Skip to main content

In Vivo Imaging of Dopamine Receptors

  • Chapter
  • First Online:
  • 2563 Accesses

Part of the book series: The Receptors ((REC))

Abstract

Positron emission tomography (PET) and single photon emission computed tomography (SPECT) have been used to study indices of dopamine transmission in schizophrenia, mood disorders, anxiety, dimensions of personality, attention deficit and hyperactivity disorder (ADHD), and addiction. This is due not only to suspected dopamine alterations in these disorders, but also to the availability of a wide array of probes to image the dopaminergic system. In this review we will summarize some of the findings that have emerged from these studies and highlight controversies and future needs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Talbot PS, Laruelle M. The role of in vivo molecular imaging with PET and SPECT in the elucidation of psychiatric drug action and new drug development. Eur Neuropsychopharmacol 2002;12:503–11.

    PubMed  CAS  Google Scholar 

  2. Seeman P, Chau-Wong M, Tedesco J, Wong K. Brain receptors for antipsychotic drugs and dopamine: direct binding assays. Proc Natl Acad Sci USA 1975;72:4376–80.

    PubMed  CAS  Google Scholar 

  3. Creese I, Burt DR, Snyder SH. Dopamine receptor binding predicts clinical and pharmacological potencies of antischizophrenic drugs. Science 1976;19:481–3.

    Google Scholar 

  4. Lieberman JA, Kane JM, Alvir J. Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 1987;91:415–33.

    PubMed  CAS  Google Scholar 

  5. Angrist B, van Kammen DP. CNS stimulants as a tool in the study of schizophrenia. Trends Neurosci 1984;7:388–90.

    Google Scholar 

  6. Knable MB, Weinberger DR. Dopamine, the prefrontal cortex and schizophrenia. J Psychopharmacol 1997;11:123–31.

    PubMed  CAS  Google Scholar 

  7. Goldman-Rakic PS, Muly EC, 3rd, Williams GV. D(1) receptors in prefrontal cells and circuits. Brain Res Brain Res Rev 2000;31:295–301.

    PubMed  CAS  Google Scholar 

  8. Davis KL, Kahn RS, Ko G, Davidson M. Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 1991;148:1474–86.

    PubMed  CAS  Google Scholar 

  9. Weinberger DR. Implications of the normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987;44:660–9.

    PubMed  CAS  Google Scholar 

  10. Wong DF, Wagner HN, Tune LE, et al. Positron Emission Tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science 1986;234:1558–63.

    PubMed  CAS  Google Scholar 

  11. Crawley JC, Owens DG, Crow TJ, et al. Dopamine D2 receptors in schizophrenia studied in vivo. Lancet 1986;2:224–5.

    PubMed  CAS  Google Scholar 

  12. Blin J, Baron JC, Cambon H, et al. Striatal dopamine D2 receptors in tardive dyskinesia: PET study. J Neurol Neurosurg Psychiatry 1989;52:1248–52.

    PubMed  CAS  Google Scholar 

  13. Martinot J-L, Peron-Magnan P, Huret J-D, et al. Striatal D2 dopaminergic receptors assessed with positron emission tomography and 76-Br-bromospiperone in untreated patients. Am J Psychiatry 1990;147:346–50.

    Google Scholar 

  14. Tune LE, Wong DF, Pearlson G, et al. Dopamine D2 receptor density estimates in schizophrenia: a positron emission tomography study with 11C-N-methylspiperone. Psychiatry Res 1993;49:219–37.

    PubMed  CAS  Google Scholar 

  15. Nordstrom AL, Farde L, Eriksson L, Halldin C. No elevated D2 dopamine receptors in neuroleptic-naive schizophrenic patients revealed by positron emission tomography and [11C]N- methylspiperone [see comments]. Psychiatry Res 1995;61:67–83.

    PubMed  CAS  Google Scholar 

  16. Okubo Y, Suhara T, Suzuki K, et al. Decreased prefrontal dopamine D1 receptors in schizophrenia revealed by PET. Nature 1997;385:634–6.

    PubMed  CAS  Google Scholar 

  17. Farde L, Wiesel F, Stone-Elander S, et al. D2 dopamine receptors in neuroleptic-naive schizophrenic patients. A positron emission tomography study with [11C]raclopride. Arch Gen Psychiatry 1990;47:213–9.

    PubMed  CAS  Google Scholar 

  18. Hietala J, Syvälahti E, Vuorio K, et al. Striatal D2 receptor characteristics in neuroleptic-naive schizophrenic patients studied with Positron Emission Tomography. Arch Gen Psychiatry 1994;51:116–23.

    PubMed  CAS  Google Scholar 

  19. Pilowsky LS, Costa DC, Ell PJ, Verhoeff NPLG, Murray RM, Kerwin RW. D2 dopamine receptor binding in the basal ganglia of antipsychotic-free schizophrenic patients. An I-123-IBZM single photon emission computerized tomography study. Br J Psychiatry 1994;164:16–26.

    PubMed  CAS  Google Scholar 

  20. Laruelle M, Abi-Dargham A, van Dyck CH, et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug free schizophrenic subjects. Proc Natl Acad Sci USA 1996;93:9235–40.

    PubMed  CAS  Google Scholar 

  21. Knable MB, Egan MF, Heinz A, et al. Altered dopaminergic function and negative symptoms in drug-free patients with schizophrenia. [123I]-iodobenzamide SPECT study. Br J Psychiatry 1997;171:574–7.

    PubMed  CAS  Google Scholar 

  22. Breier A, Su TP, Saunders R, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 1997;94:2569–74.

    PubMed  CAS  Google Scholar 

  23. Abi-Dargham A, Gil R, Krystal J, et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 1998;155:761–7.

    PubMed  CAS  Google Scholar 

  24. Abi-Dargham A, Rodenhiser J, Printz D, et al. Increased baseline occupancy of D2 receptors by dopamine in schizophrenia. Proc Natl Acad Sci USA 2000;97:8104–9.

    PubMed  CAS  Google Scholar 

  25. Martinot Jl, Paillère-Martinot ML, Loc’h C, et al. The estimated density of D2 striatal receptors in schizophrenia. A study with positron Emission tomography and 76Br-bromolisuride. Br J Psychiatry 1991;158:346–50.

    PubMed  CAS  Google Scholar 

  26. Martinot JL, Paillère-Martinot ML, Loch’H C, et al. Central D2 receptors and negative symptoms of schizophrenia. Br J Pharmacol 1994;164:27–34.

    CAS  Google Scholar 

  27. Laruelle M. Imaging dopamine transmission in schizophrenia. A review and meta-analysis. Q J Nucl Med 1998;42:211–21.

    PubMed  CAS  Google Scholar 

  28. Kestler LP, Walker E, Vega EM. Dopamine receptors in the brains of schizophrenia patients: a meta-analysis of the findings. Behav pharmacol 2001;12:355–71.

    PubMed  CAS  Google Scholar 

  29. Hirvonen J, van Erp TG, Huttunen J, et al. Increased caudate dopamine D2 receptor availability as a genetic marker for schizophrenia. Arch Gen Psychiatry 2005;62:371–8.

    PubMed  CAS  Google Scholar 

  30. Seeman P, Guan HC, Van Tol HHM. Dopamine D4 receptors elevated in schizophrenia. Nature 1993;365:411–45.

    Google Scholar 

  31. Lahti RA, Roberts RC, Cochrane EV, et al. Direct determination of dopamine D-4 receptors in normal and schizophrenic postmortem brain tissue: a [H-3]NGD-94-1 study. Mol Psychiatr 1998;3:528–33.

