Skip to main content

Dopamine Modulation of the Prefrontal Cortex and Cognitive Function

Part of the The Receptors book series (REC)

Abstract

This chapter will review the basic neurobiology of the dopamine (DA) system in the prefrontal cortex (PFC) and its functional role in cognition. It will consider the properties of DA release and of DA receptors in the PFC and how they may contribute to the overall function of the mesocortical DA system. DA release in the PFC occurs in response to a variety of events that can be appetitive or aversive in nature and this release may prepare the PFC networks to deal with environmental or cognitive challenges. The amount of DA released may selectively affect the different subtypes of receptors on PFC neurons, which in turn have different modulatory actions on PFC networks. It has been proposed that the PFC DA system and especially D1 receptors are tuned according to an inverted-U dose–response function such that too much or too little DA or D1 receptor activation is detrimental to cognitive performance. At optimal levels, DA acting via D1 receptors may increase the signal-to-noise ratio to improve the efficiency of active PFC networks, while levels higher or lower levels may reduce the overall signal to noise but allow PFC networks to deal with information in a more flexible manner. The key to understanding the PFC DA system may lie in understanding how a balance is achieved to promote optimal modulation across a variety of situations.

Keywords

  • Prefrontal cortex
  • Working memory
  • Response flexibility
  • Inverted-U
  • Computational models

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-333-6_14
  • Chapter length: 26 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-333-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

References

  1. Fallon JH, Loughlin SE. Monoamine innervation of the forebrain: collateralization. Brain Res Bull 1982;9(1–6):295–307.

    CAS  CrossRef  PubMed  Google Scholar 

  2. Lindvall O, Bjorklund A, Skagerberg G. Selective histochemical demonstration of dopamine terminal systems in rat di- and telencephalon: new evidence for dopaminergic innervation of hypothalamic neurosecretory nuclei. Brain Res 1984;306(1–2):19–30.

    CAS  CrossRef  PubMed  Google Scholar 

  3. Williams SM, Goldman-Rakic PS. Widespread origin of the primate mesofrontal dopamine system. Cereb Cortex 1998;8(4):321–45.

    CAS  CrossRef  PubMed  Google Scholar 

  4. Dahlstrom A, Fuxe K. Localization of monoamines in the lower brain stem. Experientia 1964;20(7):398–9.

    CAS  CrossRef  PubMed  Google Scholar 

  5. Berger B, Gaspar P, Verney C. Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 1991;14(1):21–7.

    CAS  CrossRef  PubMed  Google Scholar 

  6. Porrino LJ, Goldman-Rakic PS. Brainstem innervation of prefrontal and anterior cingulate cortex in the rhesus monkey revealed by retrograde transport of HRP. J Comp Neurol 1982;205(1):63–76.

    CAS  CrossRef  PubMed  Google Scholar 

  7. Grace AA. Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 1991;41(1):1–24.

    CAS  CrossRef  PubMed  Google Scholar 

  8. Grace AA. The tonic/phasic model of dopamine system regulation and its implications for understanding alcohol and psychostimulant craving. Addiction 2000;95(Suppl 2):S119–28.

    PubMed  Google Scholar 

  9. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: burst firing. J Neurosci 1984;4(11):2877–90.

    CAS  PubMed  Google Scholar 

  10. Grace AA, Bunney BS. The control of firing pattern in nigral dopamine neurons: single spike firing. J Neurosci 1984;4(11):2866–76.

    CAS  PubMed  Google Scholar 

  11. Schultz W. Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 1997;7(2):191–7.

    CAS  CrossRef  PubMed  Google Scholar 

  12. Del Arco A, Mora F. Endogenous dopamine potentiates the effects of glutamate on extracellular GABA in the prefrontal cortex of the freely moving rat. Brain Res Bull 2000;53(3):339–45.

    CrossRef  PubMed  Google Scholar 

  13. Del Arco A, Segovia G, Garrido P, et al. Prefrontal cortex and enviromental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats. Behav Brain Res 2007;176(2):267–73.

    CrossRef  PubMed  CAS  Google Scholar 

  14. Borland LM, Shi G, Yang H, Michael AC. Voltammetric study of extracellular dopamine near microdialysis probes acutely implanted in the striatum of the anesthetized rat. J Neurosci Methods 2005;146(2):149–58.

