Skip to main content

Dopamine Receptor Subtype-Selective Drugs: D1-Like Receptors

Part of the The Receptors book series (REC)

Abstract

A survey is presented of the development of dopamine D1 receptor-selective drugs, including agonists and antagonists. It is noted that there are presently no ligands that are specific for the D1 vs the D5 receptor isoforms. A general discussion is presented on the structure–activity features of D1/D5 selective agents, with the conclusions developed that all known full D1 agonists must contain a catechol moiety and, in addition, require the presence of a hydrophobic moiety (typically a phenyl ring) in the region adjacent to the beta side chain carbon of the embedded dopamine fragment. This latter structural feature is so crucial that when added to a noncatechol ergoline it gave a D1-selective partial agonist. Present evidence indicates that D1 agonists may be therapeutically useful in the treatment of Parkinson’s disease, as well as improving cognition and working memory in schizophrenia and age-related cognitive decline. No D1 agonist has yet been commercialized, and that seems largely due to the difficulties of oral bioavailability for catechol-containing drugs.

Keywords

  • D1
  • D5
  • Apomorphine
  • Phenylbenzazepine
  • Isochroman
  • Dihydroxy-nomifensine
  • Dihydrexidine
  • ABT-431
  • Dinapsoline
  • Dinoxyline
  • Doxanthrine

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-333-6_4
  • Chapter length: 25 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-333-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19
Fig. 4.20
Fig. 4.21

References

  1. Kebabian JW, Calne DB. Multiple receptors for dopamine. Nature 1979;277:93–6.

    PubMed  CrossRef  CAS  Google Scholar 

  2. Dubois A, Savasta M, Curet O et al. Autoradiographic distribution of the D1 agonist [3H]SKF 38393, in the rat brain and spinal cord. Comparison with the distribution of D2 dopamine receptors. Neuroscience 1986;19:125–37.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Savasta M, Dubois A, Scatton B. Autoradiographic localization of D1 dopamine receptors in the rat brain with [3H]SCH 23390. Brain Res 1986;375:291–301.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Amenta F, Ferrante F, Ricci A. Pharmacological characterisation and autoradiographic localisation of dopamine receptor subtypes in the cardiovascular system and in the kidney. Hypertens Res 1995;18(Suppl 1):S23–S27.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Monsma FJ, Jr., Mahan LC, McVittie LD et al. Molecular cloning and expression of a D1 dopamine receptor linked to adenylyl cyclase activation. Proc Natl Acad Sci U S A 1990;87:6723–7.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Sunahara RK, Guan HC, O‘Dowd BF et al. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 1991;350:614–9.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Haq IU, LeWitt PA, Fernandez HH. Apomorphine therapy in Parkinson’s disease: a review. Expert Opin Pharmacother 2007;8:2799–809.

    PubMed  CrossRef  Google Scholar 

  8. Subramony JA. Apomorphine in dopaminergic therapy. Mol Pharm 2006;3:380–5.

    PubMed  CrossRef  CAS  Google Scholar 

  9. Horowski R. A history of dopamine agonists. From the physiology and pharmacology of dopamine to therapies for prolactinomas and Parkinson’s disease – a subjective view. J Neural Transm 2007;114:127–34.

    PubMed  CrossRef  CAS  Google Scholar 

  10. Koch MV, Cannon JG, Burkman AM. Centrally acting emetics. II. Norapomorphine and derivatives. J Med Chem 1968;11:977–81.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Menon MK, Clark WG, Neumeyer JL. Comparison of the dopaminergic effects of apomorphine and (-)-N-n-propylnorapomorphine. Eur J Pharmacol 1978;52:1–9.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Jacob JN, Nichols DE, Kohli JD et al. Dopamine agonist properties of N-alkyl-4-(3,4-dihydroxyphenyl)-1,2,3,4- tetrahydroisoquinolines. J Med Chem 1981;24:1013–5.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Nichols DE. The development of novel dopamine agonists. In: Kaiser C, Kebabian JW, editors. Dopamine Receptors. Washington, D.C.: American Chemical Society; 1983pp. 201–218.

