keywords

  • Dopamine
  • Dopamine receptor
  • Adenylate cyclase
  • G protein
  • Arrestin
  • Akt
  • Phospholipase C
  • Protein kinase A
  • Cyclic AMP

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-333-6_6
  • Chapter length: 37 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-333-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2

References

  1. Giros B, Sokoloff P, Martres M-P, Riou J-F, Emorine LJ, Schwartz J-C. Alternative splicing directs the expression of two D2 dopamine receptor isoforms. Nature 1989;342:923–6.

    PubMed  CAS  CrossRef  Google Scholar 

  2. Neve KA, Neve RL. Molecular biology of dopamine receptors. In: Neve KA, Neve RL, eds. The dopamine receptors. Totawa, NJ: Humana Press, 1997:27–76.

    CrossRef  Google Scholar 

  3. Callier S, Snapyan M, Le Crom S, Prou D, Vincent JD, Vernier P. Evolution and cell biology of dopamine receptors in vertebrates. Biol Cell 2003;95:489–502.

    PubMed  CAS  CrossRef  Google Scholar 

  4. Kienast T, Heinz A. Dopamine and the diseased brain. CNS Neurol Disord Drug Targets 2006;5:109–31.

    PubMed  CAS  CrossRef  Google Scholar 

  5. Meador-Woodruff JH, Mansour A, Healy DJ et al. Comparison of the distributions of D1 and D2 dopamine receptor mRNAs in rat brain. Neuropsychopharmacology 1991;5:231–42.

    PubMed  CAS  Google Scholar 

  6. Meador-Woodruff JH, Mansour A, Grandy DK, Damask SP, Civelli O, Watson SJ. Distribution of D5 dopamine receptor messenger RNA in rat brain. Neurosci Lett 1992;145:209–12.

    PubMed  CAS  CrossRef  Google Scholar 

  7. Chronwall BM, Dickerson DS, Huerter BS, Sibley DR, Millington WR. Regulation of heterogeneity in D2 dopamine receptor gene expression among individual melanotropes in the rat pituitary intermediate lobe. Mol Cell Neurosci 1994;5:35–45.

    PubMed  CAS  CrossRef  Google Scholar 

  8. Khan ZU, Mrzljak L, Gutierrez A, De la Calle A, Goldman-Rakic PS. Prominence of the dopamine D2 short isoform in dopaminergic pathways. Proc Natl Acad Sci USA 1998;95:7731–6.

    PubMed  CAS  CrossRef  Google Scholar 

  9. Bouthenet M-L, Souil E, Martres M-P, Sokoloff P, Giros B, Schwartz J-C. Localization of dopamine D3 receptor mRNA in the rat brain using in situ hybridization histochemistry: comparison with dopamine D2 receptor mRNA. Brain Res 1991;564:203–19.

    PubMed  CAS  CrossRef  Google Scholar 

  10. Mulcrone J, Kerwin RW. The regional pattern of D4 gene expression in human brain. Neurosci Lett 1997;234:147–50.

    PubMed  CAS  CrossRef  Google Scholar 

  11. McCudden CR, Hains MD, Kimple RJ, Siderovski DP, Willard FS. G-protein signaling: back to the future. Cell Mol Life Sci 2005;62:551–77.

    PubMed  CAS  CrossRef  Google Scholar 

  12. Oldham WM, Hamm HE. Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 2008;9:60–71.

    PubMed  CAS  CrossRef  Google Scholar 

  13. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res 2004;24:165–205.

    PubMed  CAS  CrossRef  Google Scholar 

  14. Rebois RV, Hebert TE. Protein complexes involved in heptahelical receptor-mediated signal transduction. Receptors Channels 2003;9:169–94.

    PubMed  CAS  CrossRef  Google Scholar 

  15. Galés C, Rebois RV, Hogue M et al. Real-time monitoring of receptor and G-protein interactions in living cells. Nat Methods 2005;2:177–84.

    PubMed  CrossRef  Google Scholar 

  16. Brown JH, Makman MH. Stimulation by dopamine of adenylate cyclase in retinal homogenates and of adenosine-3':5'-cyclic monophosphate formation in intact retina. Proc Natl Acad Sci USA 1972;69:539–43.

    PubMed  CAS  CrossRef  Google Scholar 

  17. Kebabian JW, Petzold GL, Greengard P. Dopamine-sensitive adenylate cyclase in caudate nucleus of rat brain, and its similarity to the “dopamine receptor”. Proc Natl Acad Sci USA 1972;69:2145–9.

    PubMed  CAS  CrossRef  Google Scholar 

  18. Drinnan SL, Hope BT, Snutch TP, Vincent SR. Golf in the basal ganglia. Mol Cell Neurosci 1991;2:66–70.

    PubMed  CAS  CrossRef  Google Scholar 

  19. Zhuang X, Belluscio L, Hen R. Golf α mediates dopamine D1 receptor signaling. J Neurosci 2000;20:NIL1–L5.

    Google Scholar 

  20. Corvol JC, Studler JM, Schonn JS, Girault JA, Hervé D. Gα olf is necessary for coupling D1 and A2a receptors to adenylyl cyclase in the striatum. J Neurochem 2001;76:1585–8.

    PubMed  CAS  CrossRef  Google Scholar 

  21. Ohara K, Haga K, Berstein G, Haga T, Ichiyama A. The interaction between D-2 dopamine receptors and GTP-binding proteins. Mol Pharmacol 1988;33:290–6.

    PubMed  CAS  Google Scholar 

  22. Lledo PM, Homburger V, Bockaert J, Vincent J-D. Differential G protein-mediated coupling of D2 dopamine receptors to K+ and Ca2+ currents in rat anterior pituitary cells. Neuron 1992;8:455–63.

    PubMed  CAS  CrossRef  Google Scholar 

  23. Liu YF, Jakobs KH, Rasenick MM, Albert PR. G protein specificity in receptor-effector coupling: analysis of the roles of Go and Gi2 in GH4C1 pituitary cells. J Biol Chem 1994;269:13880–6.

    PubMed  CAS  Google Scholar 

  24. Painson J-C, Wenger T, Lagacé G, Masson ND, Collu R. Cellular distribution of G protein Goα in pituitary lactotrophs: effects of dopamine. J Neuroendocrinol 1994;6:447–55.

    PubMed  CAS  CrossRef  Google Scholar 

  25. Watts VJ, Wiens BL, Cumbay MG, Vu MN, Neve RL, Neve KA. Selective activation of Gαo by D2L dopamine receptors in NS20Y neuroblastoma cells. J Neurosci 1998;18:8692–9.

    PubMed  CAS  Google Scholar 

  26. Leaney JL, Tinker A. The role of members of the pertussis toxin-sensitive family of G proteins in coupling receptors to the activation of the G protein-gated inwardly rectifying potassium channel. Proc Natl Acad Sci USA 2000;97:5651–6.

    PubMed  CAS  CrossRef  Google Scholar 

  27. Cordeaux Y, Nickolls SA, Flood LA, Graber SG, Strange PG. Agonist regulation of D2 dopamine receptor/G protein interaction – Evidence for agonist selection of G protein subtype. J Biol Chem 2001;276:28667–75.

    PubMed  CAS  CrossRef  Google Scholar 

  28. Nickolls SA, Strange PG. Interaction of the D2short dopamine receptor with G proteins: analysis of receptor G protein selectivity. Biochem Pharmacol 2003;65:1139–50.

    PubMed  CAS  CrossRef  Google Scholar 

  29. Zaworski PG, Alberts GL, Pregenzer JF, Bin Im W, Slightom JL, Gill GS. Efficient functional coupling of the human D3 dopamine receptor to Go subtype of G proteins in SH-SY5Y cells. Br J Pharmacol 1999;128:1181–8.

    PubMed  CAS  CrossRef  Google Scholar 

  30. Lane JR, Powney B, Wise A, Rees S, Milligan G. G protein coupling and ligand selectivity of the D2L and D3 dopamine receptors. J Pharmacol Exp Ther 2008;325:319–30.

    PubMed  CAS  CrossRef  Google Scholar 

  31. Jiang MS, Spicher K, Boulay G, Wang Y, Birnbaumer L. Most central nervous system D2 dopamine receptors are coupled to their effecters by Go. Proc Natl Acad Sci USA 2001;98:3577–82.

    PubMed  CAS  CrossRef  Google Scholar 

  32. Leck KJ, Blaha CD, Matthaei KI, Forster GL, Holgate J, Hendry IA. Gz proteins are functionally coupled to dopamine D2-like receptors in vivo. Neuropharmacology 2006;51:597–605.

    PubMed  CAS  CrossRef  Google Scholar 

  33. Watson JB, Coulter II PM, Margulies JE et al. G-protein γ7 subunit is selectively expressed in medium-sized neurons and dendrites of the rat neostriatum. J Neurosci Res 1994;39:108–16.

    PubMed  CAS  CrossRef  Google Scholar 

  34. Schwindinger WF, Betz KS, Giger KE, Sabol A, Bronson SK, Robishaw JD. Loss of G protein γ7 alters behavior and reduces striatal αolf level and cAMP production. J Biol Chem 2003;278:6575–9.

    PubMed  CAS  CrossRef  Google Scholar 

  35. Wang Q, Jolly JP, Surmeier JD et al. Differential dependence of the D1 and D5 dopamine receptors on the G protein γ7 subunit for activation of adenylyl cyclase. J Biol Chem 2001;276:39386–93.