    CAS  Google Scholar 

  32. Ng GY, O‘Dowd BF, Caron M, Dennis M, Brann MR, George SR. Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells. J Neurochem 1994;63:1589–95.

    PubMed  CAS  Google Scholar 

  33. Ng GY, O‘Dowd BF, Lee SP, et al. Dopamine D2 receptor dimers and receptor-blocking peptides. Biochem Biophys Res Commun 1996;227:200–4.

    PubMed  CAS  Google Scholar 

  34. Zawarynski P, Tallerico T, Seeman P, Lee SP, O‘Dowd BF, George SR. Dopamine D2 receptor dimers in human and rat brain. FEBS Lett 1998;441:383–6.

    PubMed  CAS  Google Scholar 

  35. Lee SP, O‘Dowd BF, Ng GY, et al. Inhibition of cell surface expression by mutant receptors demonstrates that D2 dopamine receptors exist as oligomers in the cell [In Process Citation]. Mol Pharmacol 2000;58:120–8.

    PubMed  CAS  Google Scholar 

  36. Seeman P, Guan H-C, Niznik HB. Endogenous dopamine lowers the dopamine D2 receptor density as measured by [3H]raclopride: Implications for positron emission tomography of the human brain. Synapse 1989;3:96–7.

    PubMed  CAS  Google Scholar 

  37. Seeman P. Brain dopamine receptors in schizophrenia: PET problems. Arch Gen Psychiatry 1988;45:598–60.

    PubMed  CAS  Google Scholar 

  38. Karlsson P, Farde L, Halldin C, Sedvall G. D1-dopamine receptors in schizophrenia examined by PET. Schizophrenia Res 1997;24:179.

    Google Scholar 

  39. Abi-Dargham A, Gil R, Mawlawi O, et al. Selective alteration in D1 receptors in schizophrenia: a PET in vivo study. J Nuc Med 2001;42:17P.

    Google Scholar 

  40. Sokoloff P, Diaz J, Le Foll B, et al. The dopamine D3 receptor: a therapeutic target for the treatment of neuropsychiatric disorders. CNS Neurol Disord Drug Targets 2006;5:25–43.

    PubMed  CAS  Google Scholar 

  41. Gurevich EV, Bordelon Y, Shapiro RM, Arnold SE, Gur RE, Joyce JN. Mesolimbic dopamine D3 receptors and use of antipsychotics in patients with schizophrenia. A postmortem study. Arch Gen Psychiatry 1997;54:225–32.

    PubMed  CAS  Google Scholar 

  42. Narendran R, Slifstein M, Guillin O, et al. Dopamine (D2/3) receptor agonist positron emission tomography radiotracer [11C]-(+)-PHNO is a D3 receptor preferring agonist in vivo. Synapse 2006;60:485–95.

    PubMed  CAS  Google Scholar 

  43. Graff-Guerrero A, Mizrahi R, Agid O, et al. The Dopamine D(2) Receptors in High-Affinity State and D(3) Receptors in Schizophrenia: A Clinical [(11)C]-(+)-PHNO PET Study. Neuropsychopharmacology 2008.

    Google Scholar 

  44. Laruelle M, Abi-Dargham A, van Dyck C, et al. Dopamine and serotonin transporters in patients with schizophrenia: an imaging study with [(123)I]beta-CIT. Biol Psychiatry 2000;47:371–9.

    PubMed  CAS  Google Scholar 

  45. Laakso A, Vilkman H, Alakare B, et al. Striatal dopamine transporter binding in neuroleptic-naive patients with schizophrenia studied with positron emission tomography. Am J Psychiatry 2000;157:269–71.

    PubMed  CAS  Google Scholar 

  46. Taylor SF, Koeppe RA, Tandon R, Zubieta JK, Frey KA. In vivo measurement of the vesicular monoamine transporter in schizophrenia. Neuropsychopharmacology 2000;23:667–75.

    PubMed  CAS  Google Scholar 

  47. Laruelle M, Iyer RN, al-Tikriti MS, et al. Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates. Synapse 1997;25:1–14.

    PubMed  CAS  Google Scholar 

  48. Villemagne VL, Wong DF, Yokoi F, et al. GBR12909 attenuates amphetamine-induced striatal dopamine release as measured by [(11)C]raclopride continuous infusion PET scans. Synapse 1999;33:268–73.

    PubMed  CAS  Google Scholar 

  49. Breier A, Su TP, Saunders R, et al. Schizophrenia is associated with elevated amphetamine-induced synaptic dopamine concentrations: evidence from a novel positron emission tomography method. Proc Natl Acad Sci USA 1997;94:2569–74.

    PubMed  CAS  Google Scholar 

  50. Laruelle M, Abi-Dargham A, van Dyck CH, et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 1996;93:9235–40.

    PubMed  CAS  Google Scholar 

  51. Abi-Dargham A, Gil R, Krystal J, et al. Increased striatal dopamine transmission in schizophrenia: confirmation in a second cohort. Am J Psychiatry 1998;155:761–7.

    PubMed  CAS  Google Scholar 

  52. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R. Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 1999;46:56–72.

    PubMed  CAS  Google Scholar 

  53. Parsey RV, Oquendo MA, Zea-Ponce Y, et al. Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol Psychiatry 2001;50:313–22.

    PubMed  CAS  Google Scholar 

  54. Laruelle M. Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 2000;20:423–51.

    PubMed  CAS  Google Scholar 

  55. Laruelle M, DSouza CD, Baldwin RM, et al. Imaging D-2 receptor occupancy by endogenous dopamine in humans. Neuropsychopharmacology 1997;17:162–74.

    PubMed  CAS  Google Scholar 

  56. Abi-Dargham A, Giessen EV, Slifstein M, Kegeles LS, Laruelle M. Baseline and amphetamine-stimulated dopamine activity are related in drug-naive schizophrenic subjects. Biol Psychiatry 2009.

    Google Scholar 

  57. Dao-Castellana MH, Paillere-Martinot ML, Hantraye P, et al. Presynaptic dopaminergic function in the striatum of schizophrenic patients. Schizophr Res 1997;23:167–74.

    PubMed  CAS  Google Scholar 

  58. Elkashef AM, Doudet D, Bryant T, Cohen RM, Li SH, Wyatt RJ. 6-(18)F-DOPA PET study in patients with schizophrenia. Positron emission tomography. Psychiatry Res 2000;100:1–11.

    PubMed  CAS  Google Scholar 

  59. Hietala J, Syvalahti E, Vilkman H, et al. Depressive symptoms and presynaptic dopamine function in neuroleptic-naive schizophrenia. Schizophr Res 1999;35:41–50.

    PubMed  CAS  Google Scholar 

  60. Hietala J, Syvalahti E, Vuorio K, et al. Presynaptic dopamine function in striatum of neuroleptic-naive schizophrenic patients. Lancet 1995;346:1130–1.

    PubMed  CAS  Google Scholar 

  61. Lindstrom LH, Gefvert O, Hagberg G, et al. Increased dopamine synthesis rate in medial prefrontal cortex and striatum in schizophrenia indicated by L-(beta-11C) DOPA and PET. Biol Psychiatry 1999;46:681–8.

    PubMed  CAS  Google Scholar 

  62. McGowan SW, Lawrence A, Sale T, Quested D, Grasby PM. Presynaptic dopaminergic dysfunction in medicated schizophrenic patients. Arch Gen Psychiatry 2004;61:134–42.