    CrossRef  Google Scholar 

  14. Hedberg MH, Linnanen T, Jansen JM et al. 11-Substituted (R)-aporphines: synthesis, pharmacology, and modeling of D-2A and 5-HT1A receptor interactions. J Med Chem 1996;39:3503–13.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Mailman R, Huang X, Nichols DE. Parkinson’s disease and D1 dopamine receptors. Curr Opin Investig Drugs 2001;2:1582–91.

    PubMed  CAS  Google Scholar 

  16. Pendleton RG, Samler L, Kaiser C et al. Studies on renal dopamine receptors with a new agonist. Eur J Pharmacol 1978;51:19–28.

    PubMed  CrossRef  CAS  Google Scholar 

  17. Setler PE, Sarau HM, Zirkle CL et al. The central effects of a novel dopamine agonist. Eur J Pharmacol 1978;50:419–30.

    PubMed  CrossRef  CAS  Google Scholar 

  18. Andersen PH, Jansen JA. Dopamine receptor agonists: selectivity and dopamine D1 receptor efficacy. Eur J Pharmacol 1990;188:335–47.

    PubMed  CrossRef  CAS  Google Scholar 

  19. Kaiser C, Dandridge PA, Garvey E et al. Absolute stereochemistry and dopaminergic activity of enantiomers of 2,3,4,5-tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine. J Med Chem 1982;25:697–703.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Braun A, Fabbrini G, Mouradian MM et al. Selective D-1 dopamine receptor agonist treatment of Parkinson’s disease. J Neural Transm 1987;68:41–50.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Weinstock J, Hieble JP. The chemistry and pharmacology of 3-benzazepine derivatives. Drug Future 1985;10:645–97.

    Google Scholar 

  22. Cross AJ, Marshal RD, Johnson JA et al. Preferential inhibition of ligand binding to calf striatal dopamine D1 receptors by SCH 23390. Neuropharmacology 1983;22:1327–9.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Iorio LC, Barnett A, Leitz FH et al. SCH 23390, a potential benzazepine antipsychotic with unique interactions on dopaminergic systems. J Pharmacol Exp Ther 1983;226:462–8.

    PubMed  CAS  Google Scholar 

  24. Neumeyer JL, Kula NS, Bergman J et al. Receptor affinities of dopamine D1 receptor-selective novel phenylbenzazepines. Eur J Pharmacol 2003;474:137–40.

    PubMed  CrossRef  CAS  Google Scholar 

  25. Mottola DM, Laiter S, Watts VJ et al. Conformational analysis of D1 dopamine receptor agonists: pharmacophore assessment and receptor mapping. J Med Chem 1996;39:285–96.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Berger JG, Chang WK, Clader JW et al. Synthesis and receptor affinities of some conformationally restricted analogues of the dopamine D1 selective ligand (5R)-8-chloro-2,3,4,5- tetrahydro-3-methyl-5-phenyl- 1H-3-benzazepin-7-ol. J Med Chem 1989;32:1913–21.

    PubMed  CrossRef  CAS  Google Scholar 

  27. Snyder SE, Aviles-Garay FA, Chakraborti R et al. Synthesis and evaluation of 6,7-dihydroxy-2,3,4,8,9,13b-hexahydro-1H- benzo[6,7]cyclohepta[1,2,3-ef][3]benzazepine, 6,7-dihydroxy- 1,2,3,4,8,12b-hexahydroanthr[10,4a,4-cd]azepine, and 10-(aminomethyl)-9,10- dihydro-1,2-dihydroxyanthracene as conformationally restricted analogs of beta-phenyldopamine. J Med Chem 1995;38:2395–409.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Kinney JL. Nomifensine maleate – A new 2nd-generation antidepressant. Clin Pharm 1985;4:625–36.