    CAS  CrossRef  PubMed  Google Scholar 

  15. Chen NH, Lai YJ, Pan WH. Effects of different perfusion medium on the extracellular basal concentration of dopamine in striatum and medial prefrontal cortex: a zero-net flux microdialysis study. Neurosci Lett 1997;225(3):197–200.

    CAS  CrossRef  PubMed  Google Scholar 

  16. Cragg SJ, Nicholson C, Kume-Kick J, Tao L, Rice ME. Dopamine-mediated volume transmission in midbrain is regulated by distinct extracellular geometry and uptake. J Neurophysiol 2001;85(4):1761–71.

    CAS  PubMed  Google Scholar 

  17. Cragg SJ, Rice ME. DAncing past the DAT at a DA synapse. Trends Neurosci 2004;27(5):270–7.

    CAS  CrossRef  PubMed  Google Scholar 

  18. Redgrave P, Prescott TJ, Gurney K. Is the short-latency dopamine response too short to signal reward error? Trends Neurosci 1999;22(4):146–51.

    CAS  CrossRef  PubMed  Google Scholar 

  19. Ungless MA, Magill PJ, Bolam JP. Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 2004;303(5666):2040–2.

    CAS  CrossRef  PubMed  Google Scholar 

  20. Garris PA, Collins LB, Jones SR, Wightman RM. Evoked extracellular dopamine in vivo in the medial prefrontal cortex. J Neurochem 1993;61(2):637–47.

    CAS  CrossRef  PubMed  Google Scholar 

  21. Doherty MD, Gratton A. Medial prefrontal cortical D1 receptor modulation of the meso-accumbens dopamine response to stress: an electrochemical study in freely-behaving rats. Brain Res 1996;715(1–2):86–97.

    CAS  CrossRef  PubMed  Google Scholar 

  22. Lavin A, Nogueira L, Lapish CC, Wightman RM, Phillips PE, Seamans JK. Mesocortical dopamine neurons operate in distinct temporal domains using multimodal signaling. J Neurosci 2005;25(20):5013–23.

    CAS  CrossRef  PubMed  Google Scholar 

  23. Zhang TY, Chretien P, Meaney MJ, Gratton A. Influence of naturally occurring variations in maternal care on prepulse inhibition of acoustic startle and the medial prefrontal cortical dopamine response to stress in adult rats. J Neurosci 2005;25(6):1493–502.

    CAS  CrossRef  PubMed  Google Scholar 

  24. Brake WG, Sullivan RM, Gratton A. Perinatal distress leads to lateralized medial prefrontal cortical dopamine hypofunction in adult rats. J Neurosci 2000;20(14):5538–43.

    CAS  PubMed  Google Scholar 

  25. Thierry AM, Tassin JP, Blanc G, Glowinski J. Selective activation of mesocortical DA system by stress. Nature 1976;263(5574):242–4.

    CAS  CrossRef  PubMed  Google Scholar 

  26. Fadda F, Argiolas A, Melis MR, Tissari AH, Onali PL, Gessa GL. Stress-induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in n. accumbens: reversal by diazepam. Life Sci 1978;23(22):2219–24.

    CAS  CrossRef  PubMed  Google Scholar 

  27. Claustre Y, Rivy JP, Dennis T, Scatton B. Pharmacological studies on stress-induced increase in frontal cortical dopamine metabolism in the rat. J Pharmacol Exp Ther 1986;238(2):693–700.

    CAS  PubMed  Google Scholar 

  28. Taber MT, Fibiger HC. Activation of the mesocortical dopamine system by feeding: lack of a selective response to stress. Neuroscience 1997;77(2):295–8.

    CAS  CrossRef  PubMed  Google Scholar 

  29. Giorgi O, Lecca D, Piras G, Driscoll P, Corda MG. Dissociation between mesocortical dopamine release and fear-related behaviours in two psychogenetically selected lines of rats that differ in coping strategies to aversive conditions. Eur J Neurosci 2003;17(12):2716–26.

    CAS  CrossRef  PubMed  Google Scholar 

  30. Feenstra MG, Teske G, Botterblom MH, De Bruin JP. Dopamine and noradrenaline release in the prefrontal cortex of rats during classical aversive and appetitive conditioning to a contextual stimulus: interference by novelty effects. Neurosci Lett 1999;272(3):179–82.