    Google Scholar 

  63. Meyer-Lindenberg A, Miletich RS, Kohn PD, et al. Reduced prefrontal activity predicts exaggerated striatal dopaminergic function in schizophrenia. Nat Neurosci 2002;5:267–71.

    PubMed  CAS  Google Scholar 

  64. Reith J, Benkelfat C, Sherwin A, et al. Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci USA 1994;91:11651–4.

    CAS  Google Scholar 

  65. Zhu MY, Juorio AV, Paterson IA, Boulton AA. Regulation of striatal aromatic L-amino acid decarboxylase: effects of blockade or activation of dopamine receptors. Eur J Pharmacol 1993;238:157–64.

    CAS  Google Scholar 

  66. Cho S, Neff NH, Hadjiconstantinou M. Regulation of tyrosine hydroxylase and aromatic L-amino acid decarboxylase by dopaminergic drugs. Eur J Pharmacol 1997;323:149–57.

    PubMed  CAS  Google Scholar 

  67. Danielsen EH, Smith D, Hermansen F, Gjedde A, Cumming P. Acute neuroleptic stimulates DOPA decarboxylase in porcine brain in vivo. Synapse 2001;41:172–5.

    PubMed  CAS  Google Scholar 

  68. Torstenson R, Hartvig P, Langstrom B, Bastami S, Antoni G, Tedroff J. Effect of apomorphine infusion on dopamine synthesis rate relates to dopaminergic tone. Neuropharmacology 1998;37:989–95.

    PubMed  CAS  Google Scholar 

  69. Grunder G, Vernaleken I, Muller MJ, et al. Subchronic haloperidol downregulates dopamine synthesis capacity in the brain of schizophrenic patients in vivo. Neuropsychopharmacology 2003;28:787–94.

    PubMed  Google Scholar 

  70. Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991;41:1–24.

    PubMed  CAS  Google Scholar 

  71. Tuppurainen H, Kuikka J, Viinamaki H, Husso-Saastamoinen M, Bergstrom K, Tiihonen J. Extrastriatal dopamine D 2/3 receptor density and distribution in drug-naive schizophrenic patients. Mol Psychiatry 2003;8:453–5.

    PubMed  CAS  Google Scholar 

  72. Talvik M, Nordstrom AL, Olsson H, Halldin C, Farde L. Decreased thalamic D2/D3 receptor binding in drug-naive patients with schizophrenia: a PET study with [11C]FLB 457. Int J Neuropsychopharmacol 2003;6:361–70.

    PubMed  CAS  Google Scholar 

  73. Talvik M, Nordstrom AL, Okubo Y, et al. Dopamine D2 receptor binding in drug-naive patients with schizophrenia examined with raclopride-C11 and positron emission tomography. Psychiatry Res 2006;148:165–73.

    PubMed  CAS  Google Scholar 

  74. Yasuno F, Suhara T, Okubo Y, et al. Low dopamine d(2) receptor binding in subregions of the thalamus in schizophrenia. Am J Psychiatry 2004;161:1016–22.

    PubMed  Google Scholar 

  75. Suhara T, Okubo Y, Yasuno F, et al. Decreased dopamine D2 receptor binding in the anterior cingulate cortex in schizophrenia. Arch Gen Psychiatry 2002;59:25–30.

    PubMed  CAS  Google Scholar 

  76. Tuppurainen H, Kuikka JT, Laakso MP, Viinamaki H, Husso M, Tiihonen J. Midbrain dopamine D2/3 receptor binding in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2006;256:382–7.

    PubMed  Google Scholar 

  77. Glenthoj BY, Mackeprang T, Svarer C, et al. Frontal dopamine D(2/3) receptor binding in drug-naive first-episode schizophrenic patients correlates with positive psychotic symptoms and gender. Biol Psychiatry 2006;60:621–9.

    PubMed  CAS  Google Scholar 

  78. Kessler RC, Woodward N, Riccardi P, et al. Dopamine D2 Receptor Levels in Striatum, Thalamus, Substantia Nigra, Limbic Regions, and Cortex in Schizophrenic Subjects. Biol Psych 2009;65(12):1024–1031.

    Google Scholar 

  79. Kegeles LS, Slifstein M, Xu X, et al. [18F]Fallypride PET assessment of D2/D3 receptor binding in schizophrenia. J Nucl Med 2008;49:36P.

    Google Scholar 

  80. De Keyser J, Ebinger G, Vauquelin G. Evidence for a widespread dopaminergic innervation of the human cerebral neocortex. Neurosci Lett 1989;104:281–5.

    PubMed  Google Scholar 

  81. Hall H, Sedvall G, Magnusson O, Kopp J, Halldin C, Farde L. Distribution of D1- and D2-dopamine receptors, and dopamine and its metabolites in the human brain. Neuropsychopharmacology 1994;11:245–56.

    PubMed  CAS  Google Scholar 

  82. Halldin C, Stone-Elander S, Farde L, et al. Preparation of 11C-labelled SCH 23390 for the in vivo study of dopamine D1 receptors using positron emission tomography. Appl Radiat Isot 1986;37:1039–43.

    CAS  Google Scholar 

  83. Andersen PH, Gronvald FC, Hohlweg R, et al. NNC-112, NNC-687 and NNC-756, new selective and highly potent dopamine D1 receptor antagonists. Eur J Pharmacol 1992;219:45–52.

    PubMed  CAS  Google Scholar 

  84. Halldin C, Foged C, Chou YH, et al. Carbon-11-NNC 112: a radioligand for PET examination of striatal and neocortical D1-dopamine receptors. J Nucl Med 1998;39:2061–8.

    PubMed  CAS  Google Scholar 

  85. Abi-Dargham A, Simpson N, Kegeles L, et al. PET studies of binding competition between endogenous dopamine and the D1 radiotracer [11C]NNC 756. Synapse 1999;32:93–109.

    PubMed  CAS  Google Scholar 

  86. Ekelund J, Slifstein M, Narendran R, et al. In Vivo DA D(1) Receptor Selectivity of NNC 112 and SCH 23390. Mol Imaging Biol 2007;9:117–25.

    PubMed  Google Scholar 

  87. Slifstein M, Kegeles LS, Gonzales R, et al. [(11)C]NNC 112 selectivity for dopamine D(1) and serotonin 5-HT(2A) receptors: a PET study in healthy human subjects. J Cereb Blood Flow Metab 2007;27:1733–1741.

    PubMed  CAS  Google Scholar 

  88. Karlsson P, Farde L, Halldin C, Sedvall G. PET study of D(1) dopamine receptor binding in neuroleptic-naive patients with schizophrenia. Am J Psychiatry 2002;159:761–7.

    PubMed  Google Scholar 

  89. Guo N, Hwang DR, Lo ES, Huang YY, Laruelle M, Abi-Dargham A. Dopamine depletion and in vivo binding of PET D1 receptor radioligands: implications for imaging studies in schizophrenia. Neuropsychopharmacology 2003;28:1703–11.

    PubMed  CAS  Google Scholar 

  90. Kapur S, Zipursky RB, Remington G. Clinical and theoretical implications of 5-HT2 and D2 receptor occupancy of clozapine, risperidone, and olanzapine in schizophrenia. Am J Psychiatry 1999;156:286–93.