    PubMed  CAS  CrossRef  Google Scholar 

  36. Mons N, Cooper DM. Selective expression of one Ca2+-inhibitable adenylyl cyclase in dopaminergically innervated rat brain regions. Brain Res Mol Brain Res 1994;22:236–44.

    PubMed  CAS  CrossRef  Google Scholar 

  37. Lee KW, Hong JH, Choi IY et al. Impaired D2 dopamine receptor function in mice lacking type 5 adenylyl cyclase. J Neurosci 2002;22:7931–40.

    PubMed  CAS  Google Scholar 

  38. Konradi C, Cole RL, Heckers S, Hyman SE. Amphetamine regulates gene expression in rat striatum via transcription factor CREB. J Neurosci 1994;14:5623–34.

    PubMed  CAS  Google Scholar 

  39. Josselyn SA, Nguyen PV. CREB, synapses and memory disorders: past progress and future challenges. Curr Drug Targets CNS Neurol Disord 2005;4:481–97.

    PubMed  CAS  CrossRef  Google Scholar 

  40. Berke JD, Hyman SE. Addiction, dopamine, and the molecular mechanisms of memory. Neuron 2000;25:515–32.

    PubMed  CAS  CrossRef  Google Scholar 

  41. Hemmings HC, Jr., Greengard P, Tung HY, Cohen P. DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase-1. Nature 1984;310:503–5.

    PubMed  CAS  CrossRef  Google Scholar 

  42. Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP-32/Protein phosphatase-1 cascade. Neuron 1999;23:435–47.

    PubMed  CAS  CrossRef  Google Scholar 

  43. Bibb JA, Snyder GL, Nishi A et al. Phosphorylation of DARPP-32 by Cdk5 modulates dopamine signalling in neurons. Nature 1999;402:669–71.

    PubMed  CAS  CrossRef  Google Scholar 

  44. Nishi A, Bibb JA, Snyder GL, Higashi H, Nairn AC, Greengard P. Amplification of dopaminergic signaling by a positive feedback loop. Proc Natl Acad Sci USA 2000;97:12840–5.

    PubMed  CAS  CrossRef  Google Scholar 

  45. Bibb JA, Chen J, Taylor JR et al. Effects of chronic exposure to cocaine are regulated by the neuronal protein Cdk5. Nature 2001;410:376–80.

    PubMed  CAS  CrossRef  Google Scholar 

  46. Nestler EJ. Molecular basis of long-term plasticity underlying addiction. Nat Rev Neurosci 2001;2:119–28.

    PubMed  CAS  CrossRef  Google Scholar 

  47. Svenningsson P, Tzavara ET, Carruthers R et al. Diverse psychotomimetics act through a common signaling pathway. Science 2003;302:1412–5.

    PubMed  CAS  CrossRef  Google Scholar 

  48. Chen PC, Chen JC. Enhanced Cdk5 activity and p35 translocation in the ventral striatum of acute and chronic methamphetamine-treated rats. Neuropsychopharmacology 2005;30: 538–49.

    PubMed  CAS  CrossRef  Google Scholar 

  49. Fienberg AA, Hiroi N, Mermelstein PG et al. DARPP-32: regulator of the efficacy of dopaminergic neurotransmission. Science 1998;281:838–9.

    PubMed  CAS  CrossRef  Google Scholar 

  50. Kelz MB, Chen J, Carlezon WA, Jr. et al. Expression of the transcription factor ΔFosB in the brain controls sensitivity to cocaine. Nature 1999;401:272–6.

    PubMed  CAS  CrossRef  Google Scholar 

  51. Murphy BJ, Rossie S, De Jongh KS, Catterall WA. Identification of the sites of selective phosphorylation and dephosphorylation of the rat brain Na+ channel α subunit by cAMP-dependent protein kinase and phosphoprotein phosphatases. J Biol Chem 1993;268: 27355–62.

    PubMed  CAS  Google Scholar 

  52. Cantrell AR, Smith RD, Goldin AL, Scheuer T, Catterall WA. Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel α subunit. J Neurosci 1997;17:7330–8.

    PubMed  CAS  Google Scholar 

  53. Li M, West JW, Lai Y, Scheuer T, Catterall WA. Functional modulation of brain sodium channels by cAMP-dependent phosphorylation. Neuron 1992;8:1151–9.

    PubMed  CAS  CrossRef  Google Scholar 

  54. Smith RD, Goldin AL. Phosphorylation at a single site in the rat brain sodium channel is necessary and sufficient for current reduction by protein kinase A. J Neurosci 1997;17:6086–93.

    PubMed  CAS  Google Scholar 

  55. Arias-Montaño JA, Floran B, Floran L, Aceves J, Young JM. Dopamine D1 receptor facilitation of depolarization-induced release of γ-amino-butyric acid in rat striatum is mediated by the cAMP/PKA pathway and involves P/Q-type calcium channels. Synapse 2007;61:310–9.

    PubMed  CrossRef  CAS  Google Scholar 

  56. Kisilevsky AE, Mulligan SJ, Altier C et al. D1 receptors physically interact with N-type calcium channels to regulate channel distribution and dendritic calcium entry. Neuron 2008;58:557–70.

    PubMed  CAS  CrossRef  Google Scholar 

  57. Liu F, Wan Q, Pristupa ZB, Yu XM, Wang YT, Niznik HB. Direct protein-protein coupling enables cross-talk between dopamine D5 and γ-aminobutyric acid A receptors. Nature 2000;403:274–80.

    PubMed  CAS  CrossRef  Google Scholar 

  58. Lee FJ, Xue S, Pei L et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002;111:219–30.

    PubMed  CAS  CrossRef  Google Scholar 

  59. Fiorentini C, Gardoni F, Spano PF, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 2003;278:20196–202.

    PubMed  CAS  CrossRef  Google Scholar 

  60. Chao SZ, Lu WX, Lee HK, Huganir RL, Wolf ME. D 1 dopamine receptor stimulation increases GluR1 phosphorylation in postnatal nucleus accumbens cultures. J Neurochem 2002;81:984–92.

    PubMed  CAS  CrossRef  Google Scholar 

  61. Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 2007;30:228–35.

    PubMed  CAS  CrossRef  Google Scholar 

  62. Snyder GL, Allen PB, Fienberg AA et al. Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 2000;20:4480–8.

    PubMed  CAS  Google Scholar 

  63. De Camilli P, Macconi D, Spada A. Dopamine inhibits adenylate cyclase in human prolactin-secreting pituitary adenomas. Nature 1979;278:252–4.

    PubMed  CrossRef  Google Scholar 

  64. Stoof JC, Kebabian JW. Opposing roles for D-1 and D-2 dopamine receptors in efflux of cyclic AMP from rat neostriatum. Nature 1981;294:366–8.

    PubMed  CAS  CrossRef  Google Scholar 

  65. Chio CL, Lajiness ME, Huff RM. Activation of heterologously expressed D3 dopamine receptors: comparison with D2 dopamine receptors. Mol Pharmacol 1994;45:51–60.

    PubMed  CAS  Google Scholar 

  66. Chio CL, Drong RF, Riley DT, Gill GS, Slightom JL, Huff RM. D4 dopamine receptor-mediated signaling events determined in transfected Chinese hamster ovary cells. J Biol Chem 1994;269:11813–9.

    PubMed  CAS  Google Scholar 

  67. Nishi A, Snyder GL, Greengard P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 1997;17:8147–55.

    PubMed  CAS  Google Scholar 

  68. Yan Z, Feng J, Fienberg AA, Greengard P. D2 dopamine receptors induce mitogen-activated protein kinase and cAMP response element-binding protein phosphorylation in neurons. Proc Natl Acad Sci USA 1999;96:11607–12.

    PubMed  CAS  CrossRef  Google Scholar 

  69. Castro SW, Strange PG. Differences in the ligand binding properties of the short and long versions of the D2 dopamine receptor. J Neurochem 1993;60:372–5.

    PubMed  CAS  CrossRef  Google Scholar 

  70. 70.Malmberg Å, Jackson DM, Eriksson A, Mohell N. Unique binding characteristics of antipsychotic agents interacting with human dopamine D2A, D2B, and D3 receptors. Mol Pharmacol 1993;43:749–54.

    Google Scholar 

  71. Montmayeur JP, Guiramand J, Borrelli E. Preferential coupling between dopamine D2 receptors and G- proteins. Mol Endocrinol 1993;7:161–70.

    PubMed  CAS  CrossRef  Google Scholar 

  72. Falardeau P. Functional distinctions of dopamine D2long and D2 short receptors. In: Niznik HB, ed. Dopamine receptors and transporters. New York: Marcel Dekker, 1994:323–42.

    Google Scholar 

  73. Montmayeur J-P, Borrelli E. Transcription mediated by a cAMP-responsive promoter element is reduced upon activation of dopamine D2 receptors. Proc Natl Acad Sci USA 1991;88:3135–9.

    PubMed  CAS  CrossRef  Google Scholar 

  74. Hayes G, Biden TJ, Selbie LA, Shine J. Structural subtypes of the dopamine D2 receptor are functionally distinct: expression of the cloned D2A and D2B subtypes in a heterologous cell line. Mol Endocrinol 1992;6:920–6.