    PubMed  CAS  Google Scholar 

  29. Costall B, Kelly DM, Naylor RJ. Nomifensine: a potent dopaminergic agonist of antiparkinson potential. Psychopharmacologia 1975;41:153–64.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Kohli JD, Goldberg LI. Effects of 3,4-dihydroxynomifensine on the dopamine vascular receptor. J Pharm Pharmacol 1980;32:225–6.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Andersen PH, Nielsen EB, Scheel-Kruger J et al. Thienopyridine derivatives identified as the first selective, full efficacy, dopamine D1 receptor agonists. Eur J Pharmacol 1987;137:291–2.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Riggs RM, Nichols DE, Foreman MM et al. Specific dopamine D-1 and DA1 properties of 4-(mono- and - dihydroxyphenyl)-1,2,3,4-tetrahydroisoquinoline and its tetrahydrothieno[2,3-c]pyridine analogue. J Med Chem 1987;30:1454–8.

    PubMed  CrossRef  CAS  Google Scholar 

  33. Dandridge PA, Kaiser C, Brenner M et al. Synthesis, resolution, absolute stereochemistry, and enantioselectivity of 3,4-dihydroxynomifensine. J Med Chem 1984;27:28–35.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Dandridge PA, Kaiser C, Brenner M et al. Synthesis, resolution, absolute stereochemistry, and enantioselectivity of 3',4'-dihydroxynomifensine. J Med Chem 1984;27:28–35.

    PubMed  CrossRef  CAS  Google Scholar 

  35. McDermed JD, Freeman HS, Ferris RM. Enantioselectivity in the binding of (+) and (-)-2-amino-6,7-dihydroxy-1,2,3,4-tetrahydronapthalene and related agonists to dopamine receptors. In: Usdin E, Kopin IJ, Barchas J, editors. Catecholamines: Basic and Clinical Frontiers. New York: Pergamon Press; 1978 pp. 568–570.

    Google Scholar 

  36. Riggs RM, McKenzie AT, Byrn SR et al. Effect of beta-alkyl substitution on D-1 dopamine agonist activity: absolute configuration of beta-methyldopamine. J Med Chem 1987;30:1914–8.

    PubMed  CrossRef  CAS  Google Scholar 

  37. Lovenberg TW, Brewster WK, Mottola DM et al. Dihydrexidine, a novel selective high potency full dopamine D-1 receptor agonist. Eur J Pharmacol 1989;166:111–3.

    PubMed  CrossRef  CAS  Google Scholar 

  38. Mottola DM, Brewster WK, Bennet J et al. In vivo and in vitro actions of DHBP, a unique agonist for both D1 and D2 dopamine receptors. Faseb J 1989;3:A379.

    Google Scholar 

  39. Knoerzer TA, Nichols DE, Brewster WK et al. Dopaminergic benzo[a]phenanthridines: resolution and pharmacological evaluation of the enantiomers of dihydrexidine, the full efficacy D1 dopamine receptor agonist. J Med Chem 1994;37:2453–60.

    PubMed  CrossRef  CAS  Google Scholar 

  40. Taylor JR, Lawrence MS, Redmond DE, Jr. et al. Dihydrexidine, a full dopamine D1 agonist, reduces MPTP-induced parkinsonism in monkeys. Eur J Pharmacol 1991;199:389–91.

    PubMed  CrossRef  CAS  Google Scholar 

  41. Blanchet PJ, Fang J, Gillespie M et al. Effects of the full dopamine D1 receptor agonist dihydrexidine in Parkinson’s disease. Clin Neuropharmacol 1998;21:339–43.

    PubMed  CAS  Google Scholar 

  42. Kohli JD, Horn PT, Glock D et al. Dihydrexidine: a new potent peripheral dopamine D1 receptor agonist. Eur J Pharmacol 1993;235:31–5.

    PubMed  CrossRef  CAS  Google Scholar 

  43. Darney KJ, Jr., Lewis MH, Brewster WK et al. Behavioral effects in the rat of dihydrexidine, a high-potency, full-efficacy D1 dopamine receptor agonist. Neuropsychopharmacol 1991;5:187–95.

    CAS  Google Scholar 

  44. Lawrence MS, Redmond DE, Jr., Elsworth JD et al. The D1 receptor antagonist, SCH 23390, induces signs of parkinsonism in African green monkeys. Life Sci 1991;49:L229–34.

    CrossRef  Google Scholar 

  45. Brewster WK, Nichols DE, Watts VJ et al. Evaluation of cis- and trans-9- and 11-hydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridines as structurally rigid, selective D1 dopamine receptor ligands. J Med Chem 1995;38:318–27.