    CAS  CrossRef  PubMed  Google Scholar 

  31. Feenstra MG, Vogel M, Botterblom MH, Joosten RN, de Bruin JP. Dopamine and noradrenaline efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue. Eur J Neurosci 2001;13(5):1051–4.

    CAS  CrossRef  PubMed  Google Scholar 

  32. Yoshioka M, Matsumoto M, Togashi H, Saito H. Effect of conditioned fear stress on dopamine release in the rat prefrontal cortex. Neurosci Lett 1996;209(3):201–3.

    CAS  CrossRef  PubMed  Google Scholar 

  33. Wilkinson LS, Humby T, Killcross AS, Torres EM, Everitt BJ, Robbins TW. Dissociations in dopamine release in medial prefrontal cortex and ventral striatum during the acquisition and extinction of classical aversive conditioning in the rat. Eur J Neurosci 1998;10(3):1019–26.

    CAS  CrossRef  PubMed  Google Scholar 

  34. Feenstra MG, Botterblom MH. Rapid sampling of extracellular dopamine in the rat prefrontal cortex during food consumption, handling and exposure to novelty. Brain Res 1996;742(1–2):17–24.

    CAS  CrossRef  PubMed  Google Scholar 

  35. Murphy BL, Arnsten AF, Goldman-Rakic PS, Roth RH. Increased dopamine turnover in the prefrontal cortex impairs spatial working memory performance in rats and monkeys. Proc Natl Acad Sci USA 1996;93(3):1325–9.

    CAS  CrossRef  PubMed  Google Scholar 

  36. Murphy BL, Arnsten AF, Jentsch JD, Roth RH. Dopamine and spatial working memory in rats and monkeys: pharmacological reversal of stress-induced impairment. J Neurosci 1996;16(23):7768–75.

    CAS  PubMed  Google Scholar 

  37. Tidey JW, Miczek KA. Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 1996;721(1–2):140–9.

    CAS  CrossRef  PubMed  Google Scholar 

  38. Cuadra G, Zurita A, Macedo CE, Molina VA, Brandao ML. Electrical stimulation of the midbrain tectum enhances dopamine release in the frontal cortex. Brain Res Bull 2000;52(5):413–8.

    CAS  CrossRef  PubMed  Google Scholar 

  39. Sullivan RM, Gratton A. Relationships between stress-induced increases in medial prefrontal cortical dopamine and plasma corticosterone levels in rats: role of cerebral laterality. Neuroscience 1998;83(1):81–91.

    CAS  CrossRef  PubMed  Google Scholar 

  40. D‘Angio M, Serrano A, Driscoll P, Scatton B. Stressful environmental stimuli increase extracellular DOPAC levels in the prefrontal cortex of hypoemotional (Roman high-avoidance) but not hyperemotional (Roman low-avoidance) rats. An in vivo voltammetric study. Brain Res 1988;451(1–2):237–47.

    CrossRef  PubMed  Google Scholar 

  41. Beaufour CC, Le Bihan C, Hamon M, Thiebot M. Extracellular dopamine in the rat prefrontal cortex during reward-, punishment- and novelty-associated behaviour. Effects of diazepam. Pharmacol Biochem Behav 2001;69(1–2):133–42.

    CAS  CrossRef  PubMed  Google Scholar 

  42. Driscoll P, Escorihuela RM, Fernandez-Teruel A, et al. Genetic selection and differential stress responses. The Roman lines/strains of rats. Ann N Y Acad Sci 1998;851:501–10.

    CAS  CrossRef  PubMed  Google Scholar 

  43. Dazzi L, Serra M, Spiga F, Pisu MG, Jentsch JD, Biggio G. Prevention of the stress-induced increase in frontal cortical dopamine efflux of freely moving rats by long-term treatment with antidepressant drugs. Eur Neuropsychopharmacol 2001;11(5):343–9.

    CAS  CrossRef  PubMed  Google Scholar 

  44. D‘Angio M, Scatton B. Feeding or exposure to food odors increases extracellular DOPAC levels (as measured by in vivo voltammetry) in the prefrontal cortex of food-deprived rats. Neurosci Lett 1989;96(2):223–8.