    PubMed  CAS  CrossRef  Google Scholar 

  75. Fienberg AA, Greengard P. The DARPP-32 knockout mouse. Brain Res Brain Res Rev 2000;31:313–9.

    PubMed  CAS  CrossRef  Google Scholar 

  76. Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, Ono T. Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place. Proc Natl Acad Sci USA 2005;102:2117–22.

    PubMed  CAS  CrossRef  Google Scholar 

  77. Karasinska JM, George SR, Cheng R, O’Dowd BF. Deletion of dopamine D1 and D3 receptors differentially affects spontaneous behaviour and cocaine-induced locomotor activity, reward and CREB phosphorylation. Eur J Neurosci 2005; 22:1750.

    CrossRef  Google Scholar 

  78. Howe DG, Wiley JC, McKnight GS. Molecular and behavioral effects of a null mutation in all PKA Cβ isoforms. Mol Cell Neurosci 2002;20:515–24.

    PubMed  CAS  CrossRef  Google Scholar 

  79. Adams MR, Brandon EP, Chartoff EH, Idzerda RL, Dorsa DM, McKnight GS. Loss of haloperidol induced gene expression and catalepsy in protein kinase A-deficient mice. Proc Natl Acad Sci U S A 1997;94:12157–61.

    PubMed  CAS  CrossRef  Google Scholar 

  80. Brandon EP, Logue SF, Adams MR et al. Defective motor behavior and neural gene expression in RIIβ-protein kinase a mutant mice. J Neurosci 1998;18:3639–49.

    PubMed  CAS  Google Scholar 

  81. Lynch WJ, Taylor JR. Persistent changes in motivation to self-administer cocaine following modulation of cyclic AMP-dependent protein kinase A (PKA) activity in the nucleus accumbens. Eur J Neurosci 2005;22:1214–20.

    PubMed  CAS  CrossRef  Google Scholar 

  82. Self DW, Genova LM, Hope BT, Barnhart WJ, Spencer JJ, Nestler EJ. Involvement of cAMP-dependent protein kinase in the nucleus accumbens in cocaine self-administration and relapse of cocaine-seeking behavior. J Neurosci 1998;18:1848–59.

    PubMed  CAS  Google Scholar 

  83. Onn SP, Lin M, Liu JJ, Grace AA. Dopamine and cyclic-AMP regulated phosphoprotein-32-dependent modulation of prefrontal cortical input and intercellular coupling in mouse accumbens spiny and aspiny neurons. Neuroscience 2008;151:802–16.

    PubMed  CAS  CrossRef  Google Scholar 

  84. Burgess GM, Godfrey PP, McKinney JS, Berridge MJ, Irvine RF, Putney JW, Jr. The second messenger linking receptor activation to internal Ca release in liver. Nature 1984;309:63–6.

    PubMed  CAS  CrossRef  Google Scholar 

  85. Kirk CJ, Bone EA, Palmer S, Michell RH. The role of phosphatidylinositol 4,5 bisphosphate breakdown in cell-surface receptor activation. J Recept Res 1984;4:489–504.

    PubMed  CAS  Google Scholar 

  86. Undie AS, Friedman E. Stimulation of a dopamine D1 receptor enhances inositol phosphates formation in rat brain. J Pharmacol Exp Ther 1990;253:987–92.

    PubMed  CAS  Google Scholar 

  87. Arnt J, Hyttel J, Sánchez C. Partial and full dopamine D1 receptor agonists in mice and rats: relation between behavioural effects and stimulation of adenylate cyclase activity in vitro. Eur J Pharmacol 1992;213:259–67.

    PubMed  CAS  CrossRef  Google Scholar 

  88. Panchalingam S, Undie AS. SKF83959 exhibits biochemical agonism by stimulating [(35)S]GTP gamma S binding and phosphoinositide hydrolysis in rat and monkey brain. Neuropharmacology 2001;40:826–37.

    PubMed  CAS  CrossRef  Google Scholar 

  89. Jin LQ, Goswami S, Cai GP, Zhen XC, Friedman E. SKF83959 selectively regulates phosphatidylinositol-linked D1 dopamine receptors in rat brain. J Neurochem 2003;85:378–86.

    PubMed  CAS  CrossRef  Google Scholar 

  90. Tang TS, Bezprozvanny I. Dopamine receptor-mediated Ca2+ signaling in striatal medium spiny neurons. J Biol Chem 2004;279:42082–94.

    PubMed  CAS  CrossRef  Google Scholar 

  91. Noriyama Y, Ogawa Y, Yoshino H, Yamashita M, Kishimoto T. Dopamine profoundly suppresses excitatory transmission in neonatal rat hippocampus via phosphatidylinositol-linked D1-like receptor. Neuroscience 2006;138:475–85.

    PubMed  CAS  CrossRef  Google Scholar 

  92. Undie AS, Weinstock J, Sarau HM, Friedman E. Evidence for a distinct D1-like dopamine receptor that couples to activation of phosphoinositide metabolism in brain. J Neurochem 1994;62:2045–8.

    PubMed  CAS  CrossRef  Google Scholar 

  93. O‘Sullivan GJ, Roth BL, Kinsella A, Waddington JL. SK&F 83822 distinguishes adenylyl cyclase from phospholipase C-coupled dopamine D1-like receptors: behavioural topography. Eur J Pharmacol 2004;486:273–80.

    PubMed  CrossRef  CAS  Google Scholar 

  94. O‘Sullivan GJ, Dunleavy M, Hakansson K et al. Dopamine D1 vs D5 receptor-dependent induction of seizures in relation to DARPP-32, ERK1/2 and GluR1-AMPA signalling. Neuropharmacology 2008;54:1051–61.

    PubMed  CrossRef  CAS  Google Scholar 

  95. Iwamoto T, Okumura S, Iwatsubo K et al. Motor dysfunction in type 5 adenylyl cyclase-null mice. J Biol Chem 2003;278:16936–40.

    PubMed  CAS  CrossRef  Google Scholar 

  96. Wang HY, Undie AS, Friedman E. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: possible role in dopamine-mediated inositol phosphate formation. Mol Pharmacol 1995;48:988–94.

    PubMed  CAS  Google Scholar 

  97. Pacheco MA, Jope RS. Comparison of [3H]phosphatidylinositol and [3H]phosphatidylinositol 4,5-bisphosphate hydrolysis in postmortem human brain membranes and characterization of stimulation by dopamine D1 receptors. J Neurochem 1997;69:639–44.

    PubMed  CAS  CrossRef  Google Scholar 

  98. Mannoury la Cour C, Vidal S, Pasteau V, Cussac D, Millan MJ. Dopamine D1 receptor coupling to Gs/olf and Gq in rat striatum and cortex: a scintillation proximity assay (SPA)/antibody-capture characterization of benzazepine agonists. Neuropharmacology 2007;52:1003–14.

    PubMed  CAS  CrossRef  Google Scholar 

  99. Jin L-Q, Wang H-Y, Friedman E. Stimulated D1 dopamine receptors couple to multiple Gα proteins in different brain regions. J Neurochem 2001;78:981–90.

    PubMed  CAS  CrossRef  Google Scholar 

  100. Lezcano N, Bergson C. D1/D5 dopamine receptors stimulate intracellular calcium release in primary cultures of neocortical and hippocampal neurons. J Neurophysiol 2002;87:2167–75.

    PubMed  CAS  Google Scholar 

  101. Chen L, Bohanick JD, Nishihara M, Seamans JK, Yang CR. Dopamine D1/5 receptor-mediated long-term potentiation of intrinsic excitability in rat prefrontal cortical neurons: Ca2+-dependent intracellular signaling. J Neurophysiol 2007;97:2448–64.

    PubMed  CAS  CrossRef  Google Scholar 

  102. Friedman E, Jin LQ, Cai GP et al. D1-like dopaminergic activation of phosphoinositide hydrolysis is independent of D1A dopamine receptors: evidence from D1A knockout mice. Mol Pharmacol 1997;51:6–11.

    PubMed  CAS  Google Scholar 

  103. Rashid AJ, So CH, Kong MM et al. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci U S A 2007;104:654–9.

    PubMed  CAS  CrossRef  Google Scholar 

  104. O‘Sullivan GJ, Clifford JJ, Tomiyama K et al. D1-like dopamine receptor-mediated function in congenic mutants with D1 vs. D5 receptor “knockout”. J Recept Signal Transduct Res 2004;24:107–16.

    PubMed  CrossRef  CAS  Google Scholar 

  105. Sahu A, Tyeryar KR, Vongtau HO, Sibley DR, Undieh AS. D5 dopamine receptors are required for dopaminergic activation of phospholipase C. Mol Pharmacol 2009;75:In Press.

    CrossRef  CAS  Google Scholar 

  106. Montague DM, Striplin CD, Overcash JS, Drago J, Lawler CP, Mailman RB. Quantification of D1B (D5) receptors in dopamine D1A receptor-deficient mice. Synapse 2001;39:319–22.

    PubMed  CAS  CrossRef  Google Scholar 

  107. Hernández-López S, Tkatch T, Perez-Garci E et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLCβ1-IP3-calcineurin-signaling cascade. J Neurosci 2000;20:8987–95.

    PubMed  Google Scholar 

  108. Gu Z, Jiang Q, Yuen EY, Yan Z. Activation of dopamine D4 receptors induces synaptic translocation of Ca2+/calmodulin-dependent protein kinase II in cultured prefrontal cortical neurons. Mol Pharmacol 2006;69:813–22.