    PubMed  CrossRef  CAS  Google Scholar 

  46. Brewster WK, Nichols DE, Riggs RM et al. trans-10,11-dihydroxy-5,6,6a,7,8,12b-hexahydrobenzo[a]phenanthridine: a highly potent selective dopamine D1 full agonist. J Med Chem 1990;33:1756–64.

    PubMed  CrossRef  CAS  Google Scholar 

  47. Negash K, Nichols DE, Watts VJ et al. Further definition of the D1 dopamine receptor pharmacophore: synthesis of trans-6,6a,7,8,9,13b-hexahydro-5H-benzo[d]naphth[2,1-b]azepines as rigid analogues of beta-phenyldopamine. J Med Chem 1997;40:2140–7.

    PubMed  CrossRef  CAS  Google Scholar 

  48. Knoerzer TA, Watts VJ, Nichols DE et al. Synthesis and biological evaluation of a series of substituted benzo[a]phenanthridines as agonists at D1 and D2 dopamine receptors. J Med Chem 1995;38:3062–70.

    PubMed  CrossRef  CAS  Google Scholar 

  49. Michaelides MR, Hong Y, DiDomenico SJ et al. (5aR,11bS)-4,5,5a,6,7,11b-hexahydro-2-propyl-3-thia-5-azacyclopent-1- ena[c]-phenanthrene-9,10-diol (A-86929): a potent and selective dopamine D1 agonist that maintains behavioral efficacy following repeated administration and characterization of its diacetyl prodrug (ABT-431). J Med Chem 1995;38:3445–7.

    PubMed  CrossRef  CAS  Google Scholar 

  50. Shiosaki K, Jenner P, Asin KE et al. ABT-431: the diacetyl prodrug of A-86929, a potent and selective dopamine D1 receptor agonist: in vitro characterization and effects in animal models of Parkinson’s disease. J Pharmacol Exp Ther 1996;276:150–60.

    PubMed  CAS  Google Scholar 

  51. Michaelides MR, Hong Y, Didomenico S et al. Substituted hexahydrobenzo[f]thieno[c]quinolines as dopamine D1- selective agonists: synthesis and biological evaluation in vitro and in vivo. J Med Chem 1997;40:1585–99.

    PubMed  CrossRef  CAS  Google Scholar 

  52. Rascol O, Blin O, Thalamas C et al. ABT-431, a D1 receptor agonist prodrug, has efficacy in Parkinson’s disease. Ann Neurol 1999;45:736–41.

    PubMed  CrossRef  CAS  Google Scholar 

  53. Rascol O, Nutt JG, Blin O et al. Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson disease. Arch Neurol 2001;58:249–54.

    PubMed  CrossRef  CAS  Google Scholar 

  54. Michaelides MR, Schoenleber R, Thomas S et al. Synthesis and pharmacological evaluation of 1-(aminomethyl)-3,4-dihydro- 5-hydroxy-1H-2-benzopyrans as dopamine D1 selective ligands. J Med Chem 1991;34:2946–53.

    PubMed  CrossRef  CAS  Google Scholar 

  55. DeNinno MP, Schoenleber R, Asin KE et al. (1R,3S)-1-(aminomethyl)-3,4-dihydro-5,6-dihydroxy-3-phenyl-1H-2- benzopyran: a potent and selective D1 agonist. J Med Chem 1990;33:2948–50.

    PubMed  CrossRef  CAS  Google Scholar 

  56. DeNinno MP, Schoenleber R, MacKenzie R et al. A68930: a potent agonist selective for the dopamine D1 receptor. Eur J Pharmacol 1991;199:209–19.

    PubMed  CrossRef  CAS  Google Scholar 

  57. DeNinno MP, Schoenleber R, Perner RJ et al. Synthesis and dopaminergic activity of 3-substituted 1-(aminomethyl)- 3,4-dihydro-5,6-dihydroxy-1H-2-benzopyrans: characterization of an auxiliary binding region in the D1 receptor. J Med Chem 1991;34:2561–9.