    CrossRef  PubMed  Google Scholar 

  45. Bassareo V, De Luca MA, Di Chiara G. Differential expression of motivational stimulus properties by dopamine in nucleus accumbens shell versus core and prefrontal cortex. J Neurosci 2002;22(11):4709–19.

    CAS  PubMed  Google Scholar 

  46. Bassareo V, Di Chiara G. Differential influence of associative and nonassociative learning mechanisms on the responsiveness of prefrontal and accumbal dopamine transmission to food stimuli in rats fed ad libitum. J Neurosci 1997;17(2):851–61.

    CAS  PubMed  Google Scholar 

  47. Richardson NR, Gratton A. Changes in medial prefrontal cortical dopamine levels associated with response-contingent food reward: an electrochemical study in rat. J Neurosci 1998;18(21):9130–8.

    CAS  PubMed  Google Scholar 

  48. Salamone JD, Correa M, Farrar A, Mingote SM. Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits. Psychopharmacology (Berl) 2007;191(3):461–82.

    CAS  CrossRef  Google Scholar 

  49. Watanabe M, Kodama T, Hikosaka K. Increase of extracellular dopamine in primate prefrontal cortex during a working memory task. J Neurophysiol 1997;78(5):2795–8.

    CAS  PubMed  Google Scholar 

  50. Rossetti ZL, Carboni S. Noradrenaline and dopamine elevations in the rat prefrontal cortex in spatial working memory. J Neurosci 2005;25(9):2322–9.

    CAS  CrossRef  PubMed  Google Scholar 

  51. Phillips AG, Ahn S, Floresco SB. Magnitude of dopamine release in medial prefrontal cortex predicts accuracy of memory on a delayed response task. J Neurosci 2004;24(2):547–53.

    CAS  CrossRef  PubMed  Google Scholar 

  52. van der Meulen JA, Joosten RN, de Bruin JP, Feenstra MG. Dopamine and noradrenaline efflux in the medial prefrontal cortex during serial reversals and extinction of instrumental goal-directed behavior. Cereb Cortex 2007;17(6):1444–53.

    CrossRef  PubMed  Google Scholar 

  53. Stefani MR, Moghaddam B. Rule learning and reward contingency are associated with dissociable patterns of dopamine activation in the rat prefrontal cortex, nucleus accumbens, and dorsal striatum. J Neurosci 2006;26(34):8810–8.

    CAS  CrossRef  PubMed  Google Scholar 

  54. Chudasama Y, Robbins TW. Dopaminergic modulation of visual attention and working memory in the rodent prefrontal cortex. Neuropsychopharmacology 2004;29(9):1628–36.

    CAS  CrossRef  PubMed  Google Scholar 

  55. Dalley JW, Theobald DE, Eagle DM, Passetti F, Robbins TW. Deficits in impulse control associated with tonically-elevated serotonergic function in rat prefrontal cortex. Neuropsychopharmacology 2002;26(6):716–28.

    CAS  CrossRef  PubMed  Google Scholar 

  56. Winstanley CA, Theobald DE, Dalley JW, Cardinal RN, Robbins TW. Double dissociation between serotonergic and dopaminergic modulation of medial prefrontal and orbitofrontal cortex during a test of impulsive choice. Cereb Cortex 2006;16(1):106–14.

    CrossRef  PubMed  Google Scholar 

  57. Lachowicz JE, Sibley DR. Molecular characteristics of mammalian dopamine receptors. Pharmacol Toxicol 1997;81(3):105–13.

    CAS  CrossRef  PubMed  Google Scholar 

  58. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998;78(1):189–225.

    CAS  PubMed  Google Scholar 

  59. Zhuang X, Belluscio L, Hen R. G(olf)alpha mediates dopamine D1 receptor signaling. J Neurosci 2000;20(16):RC91.

    CAS  PubMed  Google Scholar 

  60. Jin LQ, Wang HY, Friedman E. Stimulated D(1) dopamine receptors couple to multiple Galpha proteins in different brain regions. J Neurochem 2001;78(5):981–90.

    CAS  CrossRef  PubMed  Google Scholar 

  61. Sibley DR, De Lean A, Creese I. Anterior pituitary dopamine receptors. Demonstration of interconvertible high and low affinity states of the D-2 dopamine receptor. J Biol Chem 1982;257(11):6351–61.