    PubMed  CAS  Google Scholar 

  109. Beazely MA, Tong A, Wei WL, Van Tol H, Sidhu B, MacDonald JF. D2-class dopamine receptor inhibition of NMDA currents in prefrontal cortical neurons is platelet-derived growth factor receptor-dependent. J Neurochem 2006;98:1657–63.

    PubMed  CAS  CrossRef  Google Scholar 

  110. Kotecha SA, Oak JN, Jackson MF et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 2002;35:1111–22.

    PubMed  CAS  CrossRef  Google Scholar 

  111. Lee SP, So CH, Rashid AJ et al. Dopamine D1 and D2 receptor co-activation generates a novel phospholipase C-mediated calcium signal. J Biol Chem 2004;279:35671–8.

    PubMed  CAS  CrossRef  Google Scholar 

  112. So CH, Varghese G, Curley KJ et al. D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol Pharmacol 2005;68:568–78.

    PubMed  CAS  Google Scholar 

  113. Shuen JA, Chen M, Gloss B, Calakos N. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci 2008;28:2681–5.

    PubMed  CAS  CrossRef  Google Scholar 

  114. Rashid AJ, O‘Dowd BF, Verma V, George SR. Neuronal Gq/11-coupled dopamine receptors: an uncharted role for dopamine. TIPS 2007;28:551–5.

    PubMed  CAS  Google Scholar 

  115. Ming Y, Zhang H, Long L, Wang F, Chen J, Zhen X. Modulation of Ca2+ signals by phosphatidylinositol-linked novel D1 dopamine receptor in hippocampal neurons. J Neurochem 2006;98:1316–23.

    PubMed  CAS  CrossRef  Google Scholar 

  116. Deveney AM, Waddington JL. Pharmacological characterization of behavioural responses to SK&F 83959 in relation to 'D1-like' dopamine receptors not linked to adenylyl cyclase. Br J Pharmacol 1995;116:2120–6.

    PubMed  CAS  CrossRef  Google Scholar 

  117. Clifford JJ, Tighe O, Croke DT et al. Conservation of behavioural topography to dopamine D1-like receptor agonists in mutant mice lacking the D1A receptor implicates a D1-like receptor not coupled to adenylyl cyclase. Neuroscience 1999;93:1483–9.

    PubMed  CAS  CrossRef  Google Scholar 

  118. Peacock L, Gerlach J. Aberrant behavioral effects of a dopamine D1 receptor antagonist and agonist in monkeys: evidence of uncharted dopamine D1 receptor actions. Biol Psychiatry 2001;50:501–9.

    PubMed  CAS  CrossRef  Google Scholar 

  119. Zhen X, Goswami S, Friedman E. The role of the phosphatidyinositol-linked D1 dopamine receptor in the pharmacology of SKF83959. Pharmacol Biochem Behav 2005;80:597–601.

    PubMed  CAS  CrossRef  Google Scholar 

  120. Wirtshafter D, Osborn CV. The atypical dopamine D1 receptor agonist SKF 83959 induces striatal Fos expression in rats. Eur J Pharmacol 2005;528:88–94.

    PubMed  CAS  CrossRef  Google Scholar 

  121. McOmish CE, Burrows E, Howard M et al. Phospholipase C-beta1 knockout mice exhibit endophenotypes modeling schizophrenia which are rescued by environmental enrichment and clozapine administration. Mol Psychiatry 2008;13:661–72.

    PubMed  CAS  CrossRef  Google Scholar 

  122. Koh HY, Kim D, Lee J, Lee S, Shin HS. Deficits in social behavior and sensorimotor gating in mice lacking phospholipase Cbeta1. Genes Brain Behav 2008;7:120–8.

    PubMed  Google Scholar 

  123. Lin ZC, Wang WF, Kopajtic T, Revay RS, Uhl GR. Dopamine transporter: transmembrane phenylalanine mutations can selectively influence dopamine uptake and cocaine analog recognition. Mol Pharmacol 1999;56:434–47.

    PubMed  CAS  Google Scholar 

  124. Lohse MJ, Benovic JL, Codina J, Caron MG, Lefkowitz RJ. β-Arrestin: a protein that regulates β-adrenergic receptor function. Science 1990;248:1547–50.

    PubMed  CAS  CrossRef  Google Scholar 

  125. Zhang J, Barak LS, Winkler KE, Caron MG, Ferguson SS. A central role for β-arrestins and clathrin-coated vesicle-mediated endocytosis in β2-adrenergic receptor resensitization–Differential regulation of receptor resensitization in two distinct cell types. J Biol Chem 1997;272:27005–14.

    PubMed  CAS  CrossRef  Google Scholar 

  126. Lefkowitz RJ, Shenoy SK. Transduction of receptor signals by β-arrestins. Science 2005;308:512–7.

    PubMed  CAS  CrossRef  Google Scholar 

  127. DeFea K. β-arrestins and heterotrimeric G-proteins: collaborators and competitors in signal transduction. Br J Pharmacol 2008;153(Suppl 1):S298-309. Epub;%2007 Nov 26:S298–S309.

    Google Scholar 

  128. Wei H, Ahn S, Shenoy SK et al. Independent β-arrestin 2 and G protein-mediated pathways for angiotensin II activation of extracellular signal-regulated kinases 1 and 2. Proc Natl Acad Sci USA 2003;100:10782–7.

    PubMed  CAS  CrossRef  Google Scholar 

  129. Wisler JW, DeWire SM, Whalen EJ et al. A unique mechanism of β-blocker action: carvedilol stimulates β-arrestin signaling. Proc Natl Acad Sci U S A 2007;104:16657–62.

    PubMed  CAS  CrossRef  Google Scholar 

  130. Shenoy SK, Drake MT, Nelson CD et al. β-Arrestin-dependent, G protein-independent ERK1/2 activation by the β2 adrenergic receptor. J Biol Chem 2006;281:1261–73.

    PubMed  CAS  CrossRef  Google Scholar 

  131. Romanelli RJ, Wood TL. Directing traffic in neural cells: determinants of receptor tyrosine kinase localization and cellular responses. J Neurochem 2008.

    Google Scholar 

  132. Hall FS, Li XF, Sora I et al. Cocaine mechanisms: Enhanced cocaine, fluoxetine and nisoxetine place preferences following monoamine transporter deletions. Neuroscience 2002;115:153–61.

    PubMed  CAS  CrossRef  Google Scholar 

  133. Gainetdinov RR, Premont RT, Bohn LM, Lefkowitz RJ, Caron MG. Desensitization of G protein-coupled receptors and neuronal functions. Ann Rev Neurosci 2004;27:107-44.

    PubMed  CAS  CrossRef  Google Scholar 

  134. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/β-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005;122:261–73.

    PubMed  CAS  CrossRef  Google Scholar 

  135. Sweatt JD. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 2001;76:1–10.

    PubMed  CAS  CrossRef  Google Scholar 

  136. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002;298:1911–2.

    PubMed  CAS  CrossRef  Google Scholar 

  137. Mielke K, Herdegen T. JNK and p38 stresskinases–degenerative effectors of signal-transduction-cascades in the nervous system. Prog Neurobiol 2000;61:45–60.

    PubMed  CAS  CrossRef  Google Scholar 

  138. Atkins CM, Selcher JC, Petraitis JJ, Trzaskos JM, Sweatt JD. The MAPK cascade is required for mammalian associative learning. Nat Neurosci 1998;1:602–9.

    PubMed  CAS  CrossRef  Google Scholar 

  139. Schafe GE, Nadel NV, Sullivan GM, Harris A, LeDoux JE. Memory consolidation for contextual and auditory fear conditioning is dependent on protein synthesis, PKA, and MAP kinase. Learn Mem 1999;6:97–110.

    PubMed  CAS  Google Scholar 

  140. Einat H, Manji HK, Gould TD, Du J, Chen G. Possible involvement of the ERK signaling cascade in bipolar disorder: behavioral leads from the study of mutant mice. Drug News Perspect 2003;16:453–63.

    PubMed  CAS  CrossRef  Google Scholar 

  141. Chen YL, Law PY, Loh HH. Sustained activation of phosphatidylinositol 3-kinase/Akt/nuclear factor B signaling mediates G protein-coupled -opioid receptor gene expression. J Biol Chem 2006;281:3067–74.

    PubMed  CAS  CrossRef  Google Scholar 

  142. Berhow MT, Hiroi N, Nestler EJ. Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci 1996;16:4707–15.

    PubMed  CAS  Google Scholar 

  143. Valjent E, Corvol JC, Pagès C, Besson MJ, Maldonado R, Caboche J. Involvement of the extracellular signal-regulated kinase cascade for cocaine-rewarding properties. J Neurosci 2000;20:8701–9.

    PubMed  CAS  Google Scholar 

  144. Jenab S, Festa ED, Nazarian A et al. Cocaine induction of ERK proteins in dorsal striatum of Fischer rats. Brain Res Mol Brain Res 2005;142:134–8.

    PubMed  CAS  CrossRef  Google Scholar 

  145. Radwanska K, Caboche J, Kaczmarek L. Extracellular signal-regulated kinases (ERKs) modulate cocaine-induced gene expression in the mouse amygdala. Eur J Neurosci 2005;22:939–48.