    PubMed  CAS  Google Scholar 

  91. Nyberg S, Nilsson U, Okubo Y, Halldin C, Farde L. Implications of brain imaging for the management of schizophrenia. Int Clin Psychopharmacol 1998;13(Suppl 3):S15–20.

    PubMed  Google Scholar 

  92. Farde L, Nordström AL, Wiesel FA, Pauli S, Halldin C, Sedvall G. Positron emission tomography analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Arch Gen Psychiatry 1992;49:538–44.

    PubMed  CAS  Google Scholar 

  93. Kegeles LS, Slifstein M, Frankle WG, et al. Dose-Occupancy Study of Striatal and Extrastriatal Dopamine D(2) Receptors by Aripiprazole in Schizophrenia with PET and [(18)F]Fallypride. Neuropsychopharmacology 2008;33:3111–3125.

    Google Scholar 

  94. Wolkin A, Barouche F, Wolf AP, et al. Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry 1989;146:905–8.

    PubMed  CAS  Google Scholar 

  95. Pilowsky LS, Costa DC, Ell PJ, Murray RM, Verhoeff NPLG, Kerwin RW. Clozapine, single photon emission tomography, and the D2 dopamine receptor blockade hypothesis of schizophrenia. Lancet 1992;340:199–202.

    PubMed  CAS  Google Scholar 

  96. Agid O, Mamo D, Ginovart N, et al. Striatal vs Extrastriatal dopamine D(2) receptors in antipsychotic response – a double-blind PET study in schizophrenia. Neuropsychopharmacology 2007;32:1209–15.

    PubMed  CAS  Google Scholar 

  97. Nordstrom AL, Farde L, Wiesel FA, et al. Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 1993;33:227–35.

    PubMed  CAS  Google Scholar 

  98. Kapur S, Zipursky R, Jones C, Remington G, Houle S. Relationship between dopamine D(2) occupancy, clinical response, and side effects: a double-blind PET study of first-episode schizophrenia. Am J Psychiatry 2000;157:514–20.

    PubMed  CAS  Google Scholar 

  99. Nordstrom AL, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G. D1, D2, and 5-HT2 receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 1995;152:1444–9.

    PubMed  CAS  Google Scholar 

  100. Nyberg S, Farde L, Eriksson L, Halldin C, Eriksson B. 5-HT2 and D2 dopamine receptor occupancy in the living human brain. A PET study with risperidone. Psychopharmacology 1993;110:265–672.

    PubMed  CAS  Google Scholar 

  101. Kapur S, Remington G, Zipursky RB, Wilson AA, Houle S. The D2 dopamine receptor occupancy of risperidone and its relationship to extrapyramidal symptoms: a PET study. Life Sci 1995;57:L103–7.

    Google Scholar 

  102. Knable MB, Heinz A, Raedler T, Weinberger DR. Extrapyramidal side effects with risperidone and haloperidol at comparable D2 receptor occupancy levels. Psychiatr Res Neuroimag 1997;75:91–101.

    CAS  Google Scholar 

  103. Kapur S, Zipursky RB, Remington G, et al. 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: a PET investigation. Am J Psychiatry 1998;155:921–8.

    PubMed  CAS  Google Scholar 

  104. Gefvert O, Bergstrom M, Langstrom B, Lundberg T, Lindstrom L, Yates R. Time course of central nervous dopamine-D2 and 5-HT2 receptor blockade and plasma drug concentrations after discontinuation of quetiapine (Seroquel) in patients with schizophrenia. Psychopharmacology (Berl) 1998;135:119–26.

    CAS  Google Scholar 

  105. Kapur S, Zipursky R, Jones C, Shammi CS, Remington G, Seeman P. A positron emission tomography study of quetiapine in schizophrenia: a preliminary finding of an antipsychotic effect with only transiently high dopamine D2 receptor occupancy. Arch Gen Psychiatry 2000;57:553–9.

    PubMed  CAS  Google Scholar 

  106. Pilowsky LS, Mulligan RS, Acton PD, Ell PJ, Costa DC, Kerwin RW. Limbic selectivity of clozapine. Lancet 1997;350:490–1.

    PubMed  CAS  Google Scholar 

  107. Farde L, Suhara T, Nyberg S, et al. A PET study of [C-11]FLB 457 binding to extrastriatal D-2-dopamine receptors in healthy subjects and antipsychotic drug-treated patients. Psychopharmacology 1997;133:396–404.

    PubMed  CAS  Google Scholar 

  108. Bigliani V, Mulligan RS, Acton PD, et al. In vivo occupancy of striatal and temporal cortical D2/D3 dopamine receptors by typical antipsychotic drugs. [123I]epidepride single photon emission tomography (SPET) study. Br J Psychiatry 1999;175:231–8.

    PubMed  CAS  Google Scholar 

  109. Olsson H, Farde L. Potentials and pitfalls using high affinity radioligands in pet and spet determinations on regional drug induced d2 receptor occupancy–a simulation study based on experimental data. Neuroimage 2001;14:936–45.

    PubMed  CAS  Google Scholar 

  110. Abi-Dargham A, Hwang DR, Huang Y, et al. Reliable quantification of both striatal and extrastriatal D2 receptors in humans with [18F]fallypride. J Nucl Med 2000;41:139p.

    Google Scholar 

  111. Kessler RM, Ansari MS, Riccardi P, et al. Occupancy of striatal and extrastriatal dopamine D2 receptors by clozapine and quetiapine. Neuropsychopharmacology 2006;31:1991–2001.

    PubMed  CAS  Google Scholar 

  112. Grunder G, Landvogt C, Vernaleken I, et al. The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia. Neuropsychopharmacology 2006;31:1027–35.

    PubMed  Google Scholar 

  113. Kessler RM, Ansari MS, Riccardi P, et al. Occupancy of striatal and extrastriatal dopamine D2/D3 receptors by olanzapine and haloperidol. Neuropsychopharmacology 2005;30:2283–9.

    PubMed  CAS  Google Scholar 

  114. Xiberas X, Martinot JL, Mallet L, et al. Extrastriatal and striatal D(2) dopamine receptor blockade with haloperidol or new antipsychotic drugs in patients with schizophrenia. Br J Psychiatry 2001;179:503–8.

    PubMed  CAS  Google Scholar 

  115. Talvik M, Nordstrom AL, Nyberg S, Olsson H, Halldin C, Farde L. No support for regional selectivity in clozapine-treated patients: a PET study with [(11)C]raclopride and [(11)C]FLB 457. Am J Psychiatry 2001;158:926–30.

    PubMed  CAS  Google Scholar 

  116. Kapur S, Mann JJ. Role of the dopaminergic system in depression. Biol Psychiatry 1992;32:1–17.

    PubMed  CAS  Google Scholar 

  117. Brown AS, Gershon S. Dopamine and depression. J Neural Transm Gen Sect 1993;91:75–109.

    PubMed  CAS  Google Scholar 

  118. Diehl DJ, Gershon S. The role of dopamine in mood disorders. Compr Psychiatry 1992;33:115–20.

    PubMed  CAS  Google Scholar 

  119. Willner P, Muscat R, Papp M. Chronic mild stress-induced anhedonia: a realistic animal model of depression. Neurosci Biobehav Rev 1992;16:525–34.

    PubMed  CAS  Google Scholar 

  120. D‘Haenen HA, Bossuyt A. Dopamine D2 receptors in depression measured with single photon emission computed tomography. Biol Psychiatry 1994;35:128–32.