    CAS  PubMed  Google Scholar 

  62. Mita T, Kuno T, Nakai H, Tanaka C. Evidence for the presence of D2 and 5-HT2 receptors in the human prefrontal cortex. Jpn J Pharmacol 1982;32(6):1027–32.

    CAS  CrossRef  PubMed  Google Scholar 

  63. Richfield EK, Penney JB, Young AB. Anatomical and affinity state comparisons between dopamine D1 and D2 receptors in the rat central nervous system. Neuroscience 1989;30(3):767–77.

    CAS  CrossRef  PubMed  Google Scholar 

  64. Kazmi SM, Ramwani J, Srivastava LK, et al. Characterization of high-affinity dopamine D2 receptors and modulation of affinity states by guanine nucleotides in cholate-solubilized bovine striatal preparations. J Neurochem 1986;47(5):1493–502.

    CAS  CrossRef  PubMed  Google Scholar 

  65. Seeman P, Weinshenker D, Quirion R, et al. Dopamine supersensitivity correlates with D2High states, implying many paths to psychosis. Proc Natl Acad Sci USA 2005;102(9):3513–8.

    CAS  CrossRef  PubMed  Google Scholar 

  66. Seeman P, Schwarz J, Chen JF, et al. Psychosis pathways converge via D2high dopamine receptors. Synapse 2006;60(4):319–46.

    CAS  CrossRef  PubMed  Google Scholar 

  67. Gingrich JA, Caron MG. Recent advances in the molecular biology of dopamine receptors. Annu Rev Neurosci 1993;16:299–321.

    CAS  CrossRef  PubMed  Google Scholar 

  68. Seeman P, Van Tol HH. Dopamine receptor pharmacology. Trends Pharmacol Sci 1994; 15(7):264–70.

    CAS  CrossRef  PubMed  Google Scholar 

  69. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P. Distribution of dopaminergic receptors in the primate cerebral cortex: quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 1991;40(3):657–71.

    CAS  CrossRef  PubMed  Google Scholar 

  70. Goldman-Rakic PS, Lidow MS, Smiley JF, Williams MS. The anatomy of dopamine in monkey and human prefrontal cortex. J Neural Transm Suppl 1992;36:163–77.

    CAS  PubMed  Google Scholar 

  71. Farde L, Halldin C, Stone-Elander S, Sedvall G. PET analysis of human dopamine receptor subtypes using 11C-SCH 23390 and 11C-raclopride. Psychopharmacology (Berl) 1987;92(3):278–84.

    CAS  CrossRef  Google Scholar 

  72. Gaspar P, Bloch B, Le Moine C. D1 and D2 receptor gene expression in the rat frontal cortex: cellular localization in different classes of efferent neurons. Eur J Neurosci 1995;7(5): 1050–63.

    CAS  CrossRef  PubMed  Google Scholar 

  73. Goldman-Rakic PS, Leranth C, Williams SM, Mons N, Geffard M. Dopamine synaptic complex with pyramidal neurons in primate cerebral cortex. Proc Natl Acad Sci USA 1989;86(22):9015–9.

    CAS  CrossRef  PubMed  Google Scholar 

  74. Verney C, Alvarez C, Geffard M, Berger B. Ultrastructural double-labelling study of dopamine terminals and GABA-containing neurons in rat anteromedial cerebral cortex. Eur J Neurosci 1990;2(11):960–72.

    CrossRef  PubMed  Google Scholar 

  75. Sesack SR, Snyder CL, Lewis DA. Axon terminals immunolabeled for dopamine or tyrosine hydroxylase synapse on GABA-immunoreactive dendrites in rat and monkey cortex. J Comp Neurol 1995;363(2):264–80.

    CAS  CrossRef  PubMed  Google Scholar 

  76. Sesack SR, Hawrylak VA, Melchitzky DS, Lewis DA. Dopamine innervation of a subclass of local circuit neurons in monkey prefrontal cortex: ultrastructural analysis of tyrosine hydroxylase and parvalbumin immunoreactive structures. Cereb Cortex 1998;8(7):614–22.

    CAS  CrossRef  PubMed  Google Scholar 

  77. Gorelova N, Seamans JK, Yang CR. Mechanisms of dopamine activation of fast-spiking interneurons that exert inhibition in rat prefrontal cortex. J Neurophysiol 2002;88(6): 3150–66.