    PubMed  CrossRef  CAS  Google Scholar 

  58. Kebabian JW, Britton DR, DeNinno MP et al. A-77636: a potent and selective dopamine D1 receptor agonist with antiparkinsonian activity in marmosets. Eur J Pharmacol 1992;229: 203–9.

    PubMed  CrossRef  CAS  Google Scholar 

  59. Kebabian JW, Briggs C, Britton DR et al. A68930: a potent and specific agonist for the D1 dopamine receptor. Am J Hypertens 1990;3:40S–2S.

    PubMed  CAS  Google Scholar 

  60. Kebabian JW, DeNinno MP, Schoenleber R et al. A68930: a potent agonist specific for the dopamine D1 receptor. Neurochem Int 1992;20(Suppl):157S–60S.

    PubMed  CrossRef  CAS  Google Scholar 

  61. Laban U. Synthesis of 4-aminomethylchromans: novel dopamine D2-selective agonists. PhD thesis, Purdue University, West Lafayette, IN; 2004.

    Google Scholar 

  62. Chemel BR, Bonner LA, Watts VJ et al. D1 versus D2 dopamine receptor selectivity is determined by intramolecular hydrogen bonding patterns in catechol-containing novel dopamine analogues. Soc Neurosci Abstr 2007;33:351.1.

    Google Scholar 

  63. Ghosh D, Snyder SE, Watts VJ et al. 9-Dihydroxy-2,3,7,11b-tetrahydro-1H-naph[1,2,3-de]isoquinoline: a potent full dopamine D1 agonist containing a rigid-beta-phenyldopamine pharmacophore. J Med Chem 1996;39:549–55.

    PubMed  CrossRef  CAS  Google Scholar 

  64. Sit SY, Xie K, Jacutin-Porte S et al. (+)-Dinapsoline: An efficient synthesis and pharmacological profile of a novel dopamine agonist. J Med Chem 2002;45:3660–8.

    PubMed  CrossRef  CAS  Google Scholar 

  65. Gulwadi AG, Korpinen CD, Mailman RB et al. Dinapsoline: characterization of a D(1) dopamine receptor agonist in a rat model of Parkinson’s disease. J Pharmacol Exp Ther 2001;296:338–44.

    PubMed  CAS  Google Scholar 

  66. Sit SY, Xie K, Jacutin-Porte S et al. Synthesis and SAR exploration of dinapsoline analogues. Bioorg Med Chem 2004;12:715–34.

    PubMed  CrossRef  CAS  Google Scholar 

  67. Grubbs RA. Synthesis of novel dopaminergic ligands: a bioisosteric approach. PhD thesis, Purdue University, West Lafayette, IN;2000.

    Google Scholar 

  68. Grubbs RA, Lewis MM, Owens-Vance C et al. 8,9-Dihydroxy-1,2,3,11b-tetrahydrochromeno[4,3,2,-de]isoquinoline (dinoxyline), a high affinity and potent agonist at all dopamine receptor isoforms. Bioorg Med Chem 2004;12:1403–12.

    PubMed  CrossRef  CAS  Google Scholar 

  69. Cueva JP, Giorgioni G, Grubbs RA et al. trans-2,3-Dihydroxy-6a,7,8,12b-tetrahydro-6H-chromeno[3,4-c]isoquinoline: Synthesis, resolution, and preliminary pharmacological characterization of a new dopamine D1 receptor full agonist. J Med Chem 2006;49:6848–57.

    PubMed  CrossRef  CAS  Google Scholar 

  70. Cueva JP. Inquiry into the structural and conformational requirements of β-phenyldopamine-type ligands for selective dopamine D1 receptor activation. PhD thesis, Purdue University, West Lafayette, IN; 2008.

    Google Scholar 

  71. Ladd DL, Weinstock J, Wise M, Gessner GW, Sawyer JL, Flaim KE. Synthesis and dopaminergic binding of 2-aryldopamine analogues: phenethylamines, 3-benzazepines, and 9-(aminomethyl)fluorenes. J Med Chem 1986; 29(10):1904–12.