    PubMed  CrossRef  Google Scholar 

  146. Valjent E, Pages C, Herve D, Girault JA, Caboche J. Addictive and non-addictive drugs induce distinct and specific patterns of ERK activation in mouse brain. Eur J Neurosci 2004;19:1826–36.

    PubMed  CrossRef  Google Scholar 

  147. Salzmann J, Marie-Claire C, Le Guen S, Roques BP, Noble F. Importance of ERK activation in behavioral and biochemical effects induced by MDMA in mice. Br J Pharmacol 2003;140:831–8.

    PubMed  CAS  CrossRef  Google Scholar 

  148. Gerdjikov TV, Ross GM, Beninger RJ. Place preference induced by nucleus accumbens amphetamine is impaired by antagonists of ERK or p38 MAP kinases in rats. Behav Neurosci 2004;118:740–50.

    PubMed  CAS  CrossRef  Google Scholar 

  149. Pierce RC, Pierce-Bancroft AF, Prasad BM. Neurotrophin-3 contributes to the initiation of behavioral sensitization to cocaine by activating the Ras/Mitogen-activated protein kinase signal transduction cascade. J Neurosci 1999;19:8685–95.

    PubMed  CAS  Google Scholar 

  150. Valjent E, Pascoli V, Svenningsson P et al. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA 2005;102:491–6.

    PubMed  CAS  CrossRef  Google Scholar 

  151. Zhang L, Lou D, Jiao H et al. Cocaine-induced intracellular signaling and gene expression are oppositely regulated by the dopamine D1 and D3 receptors. J Neurosci 2004;24:3344–54.

    PubMed  CAS  CrossRef  Google Scholar 

  152. Ferguson SM, Fasano S, Yang P, Brambilla R, Robinson TE. Knockout of ERK1 enhances cocaine-evoked immediate early gene expression and behavioral plasticity. Neuropsychopharmacology 2006;31:2660–8.

    PubMed  CAS  CrossRef  Google Scholar 

  153. Girault JA, Valjent E, Caboche J, Hervé D. ERK2: a logical AND gate critical for drug-induced plasticity? Curr Opin Pharmacol 2007;7:77–85.

    PubMed  CAS  CrossRef  Google Scholar 

  154. Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol 2006;5:14.

    PubMed  CrossRef  Google Scholar 

  155. Pagès G, Guérin S, Grall D et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 1999;286:1374–7.

    PubMed  CrossRef  Google Scholar 

  156. Mazzucchelli C, Vantaggiato C, Ciamei A et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 2002;34:807–20.

    PubMed  CAS  CrossRef  Google Scholar 

  157. Brami-Cherrier K, Valjent E, Garcia M, Pagès C, Hipskind RA, Caboche J. Dopamine induces a PI3-kinase-independent activation of Akt in striatal neurons: A new route to cAMP response element-binding protein phosphorylation. J Neurosci 2002;22:8911–21.

    PubMed  CAS  Google Scholar 

  158. Voulalas PJ, Holtzclaw L, Wolstenholme J, Russell JT, Hyman SE. Metabotropic glutamate receptors and dopamine receptors cooperate to enhance extracellular signal-regulated kinase phosphorylation in striatal neurons. J Neurosci 2005;25:3763–73.

    PubMed  CAS  CrossRef  Google Scholar 

  159. Zhen XC, Uryu K, Wang HY, Friedman E. D1 dopamine receptor agonists mediate activation of p38 mitogen-activated protein kinase and c-jun amino-terminal kinase by a protein kinase a dependent mechanism in SK-N-MC human neuroblastoma cells. Mol Pharmacol 1998;54:453–8.

    PubMed  CAS  Google Scholar 

  160. Chen J, Rusnak M, Luedtke RR, Sidhu A. D1 dopamine receptor mediates dopamine-induced cytotoxicity via the ERK signal cascade. J Biol Chem 2004;279:39317–30.

    PubMed  CAS  CrossRef  Google Scholar 

  161. Zhuang S, Schnellmann RG. A death-promoting role for extracellular signal-regulated kinase. J Pharmacol Exp Ther 2006;319:991–7.

    PubMed  CAS  CrossRef  Google Scholar 

  162. Stephans SE, Yamamoto BK. Methamphetamine-induced neurotoxicity: roles for glutamate and dopamine efflux. Synapse 1994;17:203–9.

    PubMed  CAS  CrossRef  Google Scholar 

  163. LaVoie MJ, Hastings TG. Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci 1999;19:1484–91.

    PubMed  CAS  Google Scholar 

  164. Gerfen CR, Miyachi S, Paletzki R, Brown P. D1 dopamine receptor supersensitivity in the dopamine-depleted striatum results from a switch in the regulation of ERK1/2/MAP kinase. J Neurosci 2002;22:5042–54.

    PubMed  CAS  Google Scholar 

  165. Jiao H, Zhang L, Gao F, Lou D, Zhang J, Xu M. Dopamine D1 and D3 receptors oppositely regulate NMDA- and cocaine-induced MAPK signaling via NMDA receptor phosphorylation. J Neurochem 2007;103:840–8.

    PubMed  CAS  CrossRef  Google Scholar 

  166. Runyan JD, Dash PK. Intra-medial prefrontal administration of SCH-23390 attenuates ERK phosphorylation and long-term memory for trace fear conditioning in rats. Neurobiol Learn Mem 2004;82:65–70.

    PubMed  CAS  CrossRef  Google Scholar 

  167. Bertran-Gonzalez J, Bosch C, Maroteaux M et al. Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 2008;28:5671–85.

    PubMed  CAS  CrossRef  Google Scholar 

  168. Faure M, Voyno-Yasenetskaya TA, Bourne HR. cAMP and β γ subunits of heterotrimeric G proteins stimulate the mitogen-activated protein kinase pathway in COS-7 cells. J Biol Chem 1994;269:7851–4.

    PubMed  CAS  Google Scholar 

  169. Luo YQ, Kokkonen GC, Wang XT, Neve KA, Roth GS. D2 dopamine receptors stimulate mitogenesis through pertussis toxin-sensitive G proteins and ras-involved ERK and SAP/JNK pathways in rat C6-D2L glioma cells. J Neurochem 1998;71:980–90.

    PubMed  CAS  CrossRef  Google Scholar 

  170. Choi EY, Jeong DW, Park KW, Baik JH. G protein-mediated mitogen-activated protein kinase activation by two dopamine D2 receptors. Biochem Biophys Res Comm 1999;256:33–40.

    PubMed  CAS  CrossRef  Google Scholar 

  171. Kim SJ, Kim MY, Lee EJ, Ahn YS, Baik JH. Distinct regulation of internalization and mitogen-activated protein kinase activation by two isoforms of the dopamine D2 receptor. Mol Endocrinol 2004;18:640–52.

    PubMed  CAS  CrossRef  Google Scholar 

  172. Lan H, Liu Y, Bell MI, Gurevich VV, Neve KA. A dopamine D2 receptor mutant capable of G protein-mediated signaling but deficient in arrestin binding. Mol Pharmacol 2009; 75:113–23.

    PubMed  CAS  CrossRef  Google Scholar 

  173. Oak JN, Lavine N, Van Tol HHM. Dopamine D4 and D2L receptor stimulation of the mitogen-activated protein kinase pathway is dependent on transactivation of the platelet-derived growth factor receptor. Mol Pharmacol 2001;60:92–103.

    PubMed  CAS  Google Scholar 

  174. Wang C, Buck DC, Yang R, Macey TA, Neve KA. Dopamine D2 receptor stimulation of mitogen-activated protein kinases mediated by cell type-dependent transactivation of receptor tyrosine kinases. J Neurochem 2005;93:899–909.

    PubMed  CAS  CrossRef  Google Scholar 

  175. Beom S, Cheong D, Torres G, Caron MG, Kim KM. Comparative studies of molecular mechanisms of dopamine D2 and D3 receptors for the activation of extracellular signal regulated kinase. J Biol Chem 2004.

    Google Scholar 

  176. Lajiness ME, Chio CL, Huff RM. D2 dopamine receptor stimulation of mitogenesis in transfected Chinese hamster ovary cells: relationship to dopamine stimulation of tyrosine phosphorylations. J Pharmacol Exp Ther 1993;267:1573–81.

    PubMed  CAS  Google Scholar 

  177. Kim SY, Choi KC, Chang MS et al. The dopamine D2 receptor regulates the development of dopaminergic neurons via extracellular signal-regulated kinase and Nurr1 activation. J Neurosci 2006;26:4567–76.

    PubMed  CAS  CrossRef  Google Scholar 

  178. Cai GP, Zhen XC, Uryu K, Friedman E. Activation of extracellular signal-regulated protein kinases is associated with a sensitized locomotor response to D2 dopamine receptor stimulation in unilateral 6-hydroxydopamine-lesioned rats. J Neurosci 2000;20:1849–57.

    PubMed  CAS  Google Scholar 

  179. Browning JL, Patel T, Brandt PC, Young KA, Holcomb LA, Hicks PB. Clozapine and the mitogen-activated protein kinase signal transduction pathway: implications for antipsychotic actions. Biol Psychiatry 2005;57:617–23.