    PubMed  Google Scholar 

  121. Shah PJ, Ogilvie AD, Goodwin GM, Ebmeier KP. Clinical and psychometric correlates of dopamine D2 binding in depression. Psychol Med 1997;27:1247–56.

    PubMed  CAS  Google Scholar 

  122. Ebert D, Feistel H, Loew T, Pirner A. Dopamine and depression – striatal dopamine D2 receptor SPECT before and after antidepressant therapy. Psychopharmacology (Berl) 1996;126:91–4.

    CAS  Google Scholar 

  123. Klimke A, Larisch R, Janz A, Vosberg H, Muller-Gartner HW, Gaebel W. Dopamine D2 receptor binding before and after treatment of major depression measured by [123I]IBZM SPECT. Psychiatry Res 1999;90:91–101.

    PubMed  CAS  Google Scholar 

  124. Parsey RV, Oquendo MA, Zea-Ponce Y, et al. Dopamine D(2) receptor availability and amphetamine-induced dopamine release in unipolar depression. Biol Psychiatry 2001;50:313–22.

    PubMed  CAS  Google Scholar 

  125. Meyer JH, McNeely HE, Sagrati S, et al. Elevated putamen D(2) receptor binding potential in major depression with motor retardation: an [11C]raclopride positron emission tomography study. Am J Psychiatry 2006;163:1594–602.

    PubMed  Google Scholar 

  126. Malison RT, Price LH, Berman R, et al. Reduced brain serotonin transporter availability in major depression as measured by [123I]-2 beta-carbomethoxy-3 beta-(4-iodophenyl)tropane and single photon emission computed tomography. Biol Psychiatry 1998;44:1090–8.

    PubMed  CAS  Google Scholar 

  127. Laasonen-Balk T, Kuikka J, Viinamaki H, Husso-Saastamoinen M, Lehtonen J, Tiihonen J. Striatal dopamine transporter density in major depression. Psychopharmacology (Berl) 1999;144:282–5.

    CAS  Google Scholar 

  128. Meyer JH, Kruger S, Wilson AA, et al. Lower dopamine transporter binding potential in striatum during depression. Neuroreport 2001;12:4121–5.

    PubMed  CAS  Google Scholar 

  129. Brunswick DJ, Amsterdam JD, Mozley PD, Newberg A. Greater availability of brain dopamine transporters in major depression shown by [99m Tc]TRODAT-1 SPECT imaging. Am J Psychiatry 2003;160:1836–41.

    PubMed  Google Scholar 

  130. Argyelan M, Szabo Z, Kanyo B, et al. Dopamine transporter availability in medication free and in bupropion treated depression: a 99mTc-TRODAT-1 SPECT study. J Affect Disord 2005;89:115–23.

    PubMed  CAS  Google Scholar 

  131. Martinot M, Bragulat V, Artiges E, et al. Decreased presynaptic dopamine function in the left caudate of depressed patients with affective flattening and psychomotor retardation. Am J Psychiatry 2001;158:314–6.

    PubMed  CAS  Google Scholar 

  132. Suhara T, Nakayama K, Inoue O, et al. D1 dopamine receptor binding in mood disorders measured by positron emission tomography. Psychopharmacology 1992;106:14–8.

    PubMed  CAS  Google Scholar 

  133. Wong WF, Pearlson GD, Tune LE, et al. Quantification of neuroreceptors in the living human brain: IV. Effect of aging and elevations of D2-like receptors in schizophrenia and bipolar illness. J Cerebral Blood Flow Metab 1997;17:331–42.

    CAS  Google Scholar 

  134. Gjedde A, Wong DF. Quantification of neuroreceptors in living human brain. V. Endogenous neurotransmitter inhibition of haloperidol binding in psychosis. J Cerebral Blood Flow Metab 2001;21:982–94.

    CAS  Google Scholar 

  135. Anand A, Verhoeff P, Seneca N, et al. Brain SPECT imaging of amphetamine-induced dopamine release in euthymic bipolar disorder patients. Am J Psychiatry 2000;157:1108–14.

    PubMed  CAS  Google Scholar 

  136. Dewar KM, Stravynski A. The quest for biological correlates of social phobia: An interim assessment. Acta Psychiatrica Scandinavica 2001;103:244–51.

    PubMed  CAS  Google Scholar 

  137. Bell CJ, Malizia AL, Nutt DJ. The neurobiology of social phobia. [Review]. Eur Arch Psychiatry Clin Neurosci 1999;249(Suppl 1):S11–S8.

    PubMed  Google Scholar 

  138. Nutt DJ, Bell CJ, Malizia AL. Brain mechanisms of social anxiety disorder. [Review]. J Clin Psychiatry 1998;59(Suppl 17):4–11.

    PubMed  Google Scholar 

  139. Tiihonen J, Kuikka J, Bergstrom K, Lepola U, Koponen H, Leinonen E. Dopamine reuptake site densities in patients with social phobia. Am J Psychiatry 1997;154:239–42.

    PubMed  CAS  Google Scholar 

  140. Schneier FR, Liebowitz MR, Abi-Dargham A, Zea-Ponce Y, Lin SH, Laruelle M. Low dopamine D(2) receptor binding potential in social phobia. Am J Psychiatry 2000;157:457–9.

    PubMed  CAS  Google Scholar 

  141. Schneier FR, Abi-Dargham A, Martinez D, et al. Dopamine transporters, D(2) receptors, and dopamine release in generalized social anxiety disorder. Depress Anxiety 2009:26(5):411–8.

    PubMed  CAS  Google Scholar 

  142. Farde L, Gustavsson JP, Jonsson E. D2 dopamine receptors and personality traits. Nature 1997;385:590.

    PubMed  CAS  Google Scholar 

  143. Breier A, Kestler L, Adler C, et al. Dopamine D2 receptor density and personal detachment in healthy subjects. Am J Psychiatry 1998;155:1440–2.

    PubMed  CAS  Google Scholar 

  144. Kestler LP, Malhotra AK, Finch C, Adler C, Breier A. The relation between dopamine D2 receptor density and personality: preliminary evidence from the NEO personality inventory-revised. Neuropsychiatry Neuropsychol Behav Neurol 2000;13:48–52.

    PubMed  CAS  Google Scholar 

  145. Laakso A, Vilkman H, Kajander J, et al. Prediction of detached personality in healthy subjects by low dopamine transporter binding. Am J Psychiatry 2000;157:290–2.

    PubMed  CAS  Google Scholar 

  146. Schneier FR, Liebowitz MR, Laruelle M. Detachment and Generalized Social Phobia. Am J Psychiatry 2001;158:327.

    PubMed  CAS  Google Scholar 

  147. Abi-Dargham A, Kegeles L, Zea-Ponce Y, et al. Striatal amphetamine-induced dopamine release in patients with schizotypal personality disorders studied by SPECT and [123I]IBZM. Biol Psych 2004;55(10):1001–1006.

    Google Scholar 

  148. Dougherty DD, Bonab AA, Spencer TJ, Rauch SL, Madras BK, Fischman AJ. Dopamine transporter density in patients with attention deficit hyperactivity disorder. Lancet 1999;354:2132–3.

    PubMed  CAS  Google Scholar 

  149. Dresel S, Krause J, Krause KH, et al. Attention deficit hyperactivity disorder: binding of [99mTc]TRODAT-1 to the dopamine transporter before and after methylphenidate treatment. Eur J Nucl Med 2000;27:1518–24.