    PubMed  CrossRef  CAS  Google Scholar 

  72. Cannon JG. Chemistry of dopaminergic agonists. Adv Neurol 1975;9:177–83.

    PubMed  CAS  Google Scholar 

  73. Froimowitz M, Bellott EM, Jr. Structural factors that distinguish dopamine D1 and D1 agonists. J Mol Model 1995;1:36–45.

    CrossRef  CAS  Google Scholar 

  74. Csutoras C, Zhang A, Zhang KH et al. Synthesis and neuropharmacological evaluation of R(-)-N-alkyl-11-hydroxynoraporphines and their esters. Bioorg Med Chem 2004;12:3553–9.

    PubMed  CrossRef  CAS  Google Scholar 

  75. Neumeyer JL, Reinhard JF, Dafeldecker WP et al. Aporphines 14. Dopaminergic and antinociceptive activity of aporphine derivatives – synthesis of 10-hydroxyaporphines and 10-hydroxy-N-normal-propylnoraporphine. J Med Chem 1976;19:25–9.

    PubMed  CrossRef  CAS  Google Scholar 

  76. Seiler MP, Hagenbach A, Wuthrich HJ et al. trans-hexahydroindolo[4,3-ab]phenanthridines (“benzergolines”), the first structural class of potent and selective dopamine D1 receptor agonists lacking a catechol group. J Med Chem 1991;34:303–7.

    PubMed  CrossRef  CAS  Google Scholar 

  77. Nichols DE. Structural correlation between apomorphine and LSD: involvement of dopamine as well as serotonin in the actions of hallucinogens. J Theor Biol 1976;59:167–77.

    PubMed  CrossRef  CAS  Google Scholar 

  78. Bach NJ, Kornfeld EC, Jones ND et al. Bicyclic and tricyclic ergoline partial structures. Rigid 3-(2- aminoethyl)pyrroles and 3- and 4-(2-aminoethyl)pyrazoles as dopamine agonists. J Med Chem 1980;23:481–91.

    PubMed  CrossRef  CAS  Google Scholar 

  79. Kocjan D, Hadzi D. Conformationally restricted dopamine congeners–a molecular mechanics-based study. J Pharm Pharmacol 1983;35:780–5.

    PubMed  CrossRef  CAS  Google Scholar 

  80. Temlett JA, Quinn NP, Jenner PG et al. Antiparkinsonian activity of CY 208-243, a partial D-1 dopamine receptor agonist, in MPTP-treated marmosets and patients with Parkinson’s disease. Mov Disord 1989;4:261–5.

    PubMed  CrossRef  CAS  Google Scholar 

  81. Pollock NJ, Manelli AM, Hutchins CW et al. Serine mutations in transmembrane V of the dopamine D1 receptor affect ligand interactions and receptor activation. J Biol Chem 1992;267:17780–6.

    PubMed  CAS  Google Scholar 

  82. Tomic M, Seeman P, George SR et al. Dopamine D1 receptor mutagenesis: role of amino acids in agonist and antagonist binding. Biochem Biophys Res Commun 1993;191:1020–7.

    PubMed  CrossRef  CAS  Google Scholar 

  83. Cherezov V, Rosenbaum DM, Hanson MA et al. High-resolution crystal structure of an engineered human 2-Adrenergic G protein coupled receptor. Science 2007;318:1258–65.

    PubMed  CrossRef  CAS  Google Scholar 

  84. Strader CD, Sigal IS, Candelore MR et al. Conserved aspartic acid residues 79 and 113 of the beta-adrenergic receptor have different roles in receptor function. J Biol Chem 1988;263:10267–71.

    PubMed  CAS  Google Scholar 

  85. Strader CD, Fong TM, Tota MR et al. Structure and function of G protein-coupled receptors. Ann Rev Biochem 1994;63:101–32.

    PubMed  CrossRef  CAS  Google Scholar 

  86. Lan H, Du R and CJ, Teeter MM, Neve KA. Structural determinants of pharmacological specificity between D1 and D2 dopamine receptors. Mol Pharmacol 2006;69:185–94.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David E. Nichols .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Nichols, D.E. (2010). Dopamine Receptor Subtype-Selective Drugs: D1-Like Receptors. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_4

Download citation