    CAS  CrossRef  PubMed  Google Scholar 

  78. Vincent SL, Khan Y, Benes FM. Cellular colocalization of dopamine D1 and D2 receptors in rat medial prefrontal cortex. Synapse 1995;19(2):112–20.

    CAS  CrossRef  PubMed  Google Scholar 

  79. Benes FM, Berretta S. GABAergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology 2001;25(1):1–27.

    CAS  CrossRef  PubMed  Google Scholar 

  80. Bergson C, Mrzljak L, Smiley JF, Pappy M, Levenson R, Goldman-Rakic PS. Regional, cellular, and subcellular variations in the distribution of D1 and D5 dopamine receptors in primate brain. J Neurosci 1995;15(12):7821–36.

    CAS  PubMed  Google Scholar 

  81. Muly EC, 3rd, Szigeti K, Goldman-Rakic PS. D1 receptor in interneurons of macaque prefrontal cortex: distribution and subcellular localization. J Neurosci 1998;18(24): 10553–65.

    CAS  PubMed  Google Scholar 

  82. Paspalas CD, Goldman-Rakic PS. Microdomains for dopamine volume neurotransmission in primate prefrontal cortex. J Neurosci 2004;24(23):5292–300.

    CAS  CrossRef  PubMed  Google Scholar 

  83. Negyessy L, Goldman-Rakic PS. Subcellular localization of the dopamine D2 receptor and coexistence with the calcium-binding protein neuronal calcium sensor-1 in the primate prefrontal cortex. J Comp Neurol 2005;488(4):464–75.

    CAS  CrossRef  PubMed  Google Scholar 

  84. Sesack SR, Aoki C, Pickel VM. Ultrastructural localization of D2 receptor-like immunoreactivity in midbrain dopamine neurons and their striatal targets. J Neurosci 1994;14(1): 88–106.

    CAS  PubMed  Google Scholar 

  85. Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2004;74(1):1–58.

    CAS  CrossRef  PubMed  Google Scholar 

  86. Lapish CC, Kroener S, Durstewitz D, Lavin A, Seamans JK. The ability of the mesocortical dopamine system to operate in distinct temporal modes. Psychopharmacology (Berl) 2007;191(3):609–25.

    CAS  CrossRef  Google Scholar 

  87. Durstewitz D, Seamans JK. The dual-state theory of prefrontal cortex dopamine function with relevance to catechol-o-methyltransferase genotypes and schizophrenia. Biol Psychiatry 2008;64(9):739–49.

    Google Scholar 

  88. Trantham-Davidson H, Neely LC, Lavin A, Seamans JK. Mechanisms underlying differential D1 versus D2 dopamine receptor regulation of inhibition in prefrontal cortex. J Neurosci 2004;24(47):10652–9.

    CAS  CrossRef  PubMed  Google Scholar 

  89. MacLennan AJ, Pelleymounter MA, Atmadja S, Jakubovic A, Maier SF, Fibiger HC. D2 dopamine receptors in the rat prefrontal cortex: characterization and alteration by stress. Brain Res 1989;477(1–2):300–7.

    CAS  CrossRef  PubMed  Google Scholar 

  90. Arnsten AF, Murphy B, Merchant K. The selective dopamine D4 receptor antagonist, PNU-101387G, prevents stress-induced cognitive deficits in monkeys. Neuropsychopharmacology 2000;23(4):405–10.

    CAS  CrossRef  PubMed  Google Scholar 

  91. Espejo EF. Selective dopamine depletion within the medial prefrontal cortex induces anxiogenic-like effects in rats placed on the elevated plus maze. Brain Res 1997;762(1–2):281–4.

    CAS  CrossRef  PubMed  Google Scholar 

  92. Falzone TL, Gelman DM, Young JI, Grandy DK, Low MJ, Rubinstein M. Absence of dopamine D4 receptors results in enhanced reactivity to unconditioned, but not conditioned, fear. Eur J Neurosci 2002;15(1):158–64.

    CrossRef  PubMed  Google Scholar 

  93. Funk D, Stewart J. Role of catecholamines in the frontal cortex in the modulation of basal and stress-induced autonomic output in rats. Brain Res 1996;741(1–2):220–9.

    CAS  CrossRef  PubMed  Google Scholar 

  94. Morrow BA, Elsworth JD, Rasmusson AM, Roth RH. The role of mesoprefrontal dopamine neurons in the acquisition and expression of conditioned fear in the rat. Neuroscience 1999;92(2):553–64.