    PubMed  CAS  CrossRef  Google Scholar 

  180. Van Ham II, Banihashemi B, Wilson AM, Jacobsen KX, Czesak M, Albert PR. Differential signaling of dopamine-D2S and -D2L receptors to inhibit ERK1/2 phosphorylation. J Neurochem 2007;102:1796–804.

    CrossRef  CAS  Google Scholar 

  181. Yang BH, Son H, Kim SH, Nam JH, Choi JH, Lee JS. Phosphorylation of ERK and CREB in cultured hippocampal neurons after haloperidol and risperidone administration. Psychiatry Clin Neurosci 2004;58:262–7.

    PubMed  CAS  CrossRef  Google Scholar 

  182. Banihashemi B, Albert PR. Dopamine-D2S receptor inhibition of calcium influx, adenylyl cyclase, and mitogen-activated protein kinase in pituitary cells: distinct Gα and Gβ  gamma requirements. Mol Endocrinol 2002;16:2393–404.

    PubMed  CAS  CrossRef  Google Scholar 

  183. Liu JC, Baker RE, Sun C, Sundmark VC, Elsholtz HP. Activation of Go-coupled dopamine D2 receptors inhibits ERK1/ERK2 in pituitary cells – A key step in the transcriptional suppression of the prolactin gene. J Biol Chem 2002;277:35819–25.

    PubMed  CAS  CrossRef  Google Scholar 

  184. Iaccarino C, Samad TA, Mathis C, Kercret H, Picetti R, Borrelli E. Control of lactotrop proliferation by dopamine: essential role of signaling through D2 receptors and ERKs. Proc Natl Acad Sci USA 2002;99:14530–5.

    PubMed  CAS  CrossRef  Google Scholar 

  185. Song G, Ouyang G, Bao S. The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 2005;9:59–71.

    PubMed  CAS  CrossRef  Google Scholar 

  186. Datta SR, Brunet A, Greenberg ME. Cellular survival: a play in three Akts. Genes Dev 1999;13:2905–27.

    PubMed  CAS  CrossRef  Google Scholar 

  187. Du K, Tsichlis PN. Regulation of the Akt kinase by interacting proteins. Oncogene 2005;24:7401–9.

    PubMed  CAS  CrossRef  Google Scholar 

  188. Beaulieu JM, Tirotta E, Sotnikova TD et al. Regulation of Akt signaling by D2 and D3 dopamine receptors in vivo. J Neurosci 2007;27:881–5.

    PubMed  CAS  CrossRef  Google Scholar 

  189. Wei Y, Williams JM, Dipace C et al. Dopamine transporter activity mediates amphetamine-induced inhibition of Akt through a Ca2+/calmodulin-dependent kinase II-dependent mechanism. Mol Pharmacol 2007;71:835–42.

    PubMed  CAS  CrossRef  Google Scholar 

  190. Shi X, McGinty JF. Repeated amphetamine treatment increases phosphorylation of extracellular signal-regulated kinase, protein kinase B, and cyclase response element-binding protein in the rat striatum. J Neurochem 2007;103:706–13.

    PubMed  CAS  CrossRef  Google Scholar 

  191. Beaulieu JM, Sotnikova TD, Yao W-D et al. Lithium antagonizes dopamine-dependent behaviors mediated by an AKT/glycogen synthase kinase 3 signaling cascade. Proc Natl Acad Sci USA 2004;101:5099–104.

    PubMed  CAS  CrossRef  Google Scholar 

  192. Emamian ES, Hall D, Birnbaum MJ, Karayiorgou M, Gogos JA. Convergent evidence for impaired AKT1-GSK3β signaling in schizophrenia. Nat Genet 2004;36:131–7.

    PubMed  CAS  CrossRef  Google Scholar 

  193. Schwab SG, Hoefgen B, Hanses C et al. Further evidence for association of variants in the AKT1 gene with schizophrenia in a sample of European sib-pair families. Biol Psychiatry 2005;58:446–50.

    PubMed  CAS  CrossRef  Google Scholar 

  194. Tan HY, Nicodemus KK, Chen Q et al. Genetic variation in AKT1 is linked to dopamine-associated prefrontal cortical structure and function in humans. J Clin Invest 2008;118:2200–8.

    PubMed  CAS  Google Scholar 

  195. Thiselton DL, Vladimirov VI, Kuo PH et al. AKT1 is associated with schizophrenia across multiple symptom dimensions in the Irish study of high density schizophrenia families. Biol Psychiatry 2008;63:449–57.

    PubMed  CAS  CrossRef  Google Scholar 

  196. Braff DL, Geyer MA, Swerdlow NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology (Berl) 2001;156:234–58.

    CAS  CrossRef  Google Scholar 

  197. Nair VD, Sealfon SC. Agonist-specific transactivation of phosphoinositide 3-kinase signaling pathway mediated by the dopamine D2 receptor. J Biol Chem 2003;278:47053–61.

    PubMed  CAS  CrossRef  Google Scholar 

  198. Nair VD, Olanow CW, Sealfon SC. Activation of phosphoinositide 3-kinase by D2 receptor prevents apoptosis in dopaminergic cell lines. Biochem J 2003;373:25–32.

    PubMed  CAS  CrossRef  Google Scholar 

  199. Nair VD, Olanow CW. Differential modulation of Akt/glycogen synthase kinase-3β pathway regulates apoptotic and cytoprotective signaling responses. J Biol Chem 2008;283:15469–78.

    PubMed  CAS  CrossRef  Google Scholar 

  200. Zhen XC, Zhang J, Johnson GP, Friedman E. D4 dopamine receptor differentially regulates Akt/nuclear factor-kappaB and extracellular signal-regulated kinase pathways in D4MN9D cells. Mol Pharmacol 2001;60:857–64.

    PubMed  CAS  Google Scholar 

  201. Alimohamad H, Rajakumar N, Seah YH, Rushlow W. Antipsychotics alter the protein expression levels of beta-catenin and GSK-3 in the rat medial prefrontal cortex and striatum. Biol Psychiatry 2005;57:533–42.

    PubMed  CAS  CrossRef  Google Scholar 

  202. Beaulieu JM, Marion S, Rodriguiz RM et al. A βarrestin 2 signaling complex mediates lithium action on behavior. Cell 2008;132:125–36.

    PubMed  CAS  CrossRef  Google Scholar 

  203. Ikeda M, Ozaki N, Suzuki T et al. Possible association of β-arrestin 2 gene with methamphetamine use disorder, but not schizophrenia. Genes Brain Behav 2007;6:107–12.

    PubMed  CAS  CrossRef  Google Scholar 

  204. Clark D, White FJ. Review: D1 dopamine receptor – the search for a function: a critical evaluation of the D1/D2 dopamine receptor classification and its functional implications. Synapse 1987;1:347–88.

    PubMed  CAS  CrossRef  Google Scholar 

  205. Marshall JF, Ruskin DN, Lahoste GJ. D1/D2 dopamine receptor interactions in basal ganglia. In: Neve KA, Neve RL, eds. The dopamine receptors. Totawa, NJ: Humana Press, 1997:193–219.

    CrossRef  Google Scholar 

  206. Schmidt HD, Pierce RC. Cooperative activation of D1-like and D2-like dopamine receptors in the nucleus accumbens shell is required for the reinstatement of cocaine-seeking behavior in the rat. Neuroscience 2006;142:451–61.

    PubMed  CAS  CrossRef  Google Scholar 

  207. Braun AR, Chase TN. Obligatory D-1/D-2 receptor interaction in the generation of dopamine agonist related behaviors. Eur J Pharmacol 1986;131:301–6.

    PubMed  CAS  CrossRef  Google Scholar 

  208. Hopf FW, Cascini MG, Gordon AS, Diamond I, Bonci A. Cooperative activation of dopamine D1 and D2 receptors increases spike firing of nucleus accumbens neurons via G-protein β γ subunits. J Neurosci 2003;23:5079–87.

    PubMed  CAS  Google Scholar 

  209. Wu J, Hablitz JJ. Cooperative activation of D 1 and D2 dopamine receptors enhances a hyperpolarization-activated inward current in layer I interneurons. J Neurosci 2005;25:6322–8.

    PubMed  CAS  CrossRef  Google Scholar 

  210. Watts VJ, Neve KA. Activation of type II adenylate cyclase by D2 and D4 but not D3 dopamine receptors. Mol Pharmacol 1997;52:181–6.

    PubMed  CAS  Google Scholar 

  211. Bertorello AM, Hopfield JF, Aperia A, Greengard P. Inhibition by dopamine of (Na++K+)ATPase activity in neostriatal neurons through D1 and D2 dopamine receptor synergism. Nature 1990;347:386–8.

    PubMed  CAS  CrossRef  Google Scholar 

  212. Watts VJ, Neve KA. Sensitization of adenylate cyclase by Gαi/o-coupled receptors. Pharmacol Ther 2005;106:405–21.

    PubMed  CAS  CrossRef  Google Scholar 

  213. Schwartz JC, Diaz J, Bordet R et al. Functional implications of multiple dopamine receptor subtypes: the D1/D3 receptor coexistence. Brain Res Rev 1998;26:236–42.

    PubMed  CAS  CrossRef  Google Scholar 

  214. Karasinska JM, George SR, El Ghundi M, Fletcher PJ, O‘Dowd BF. Modification of dopamine D1 receptor knockout phenotype in mice lacking both dopamine D1 and D3 receptors. Eur J Pharmacol 2000;399:171–81.