    PubMed  CAS  Google Scholar 

  150. Larisch R, Sitte W, Antke C, et al. Striatal dopamine transporter density in drug naive patients with attention-deficit/hyperactivity disorder. Nucl Med Commun 2006;27:267–70.

    PubMed  Google Scholar 

  151. Spencer TJ, Biederman J, Madras BK, et al. Further evidence of dopamine transporter dysregulation in ADHD: a controlled PET imaging study using altropane. Biol Psychiatry 2007;62(9):1059–1061.

    Google Scholar 

  152. Cheon KA, Ryu YH, Kim YK, Namkoong K, Kim CH, Lee JD. Dopamine transporter density in the basal ganglia assessed with [123I]IPT SPET in children with attention deficit hyperactivity disorder. Eur J Nucl Med Mol Imaging 2003;30:306–11.

    PubMed  CAS  Google Scholar 

  153. Jucaite A, Fernell E, Halldin C, Forssberg H, Farde L. Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry 2005;57:229–38.

    PubMed  CAS  Google Scholar 

  154. van Dyck CH, Quinlan DM, Cretella LM, et al. Unaltered dopamine transporter availability in adult attention deficit hyperactivity disorder. Am J Psychiatry 2002;159:309–12.

    PubMed  Google Scholar 

  155. Volkow ND, Wang GJ, Newcorn J, et al. Brain dopamine transporter levels in treatment and drug naive adults with ADHD. Neuroimage 2007;34:1182–90.

    PubMed  Google Scholar 

  156. Volkow ND, Wang GJ, Fowler JS, et al. Therapeutic Doses of Oral Methylphenidate Significantly Increase Extracellular Dopamine in the Human Brain. J Neurosci 2001;21:RC121.

    PubMed  CAS  Google Scholar 

  157. Wise R, Romprè P. Brain dopamine and reward. Ann Rev Psychol 1989;40:191–225.

    CAS  Google Scholar 

  158. Kuhar MJ, Ritz MC, Boja JW. The dopamine hypothesis of the reinforcing properties of cocaine. Trends Neurosci 1991;14:299–302.

    PubMed  CAS  Google Scholar 

  159. Di Chiara G. The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 1995;38:95–137.

    PubMed  CAS  Google Scholar 

  160. Nestler EJ, Berhow MT, Brodkin ES. Molecular mechanisms of drug addiction: adaptations in signal transduction pathways. Mol Psychiatry 1996;1:190–9.

    PubMed  CAS  Google Scholar 

  161. Self DW, Nestler EJ. Molecular mechanisms of drug reinforcement and addiction. Annu Rev Neurosci 1995;18:463–95.

    PubMed  CAS  Google Scholar 

  162. Koob GF. Drugs of abuse: anatomy, pharmacology and function of reward pathways. Trends Pharmacol Sci 1992;13:177–84.

    PubMed  CAS  Google Scholar 

  163. Volkow ND, Fowler JS, Wolf AP, et al. Effects of chronic cocaine abuse on postsynaptic dopamine receptors. Am J Psychiatry 1990;147:719–24.

    PubMed  CAS  Google Scholar 

  164. Volkow ND, Fowler JS, Wang GJ, et al. Decreased dopamine D2 receptor availability is associated with reduced frontal metabolism in cocaine abusers. Synapse 1993;14:169–77.

    PubMed  CAS  Google Scholar 

  165. Volkow ND, Wang GJ, Fowler JS, et al. Cocaine uptake is decreased in the brain of detoxified cocaine abusers. Neuropsychopharmacology 1996;14:159–68.

    PubMed  CAS  Google Scholar 

  166. Volkow ND, Wang GJ, Fowler JS, et al. Decreased striatal dopaminergic responsiveness in detoxified cocaine-dependent subjects. Nature 1997;386:830–3.

    PubMed  CAS  Google Scholar 

  167. Martinez D, Broft A, Foltin RW, et al. Cocaine dependence and D2 receptor availability in the functional subdivisions of the striatum: relationship with cocaine-seeking behavior. Neuropsychopharmacology 2004;29:1190–202.

    PubMed  CAS  Google Scholar 

  168. Wang GJ, Volkow ND, Fowler JS, et al. Dopamine D2 receptor availability in opiate-dependent subjects before and after naloxone-precipitated withdrawal. Neuro-psychopharmacology 1997;16:174–82.

    PubMed  CAS  Google Scholar 

  169. Volkow ND, Chang L, Wang GJ, et al. Low level of brain dopamine D2 receptors in methamphetamine abusers: association with metabolism in the orbitofrontal cortex. Am J Psychiatry 2001;158:2015–21.

    PubMed  CAS  Google Scholar 

  170. Hietala J, West C, Syvälahti E, et al. Striatal D2 dopamine receptor binding characteristics in vivo in patients with alcohol dependence. Psychopharmacology 1994;116:285–90.

    PubMed  CAS  Google Scholar 

  171. Volkow ND, Wang JG, Fowler JS, et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. J Nucl Med 1996;37:33p.

    Google Scholar 

  172. Martinez D, Gil R, Slifstein M, et al. Alcohol dependence is associated with blunted dopamine transmission in the ventral striatum. Biol Psychiatry 2005;58:779–86.

    PubMed  CAS  Google Scholar 

  173. Volkow ND, Wang GJ, Fowler JS, et al. Prediction of reinforcing responses to psychostimulants in humans by brain dopamine D2 receptor levels. Am J Psychiatry 1999;156:1440–3.

    PubMed  CAS  Google Scholar 

  174. Volkow ND, Wang GJ, Fowler JS, et al. Brain DA D2 receptors predict reinforcing effects of stimulants in humans: replication study. Synapse 2002;46:79–82.

    PubMed  CAS  Google Scholar 

  175. Morgan D, Grant KA, Gage HD, et al. Social dominance in monkeys: dopamine D2 receptors and cocaine self-administration. Nat Neurosci 2002;5:169–74.

    PubMed  CAS  Google Scholar 

  176. Laruelle M, Abi-Dargham A, van Dyck CH, et al. SPECT imaging of striatal dopamine release after amphetamine challenge. J Nucl Med 1995;36:1182–90.

    PubMed  CAS  Google Scholar 

  177. Martinez D, Slifstein M, Broft A, et al. Imaging human mesolimbic dopamine transmission with positron emission tomography. Part II: amphetamine-induced dopamine release in the functional subdivisions of the striatum. J Cereb Blood Flow Metab 2003;23:285–300.

    PubMed  CAS  Google Scholar 

  178. Abi-Dargham A, Kegeles LS, Martinez D, Innis RB, Laruelle M. Dopamine mediation of positive reinforcing effects of amphetamine in stimulant naive healthy volunteers: results from a large cohort. Eur Neuropsychopharmacol 2003;13:459–68.

    PubMed  CAS  Google Scholar 

  179. Volkow ND, Wang GJ, Fowler JS, et al. Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. J Pharmacol Exp Ther 1999;291:409–15.

    PubMed  CAS  Google Scholar 

  180. Drevets WC, Gautier C, Price JC, et al. Amphetamine-induced dopamine release in human ventral striatum correlates with euphoria. Biol Psychiatry 2001;49:81–96.

    PubMed  CAS  Google Scholar 

  181. Martinez D, Mawlawi O, Simpson N, et al. Comparison of amphetamine-induced endogenous dopamine release in striatal substructures in humans using PET. Soc Neurosc Abst 2000;26:1327.

    Google Scholar 

  182. Oswald LM, Wong DF, McCaul M, et al. Relationships among ventral striatal dopamine release, cortisol secretion, and subjective responses to amphetamine. Neuropsychopharmacology 2005;30:821–32.

    PubMed  CAS  Google Scholar 

  183. Di Chiara G, Imperato A. Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 1988;85:5274–8.

    PubMed  CAS  Google Scholar 

  184. Le Moal M, Simon H. Mesocorticolimbic dopamine network: functional and regulatory role. Physiol Rev 1991;71:155–324.

    PubMed  Google Scholar 

  185. Koepp MJ, Gunn RN, Lawrence AD, et al. Evidence for striatal dopamine release during a video game. Nature 1998;393:266–8.

    PubMed  CAS  Google Scholar 

  186. Malison RT, Mechanic KY, Klummp H, et al. Reduced amphetamine-stimulated dopamine release in cocaine addicts as measured by [123I]IBZM SPECT. J Nucl Med 1999;40:110p.

    Google Scholar 

  187. Wu JC, Bell K, Najafi A, et al. Decreasing striatal 6-FDOPA uptake with increasing duration of cocaine withdrawal. Neuropsychopharmacology 1997;17:402–9.

    PubMed  CAS  Google Scholar 

  188. Volkow ND, Wang GJ, Fowler JS, et al. Cocaine uptake is decreased in the brain of detoxified cocaine abusers. Neuropsychopharmacology 1996;14:159–68.

    PubMed  CAS  Google Scholar 

  189. Malison RT, Best SE, van Dyck CH, et al. Elevated striatal dopamine transporters during acute cocaine abstinence as measured by [123I] beta-CIT SPECT. Am J Psychiatry 1998;155:832–4.

    PubMed  CAS  Google Scholar 

  190. Volkow ND, Wang GJ, Fischman MW, et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 1997;386:827–30.

    PubMed  CAS  Google Scholar 

  191. Malison RT, McCance E, Carpenter LL, et al. [123I]beta-CIT SPECT imaging of dopamine transporter availability after mazindol administration in human cocaine addicts. Psychopharmacology (Berl) 1998;137:321–5.

    CAS  Google Scholar 

  192. Volkow N, Wang G, Fischman M, et al. Relationship between subjective effects of cocaine and dopamine transporter occupancy. Nature 1997;386:827–30.

    PubMed  CAS  Google Scholar 

  193. Volkow ND, Ding YS, Fowler JS, et al. Is methylphenidate like cocaine? Studies on their pharmacokinetics and distribution in the human brain. Arch Gen Psychiatry 1995;52:456–63.

    PubMed  CAS  Google Scholar 

  194. Volkow ND, Wang GJ, Fowler JS, et al. The slow and long-lasting blockade of dopamine transporters in human brain induced by the new antidepressant drug radafaxine predict poor reinforcing effects. Biol Psychiatry 2005;57:640–6.

    PubMed  CAS  Google Scholar 

  195. Wong DF, Kuwabara H, Schretlen DJ, et al. Increased occupancy of dopamine receptors in human striatum during cue-elicited cocaine craving. Neuropsychopharmacology 2006;31:2716–27.

    PubMed  CAS  Google Scholar 

  196. Volkow ND, Wang GJ, Telang F, et al. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. J Neurosci 2006;26:6583–8.

    PubMed  CAS  Google Scholar 

  197. McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA. Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 1998;18:8417–22.

    PubMed  CAS  Google Scholar 

  198. Volkow ND, Wang G, Fowler JS, et al. Therapeutic doses of oral methylphenidate significantly increase extracellular dopamine in the human brain. J Neurosci 2001;21:RC121.

    PubMed  CAS  Google Scholar 

  199. Wilson JM, Kalasinsky KS, Levey AI, et al. Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 1996;2:699–703.

    PubMed  CAS  Google Scholar 

  200. Wilson JM, Levey AI, Rajput A, et al. Differential changes in neurochemical markers of striatal dopamine nerve terminals in idiopathic Parkinson’s disease. Neurology 1996;47:718–26.

    PubMed  CAS  Google Scholar 

  201. Seibyl JP, Marek K, Sheff K, et al. Test/retest reproducibility of iodine-123-betaCIT SPECT brain measurement of dopamine transporters in Parkinson’s patients. J Nucl Med 1997;38:1453–9.

    PubMed  CAS  Google Scholar 

  202. Guttman M, Burkholder J, Kish SJ, et al. [11C]RTI-32 PET studies of the dopamine transporter in early dopa-naive Parkinson’s disease: implications for the symptomatic threshold. Neurology 1997;48:1578–83.

    PubMed  CAS  Google Scholar 

  203. Villemagne V, Yuan J, Wong DF, et al. Brain dopamine neurotoxicity in baboons treated with doses of methamphetamine comparable to those recreationally abused by humans: evidence from [11C]WIN-35,428 positron emission tomography studies and direct in vitro determinations. J Neurosci 1998;18:419–27.

    PubMed  CAS  Google Scholar 

  204. Melega WP, Lacan G, Harvey DC, Huang SC, Phelps ME. Dizocilpine and reduced body temperature do not prevent methamphetamine- induced neurotoxicity in the vervet monkey: [11C]WIN 35,428 – positron emission tomography studies. Neurosci Lett 1998;258:17–20.

    PubMed  CAS  Google Scholar 

  205. Harvey DC, Lacan G, Tanious SP, Melega WP. Recovery from methamphetamine induced long-term nigrostriatal dopaminergic deficits without substantia nigra cell loss. Brain Res 2000;871:259–70.

    PubMed  CAS  Google Scholar 

  206. Brody AL, Mandelkern MA, London ED, et al. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch Gen Psychiatry 2006;63:907–15.

    PubMed  CAS  Google Scholar 

  207. Kassiou M, Eberl S, Meikle SR, et al. In vivo imaging of nicotinic receptor upregulation following chronic (-)-nicotine treatment in baboon using SPECT. Nucl Med Biol 2001;28:165–75.

    PubMed  CAS  Google Scholar 

  208. Marenco S, Carson RE, Berman KF, Herscovitch P, Weinberger DR. Nicotine-induced dopamine release in primates measured with [11C]raclopride PET. Neuropsychopharmacology 2004;29:259–68.

    PubMed  CAS  Google Scholar 

  209. Barrett SP, Boileau I, Okker J, Pihl RO, Dagher A. The hedonic response to cigarette smoking is proportional to dopamine release in the human striatum as measured by positron emission tomography and [11C]raclopride. Synapse 2004;54:65–71.

    PubMed  CAS  Google Scholar 

  210. Brody AL, Olmstead RE, London ED, et al. Smoking-induced ventral striatum dopamine release. Am J Psychiatry 2004;161:1211–8.

    PubMed  Google Scholar 

  211. Brody AL, Mandelkern MA, Olmstead RE, et al. Gene variants of brain dopamine pathways and smoking-induced dopamine release in the ventral caudate/nucleus accumbens. Arch Gen Psychiatry 2006;63:808–16.

    PubMed  CAS  Google Scholar 

  212. Montgomery AJ, Lingford-Hughes AR, Egerton A, Nutt DJ, Grasby PM. The effect of nicotine on striatal dopamine release in man: a [(11)C]raclopride PET study. Synapse 2007;61:637–45.

    PubMed  CAS  Google Scholar 

  213. Volkow ND, Wang GJ, Fowler JS, et al. Reinforcing effects of psychostimulants in humans are associated with increases in brain dopamine and occupancy of D(2) receptors. J Pharmacol Exp Ther 1999;291:409–15.