    PubMed  CAS  CrossRef  Google Scholar 

  215. Wong JYF, Clifford JJ, Massalas JS, Kinsella A, Waddington JL, Drago J. Essential conservation of D1 mutant phenotype at the level of individual topographies of behaviour in mice lacking both D1 and D3 dopamine receptors. Psychopharmacology 2003;167:167–73.

    PubMed  CAS  Google Scholar 

  216. Lahoste GJ, Henry BL, Marshall JF. Dopamine D1 receptors synergize with D2, but not D3 or D4, receptors in the striatum without the involvement of action potentials. J Neurosci 2000;20:6666–71.

    PubMed  CAS  Google Scholar 

  217. Fetsko LA, Xu R, Wang YY. Alterations in D1/D2 synergism may account for enhanced stereotypy and reduced climbing in mice lacking dopamine D2L receptor. Brain Res 2003;967:191–200.

    PubMed  CAS  CrossRef  Google Scholar 

  218. Usiello A, Baik JH, Rouge-Pont F et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000;408:199–203.

    PubMed  CAS  CrossRef  Google Scholar 

  219. Watts VJ, Neve KA. Sensitization of endogenous and recombinant adenylate cyclase by activation of D2 dopamine receptors. Mol Pharmacol 1996;50:966–76.

    PubMed  CAS  Google Scholar 

  220. Culm KE, Lugo-Escobar N, Hope BT, Hammer RP, Jr. Repeated quinpirole treatment increases cAMP-dependent protein kinase activity and CREB phosphorylation in nucleus accumbens and reverses quinpirole-induced sensorimotor gating deficits in rats. Neuropsychopharmacology 2004;29:1823–30.

    PubMed  CAS  CrossRef  Google Scholar 

  221. Chester JA, Mullins AJ, Nguyen CH, Watts VJ, Meisel RL. Repeated quinpirole treatments produce neurochemical sensitization and associated behavioral changes in female hamsters. Psychopharmacology (Berl) 2006;188:53–62.

    CAS  CrossRef  Google Scholar 

  222. Sunahara RK, Taussig R. Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2002;2:168–84.

    PubMed  CAS  CrossRef  Google Scholar 

  223. Avidor-Reiss T, Nevo I, Levy R, Pfeuffer T, Vogel Z. Chronic opioid treatment induces adenylyl cyclase V superactivation: involvement of Gβγ. J Biol Chem 1996;271:21309–15.

    PubMed  CAS  CrossRef  Google Scholar 

  224. Thomas JM, Hoffman BB. Isoform-specific sensitization of adenylyl cyclase activity by prior activation of inhibitory receptors: role of βγ subunits in transducing enhanced activity of the type VI isoform. Mol Pharmacol 1996;49:907–14.

    PubMed  CAS  Google Scholar 

  225. Rhee MH, Nevo I, Avidor-Reiss T, Levy R, Vogel Z. Differential superactivation of adenylyl cyclase isozymes after chronic activation of the CB1 cannabinoid receptor. Mol Pharmacol 2000;57:746–52.

    PubMed  CAS  Google Scholar 

  226. Bates MD, Senogles SE, Bunzow JR, Liggett SB, Civelli O, Caron MG. Regulation of responsiveness at D2 dopamine receptors by receptor desensitization and adenylyl cyclase sensitization. Mol Pharmacol 1991;39:55–63.

    PubMed  CAS  Google Scholar 

  227. Ivins KJ, Luedtke RR, Artymyshyn RP, Molinoff PB. Regulation of dopamine D2 receptors in a novel cell line (SUP1). Mol Pharmacol 1991;39:531–9.

    PubMed  CAS  Google Scholar 

  228. Filtz TM, Guan W, Artymyshyn RP, Pacheco M, Ford C, Molinoff PB. Mechanisms of up-regulation of D2L dopamine receptors by agonists and antagonists in transfected HEK-293 cells. J Pharmacol Exp Ther 1994;271:1574–82.

    PubMed  CAS  Google Scholar 

  229. Zhang L-J, Lachowicz JE, Sibley DR. The D2S and D2L dopamine receptor isoforms are differentially regulated in Chinese hamster ovary cells. Mol Pharmacol 1994;45:878–89.

    PubMed  CAS  Google Scholar 

  230. Thomas JM, Hoffman BB. Adenylate cyclase supersensitivity: a general means of cellular adaptation to inhibitory agonists? TIPS 1987;8:308–11.

    CAS  Google Scholar 

  231. Zhang XF, Hu XT, White FJ. Whole-cell plasticity in cocaine withdrawal: reduced sodium currents in nucleus accumbens neurons. J Neurosci 1998;18:488–98.

    PubMed  Google Scholar 

  232. Schoffelmeer AN, Voorn P, Jonker AJ et al. Morphine-induced increase in D-1 receptor regulated signal transduction in rat striatal neurons and its facilitation by glucocorticoid receptor activation: possible role in behavioral sensitization. Neurochem Res 1996;21:1417–23.

    PubMed  CAS  CrossRef  Google Scholar 

  233. Bradley KC, Meisel RL. Sexual behavior induction of c-Fos in the nucleus accumbens and amphetamine-stimulated locomotor activity are sensitized by previous sexual experience in female Syrian hamsters. J Neurosci 2001;21:2123–30.

    PubMed  CAS  Google Scholar 

  234. Bradley KC, Mullins AJ, Meisel RL, Watts VJ. Sexual experience alters D1 receptor-mediated cyclic AMP production in the nucleus accumbens of female Syrian hamsters. Synapse 2004;53:20–7.

    PubMed  CAS  CrossRef  Google Scholar 

  235. Meisel RL, Joppa MA, Rowe RK. Dopamine receptor antagonists attenuate conditioned place preference following sexual behavior in female Syrian hamsters. Eur J Pharmacol 1996;309:21–4.

    PubMed  CAS  CrossRef  Google Scholar 

  236. Bunney BS, Aghajanian GK, Roth RH. Comparison of effects of L-dopa, amphetamine and apomorphine on firing rate of rat dopaminergic neurones. Nat New Biol 1973;245:123–5.

    PubMed  CAS  Google Scholar 

  237. Aghajanian GK, Bunney BS. Pharmacological characterization of dopamine “autoreceptors” by microiontophoretic single-cell recording studies. Adv Biochem Psychopharmacol 1977;16:433–8.

    PubMed  CAS  Google Scholar 

  238. Pinnock RD. Sensitivity of compacta neurones in the rat substantia nigra slice to dopamine agonists. Eur J Pharmacol 1983;96:269–76.

    PubMed  CAS  CrossRef  Google Scholar 

  239. Lacey MG, Mercuri NB, North RA. Dopamine acts on D2 receptors to increase potassium conductance in neurones of rat substantia nigra zona compacta. J Physiol (Lond) 1987;392:397–416.

    CAS  Google Scholar 

  240. Kehr W, Carlsson A, Lindqvist M, Magnusson T, Atack C. Evidence for a receptor-mediated feedback control of striatal tyrosine hydroxylase activity. J Pharm Pharmacol 1972;24:744–7.

    PubMed  CAS  CrossRef  Google Scholar 

  241. Farnebo LO, Hamberger B. Drug-induced changes in the release of 3 H-monoamines from field stimulated rat brain slices. Acta Physiol Scand Suppl 1971;371:35–44.

    PubMed  CAS  CrossRef  Google Scholar 

  242. Meiergerd SM, Patterson TA, Schenk JO. D2 receptors may modulate the function of the striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo. J Neurochem 1993;61:764–7.

    PubMed  CAS  CrossRef  Google Scholar 

  243. Cass WA, Gerhardt GA. Direct in vivo evidence that D2 dopamine receptors can modulate dopamine uptake. Neurosci Lett 1994;176:259–63.

    PubMed  CAS  CrossRef  Google Scholar 

  244. Wu Q, Reith ME, Walker QD, Kuhn CM, Carroll FI, Garris PA. Concurrent autoreceptor-mediated control of dopamine release and uptake during neurotransmission: an in vivo voltammetric study. J Neurosci 2002;22:6272–81.

    PubMed  CAS  Google Scholar 

  245. Mayfield RD, Zahniser NR. Dopamine D2 receptor regulation of the dopamine transporter expressed in Xenopus laevis oocytes is voltage-independent. Mol Pharmacol 2001;59:113–21.

    PubMed  CAS  Google Scholar 

  246. O‘Hara CM, Uhland-Smith A, O‘Malley KL, Todd RD. Inhibition of dopamine synthesis by dopamine D2 and D3 but not D4 receptors. J Pharmacol Exp Ther 1996;277:186–92.

    PubMed  Google Scholar 

  247. Tang L, Todd RD, Heller A, O‘Malley KL. Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J Pharmacol Exp Ther 1994;268:495–502.

    PubMed  CAS  Google Scholar 

  248. Zapata A, Kivell B, Han Y et al. Regulation of dopamine transporter function and cell surface expression by D3 dopamine receptors. J Biol Chem 2007;282:35842–54.

    PubMed  CAS  CrossRef  Google Scholar 

  249. Levant B. The D3 dopamine receptor: neurobiology and potential clinical relevance. Pharmacol Rev 1997;49:231–52.

    PubMed  CAS  Google Scholar 

  250. L‘hirondel M, Chéramy A, Godeheu G et al. Lack of autoreceptor-mediated inhibitory control of dopamine release in striatal synaptosomes of D2 receptor-deficient mice. Brain Res 1998;792:253–62.