    PubMed  CAS  Google Scholar 

  214. Fowler JS, Volkow ND, Wang GJ, et al. Inhibition of monoamine oxidase B in the brains of smokers. Nature 1996;379:733–6.

    PubMed  CAS  Google Scholar 

  215. Fowler JS, Volkow ND, Wang GJ, et al. Brain monoamine oxidase A inhibition in cigarette smokers. Proc Natl Acad Sci USA 1996;93:14065–9.

    PubMed  CAS  Google Scholar 

  216. Fowler JS, Volkow ND, Wang GJ, et al. Neuropharmacological actions of cigarette smoke: brain monoamine oxidase B (MAO B) inhibition. J Addict Dis 1998;17:23–34.

    PubMed  CAS  Google Scholar 

  217. Fowler JS, Wang GJ, Volkow ND, et al. Maintenance of brain monoamine oxidase B inhibition in smokers after overnight cigarette abstinence. Am J Psychiatry 2000;157:1864–6.

    PubMed  CAS  Google Scholar 

  218. Logan J, Fowler JS, Volkow ND, Wang GJ, MacGregor RR, Shea C. Reproducibility of repeated measures of deuterium substituted [11C]L- deprenyl ([11C]L-deprenyl-D2) binding in the human brain. Nucl Med Biol 2000;27:43–9.

    PubMed  CAS  Google Scholar 

  219. Salokangas RK, Vilkman H, Ilonen T, et al. High levels of dopamine activity in the basal ganglia of cigarette smokers. Am J Psychiatry 2000;157:632–4.

    PubMed  CAS  Google Scholar 

  220. Dagher A, Bleicher C, Aston JA, Gunn RN, Clarke PB, Cumming P. Reduced dopamine D1 receptor binding in the ventral striatum of cigarette smokers. Synapse 2001;42:48–53.

    PubMed  CAS  Google Scholar 

  221. Staley JK, Krishnan-Sarin S, Zoghbi S, et al. Sex differences in [123I]beta-CIT SPECT measures of dopamine and serotonin transporter availability in healthy smokers and nonsmokers. Synapse 2001;41:275–84.

    PubMed  CAS  Google Scholar 

  222. Yoder KK, Constantinescu CC, Kareken DA, et al. Heterogeneous effects of alcohol on dopamine release in the striatum: a PET study. Alcohol Clin Exp Res 2007;31:965–73.

    PubMed  CAS  Google Scholar 

  223. Volkow ND, Wang GJ, Fowler JS, et al. Decreases in dopamine receptors but not in dopamine transporters in alcoholics. Alcohol Clin Exp Res 1996;20:1594–8.

    PubMed  CAS  Google Scholar 

  224. Heinz A, Siessmeier T, Wrase J, et al. Correlation between dopamine D(2) receptors in the ventral striatum and central processing of alcohol cues and craving. Am J Psychiatry 2004;161:1783–9.

    PubMed  Google Scholar 

  225. Volkow ND, Wang GJ, Maynard L, et al. Effects of alcohol detoxification on dopamine D2 receptors in alcoholics: a preliminary study. Psychiatry Res 2002;116:163–72.

    PubMed  CAS  Google Scholar 

  226. Tabakoff B, Hoffman P. Development of functional dependence on ethanol in dopaminergic systems. J Pharmacol Exp Ther 1979;208:216–22.

    PubMed  CAS  Google Scholar 

  227. Muller P, Britton R, Seman P. The effects of long term ethanol on brain receptors for dopamine, acetylcholine, serotonin and noradrenaline. Eur J Pharmacol 1980;65:31–7.

    PubMed  CAS  Google Scholar 

  228. Rabin RA, Wolfe BB, Dibner MD, Zahniser NR, Melchior C, Molinoff PB. Effects of ethanol administration and withdrawal on neurotransmitter receptor systems in C57 mice. J Pharmacol Exp Ther 1983;213:491–6.

    Google Scholar 

  229. Fuchs V, Coper H, Rommelspacher H. The effects of ethanol and haloperidol on dopamine receptors (D2) density. Neuropharmacology 1987;26:1231–3.

    PubMed  CAS  Google Scholar 

  230. Hietala J, Salonen I, Lappalainen J, Syvälahti E. Ethanol administration does not alter dopamine D1 and D2 receptor characteristic in rat brain. Neurosci Lett 1990;108:289–94.

    PubMed  CAS  Google Scholar 

  231. Lai H, Carino MA, Hrita A. Effects of ethanol on central dopamine function. Life Sci 1980;27:299–304.

    PubMed  CAS  Google Scholar 

  232. Hruska RE. Effects of ethanol administration on striatal D1 and D2 receptors. J Neurochem 1988;50:1929–33.

    PubMed  CAS  Google Scholar 

  233. Lucchi L, Moresco RM, Govoni S, Trabucchi M. Effect of chronic ethanol treatment on dopamine receptor subtypes in rat striatum. Brain Res 1988;449:347–51.

    PubMed  CAS  Google Scholar 

  234. Hamdi A, Prasad C. Bidirectional changes in striatal D2-dopamine receptor density during chronic ethanol intake. Alcohol 1993;93:203–6.

    Google Scholar 

  235. Heinz A, Siessmeier T, Wrase J, et al. Correlation of alcohol craving with striatal dopamine synthesis capacity and D2/3 receptor availability: a combined [18F]DOPA and [18F]DMFP PET study in detoxified alcoholic patients. Am J Psychiatry 2005;162:1515–20.

    PubMed  Google Scholar 

  236. Tiihonen J, Kuikka J, Bergström K, et al. Altered striatal dopamine re-uptake site densities in habitually violent and non-violent alcoholics. Nat Med 1995;1:654–7.

    PubMed  CAS  Google Scholar 

  237. Laine TP, Ahonen A, Rasanen P, Tiihonen J. Dopamine transporter availability and depressive symptoms during alcohol withdrawal [In Process Citation]. Psychiatry Res 1999;90:153–7.

    PubMed  CAS  Google Scholar 

  238. Heinz A, Knable MB, Wolf SS, et al. Tourette’s syndrome: [I-123]beta-CIT SPECT correlates of vocal tic severity. Neurology 1998;51:1069–74.

    PubMed  CAS  Google Scholar 

  239. Laine TP, Ahonen A, Torniainen P, et al. Dopamine transporters increase in human brain after alcohol withdrawal. Mol Psychiatry 1999;4:189–91, 104–5.

    PubMed  Google Scholar 

  240. Munro CA, McCaul ME, Oswald LM, et al. Striatal dopamine release and family history of alcoholism. Alcohol Clin Exp Res 2006;30:1143–51.

    PubMed  CAS  Google Scholar 

  241. Wagner HW, Jr. Highlights 2001 lecture. J Nuc Med 2001;42:12 N–30 N.

    Google Scholar 

  242. Slifstein M. Revisiting an old issue: the discrepancy between tissue ratio-derived binding parameters and kinetic modeling-derived parameters after a bolus of the serotonin transporter radioligand 123I-ADAM. J Nucl Med 2008;49:176–8.

    PubMed  Google Scholar 

  243. Laruelle M. The role of model-based methods in the development of single scan techniques. Nucl Med Biol 2000;27:637–42.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anissa Abi-Dargham .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Abi-Dargham, A., Laruelle, M. (2010). In Vivo Imaging of Dopamine Receptors. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_15

Download citation

Publish with us

Policies and ethics