    PubMed  CrossRef  Google Scholar 

  251. Benoit-Marand M, Borrelli E, Gonon F. Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo. J Neurosci 2001;21:9134–41.

    PubMed  CAS  Google Scholar 

  252. Schmitz Y, Schmauss C, Sulzer D. Altered dopamine release and uptake kinetics in mice lacking D2 receptors. J Neurosci 2002;22:8002–9.

    PubMed  CAS  Google Scholar 

  253. Zapata A, Shippenberg TS. Lack of functional D2 receptors prevents the effects of the D3-preferring agonist (+)-PD 128907 on dialysate dopamine levels. Neuropharmacology 2005;48:43–50.

    PubMed  CAS  CrossRef  Google Scholar 

  254. Davila V, Yan Z, Craciun LC, Logothetis D, Sulzer D. D3 dopamine autoreceptors do not activate G-protein-gated inwardly rectifying potassium channel currents in substantia nigra dopamine neurons. J Neurosci 2003;23:5693–7.

    PubMed  CAS  Google Scholar 

  255. Beckstead MJ, Grandy DK, Wickman K, Williams JT. Vesicular dopamine release elicits an inhibitory postsynaptic current in midbrain dopamine neurons. Neuron 2004;42:939–46.

    PubMed  CAS  CrossRef  Google Scholar 

  256. Mercuri NB, Saiardi A, Bonci A et al. Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice. Neuroscience 1997;79:323–7.

    PubMed  CAS  CrossRef  Google Scholar 

  257. Dickinson SD, Sabeti J, Larson GA et al. Dopamine D2 receptor-deficient mice exhibit decreased dopamine transporter function but no changes in dopamine release in dorsal striatum. J Neurochem 1999;72:148–56.

    PubMed  CAS  CrossRef  Google Scholar 

  258. Weber B, Schlicker E, Sokoloff P, Stark H. Identification of the dopamine autoreceptor in the guinea-pig retina as D2 receptor using novel subtype-selective antagonists. Br J Pharmacol 2001;133:1243–8.

    PubMed  CAS  CrossRef  Google Scholar 

  259. Koeltzow TE, Xu M, Cooper DC et al. Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci 1998;18:2231–8.

    PubMed  CAS  Google Scholar 

  260. Joseph JD, Wang YM, Miles PR et al. Dopamine autoreceptor regulation of release and uptake in mouse brain slices in the absence of D3 receptors. Neuroscience 2002;112:39–49.

    PubMed  CAS  CrossRef  Google Scholar 

  261. Zapata A, Witkin JM, Shippenberg TS. Selective D3 receptor agonist effects of (+)-PD 128907 on dialysate dopamine at low doses. Neuropharmacology 2001;41:351–9.

    PubMed  CAS  CrossRef  Google Scholar 

  262. Wang Y, Xu R, Sasaoka T, Tonegawa S, Kung MP, Sankoorikal EB. Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J Neurosci 2000;20:8305–14.

    PubMed  CAS  Google Scholar 

  263. Lindgren N, Usiello A, Goiny M et al. Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc Natl Acad Sci USA 2003;100:4305.

    PubMed  CAS  CrossRef  Google Scholar 

  264. Centonze D, Usiello A, Gubellini P et al. Dopamine D2 receptor-mediated inhibition of dopaminergic neurons in mice lacking D2L receptors. Neuropsychopharmacology 2002;27:723–6.

    PubMed  CAS  CrossRef  Google Scholar 

  265. Jomphe C, Tiberi M, Trudeau LE. Expression of D2 receptor isoforms in cultured neurons reveals equipotent autoreceptor function. Neuropharmacology 2006;50:595–605.

    PubMed  CAS  CrossRef  Google Scholar 

  266. Montmayeur JP, Bausero P, Amlaiky N, Maroteaux L, Hen R, Borrelli E. Differential expression of the mouse D2 dopamine receptor isoforms. FEBS Lett 1991;278:239–43.

    PubMed  CAS  CrossRef  Google Scholar 

  267. Uchida S, Akaike N, Nabekura J. Dopamine activates inward rectifier K+ channel in acutely dissociated rat substantia nigra neurones. Neuropharmacology 2000;39:191–201.

    PubMed  CAS  CrossRef  Google Scholar 

  268. Kim KM, Nakajima Y, Nakajima S. G protein-coupled inward rectifier modulated by dopamine agonists in cultured substantia nigra neurons. Neuroscience 1995;69:1145–58.

    PubMed  CAS  CrossRef  Google Scholar 

  269. Liss B, Roeper J. Individual dopamine midbrain neurons: functional diversity and flexibility in health and disease. Brain Res Rev 2008;58:314–21.

    PubMed  CAS  CrossRef  Google Scholar 

  270. Cass WA, Zahniser NR. Potassium channel blockers inhibit D2 dopamine, but not A1 adenosine, receptor-mediated inhibition of striatal dopamine release. J Neurochem 1991;57:147–52.

    PubMed  CAS  CrossRef  Google Scholar 

  271. Congar P, Bergevin A, Trudeau LE. D2 receptors inhibit the secretory process downstream from calcium influx in dopaminergic neurons: implication of K+ channels. J Neurophysiol 2002;87:1046–56.

    PubMed  CAS  Google Scholar 

  272. Cardozo DL, Bean BP. Voltage-dependent calcium channels in rat midbrain dopamine neurons: modulation by dopamine and GABAB receptors. J Neurophysiol 1995;74:1137–48.

    PubMed  CAS  Google Scholar 

  273. Puopolo M, Raviola E, Bean BP. Roles of subthreshold calcium current and sodium current in spontaneous firing of mouse midbrain dopamine neurons. J Neurosci 2007;27:645–56.

    PubMed  CAS  CrossRef  Google Scholar 

  274. Harada, Wu J, Haycock JW, Goldstein M. Regulation of L-DOPA biosynthesis by site-specific phosphorylation of tyrosine hydroxylase in AtT-20 cells expressing wild-type and serine 40-substituted enzyme. J Neurochem 1996;67:629–35.

    PubMed  CAS  CrossRef  Google Scholar 

  275. Lew JY, Garcia-Espana A, Lee KY et al. Increased site-specific phosphorylation of tyrosine hydroxylase accompanies stimulation of enzymatic activity induced by cessation of dopamine neuronal activity. Mol Pharmacol 1999;55:202–9.

    PubMed  CAS  Google Scholar 

  276. Lindgren N, Xu ZQD, Herrera-Marschitz M, Haycock J, Hökfelt T, Fisone G. Dopamine D2 receptors regulate tyrosine hydroxylase activity and phosphorylation at Ser40 in rat striatum. Eur J Neurosci 2001;13:773–80.

    PubMed  CAS  CrossRef  Google Scholar 

  277. Pothos EN, Przedborski S, Davila V, Schmitz Y, Sulzer D. D2-like dopamine autoreceptor activation reduces quantal size in PC12 cells. J Neurosci 1998;18:5575–85.

    PubMed  CAS  Google Scholar 

  278. Haycock JW, Ahn NG, Cobb MH, Krebs EG. ERK1 and ERK2, two microtubule-associated protein 2 kinases, mediate the phosphorylation of tyrosine hydroxylase at serine-31 in situ. Proc Natl Acad Sci U S A 1992;89:2365–9.

    PubMed  CAS  CrossRef  Google Scholar 

  279. Lindgren N, Goiny M, Herrera-Marschitz M, Haycock JW, Hökfelt T, Fisone G. Activation of extracellular signal-regulated kinases 1 and 2 by depolarization stimulates tyrosine hydroxylase phosphorylation and dopamine synthesis in rat brain. Eur J Neurosci 2002;15:769–73.

    PubMed  CrossRef  Google Scholar 

  280. Morón JA, Zakharova I, Ferrer JV et al. Mitogen-activated protein kinase regulates dopamine transporter surface expression and dopamine transport capacity. J Neurosci 2003;23:8480–8.

    PubMed  Google Scholar 

  281. Bolan EA, Kivell B, Jaligam V et al. D2 receptors regulate dopamine transporter function via an extracellular signal-regulated kinases 1 and 2-dependent and phosphoinositide 3 kinase-independent mechanism. Mol Pharmacol 2007;71:1222–32.

    PubMed  CAS  CrossRef  Google Scholar 

  282. Lee FJ, Pei L, Moszczynska A, Vukusic B, Fletcher PJ, Liu F. Dopamine transporter cell surface localization facilitated by a direct interaction with the dopamine D2 receptor. EMBO J 2007;26:2127–36.

    PubMed  CAS  CrossRef  Google Scholar 

  283. Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J. Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 2008;57:760–73.

    PubMed  CAS  CrossRef  Google Scholar 

  284. Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL. Midbrain dopamine neurons: projection target determines action potential duration and dopamine D2 receptor inhibition. J Neurosci 2008;28:8908–13.

    PubMed  CAS  CrossRef  Google Scholar 

  285. Jose PA, Eisner GM, Felder RA. Renal dopamine receptors in health and hypertension. Pharmacol Ther 1998;80:149–82.

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Romanelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Romanelli, R.J., Williams, J.T., Neve, K.A. (2010). Dopamine Receptor Signaling: Intracellular Pathways to Behavior. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_6

Download citation