    CAS  CrossRef  PubMed  Google Scholar 

  95. Espejo EF. Prefrontocortical dopamine loss in rats delays long-term extinction of contextual conditioned fear, and reduces social interaction without affecting short-term social interaction memory. Neuropsychopharmacology 2003;28(3):490–8.

    CAS  CrossRef  Google Scholar 

  96. Pfeiffer UJ, Fendt M. Prefrontal dopamine D4 receptors are involved in encoding fear extinction. Neuroreport 2006;17(8):847–50.

    CAS  CrossRef  PubMed  Google Scholar 

  97. Mello EST, Vianna MR, Rodrigues C, Quevedo J, Moleta BA, Izquierdo I. Involvement of the medial precentral prefrontal cortex in memory consolidation for inhibitory avoidance learning in rats. Pharmacol Biochem Behav 2000;66(3):615–22.

    CrossRef  Google Scholar 

  98. Brozoski TJ, Brown RM, Rosvold HE, Goldman PS. Cognitive deficit caused by regional depletion of dopamine in prefrontal cortex of rhesus monkey. Science 1979;205(4409):929–32.

    CAS  CrossRef  PubMed  Google Scholar 

  99. Bubser M, Schmidt WJ. 6-Hydroxydopamine lesion of the rat prefrontal cortex increases locomotor activity, impairs acquisition of delayed alternation tasks, but does not affect uninterrupted tasks in the radial maze. Behav Brain Res 1990;37(2):157–68.

    CAS  CrossRef  PubMed  Google Scholar 

  100. Sawaguchi T. The effects of dopamine and its antagonists on directional delay-period activity of prefrontal neurons in monkeys during an oculomotor delayed-response task. Neurosci Res 2001;41(2):115–28

    CAS  CrossRef  PubMed  Google Scholar 

  101. Sawaguchi T, Goldman-Rakic PS. The role of D1-dopamine receptor in working memory: local injections of dopamine antagonists into the prefrontal cortex of rhesus monkeys performing an oculomotor delayed-response task. J Neurophysiol 1994;71(2):515–28.

    CAS  PubMed  Google Scholar 

  102. Seamans JK, Floresco SB, Phillips AG. D1 receptor modulation of hippocampal-prefrontal cortical circuits integrating spatial memory with executive functions in the rat. J Neurosci 1998;18(4):1613–21.

    CAS  PubMed  Google Scholar 

  103. Zahrt J, Taylor JR, Mathew RG, Arnsten AF. Supranormal stimulation of D1 dopamine receptors in the rodent prefrontal cortex impairs spatial working memory performance. J Neurosci 1997;17(21):8528–35.

    CAS  PubMed  Google Scholar 

  104. Aujla H, Beninger RJ. Hippocampal-prefrontocortical circuits: PKA inhibition in the prefrontal cortex impairs delayed nonmatching in the radial maze in rats. Behav Neurosci 2001;115(6):1204–11.

    CAS  CrossRef  PubMed  Google Scholar 

  105. Williams GV, Goldman-Rakic PS. Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature 1995;376(6541):572–5.

    CAS  CrossRef  PubMed  Google Scholar 

  106. Arnsten AF. Catecholamine regulation of the prefrontal cortex. J Psychopharmacol 1997;11(2):151–62.

    CAS  CrossRef  PubMed  Google Scholar 

  107. Arnsten AF, Cai JX, Murphy BL, Goldman-Rakic PS. Dopamine D1 receptor mechanisms in the cognitive performance of young adult and aged monkeys. Psychopharmacology (Berl) 1994;116(2):143–51.

    CAS  CrossRef  Google Scholar 

  108. Cai JX, Arnsten AF. Dose-dependent effects of the dopamine D1 receptor agonists A77636 or SKF81297 on spatial working memory in aged monkeys. J Pharmacol Exp Ther 1997;283(1):183–9.

    CAS  PubMed  Google Scholar 

  109. Aultman JM, Moghaddam B. Distinct contributions of glutamate and dopamine receptors to temporal aspects of rodent working memory using a clinically relevant task. Psychopharmacology (Berl) 2001;153(3):353–64.

    CAS  CrossRef  Google Scholar 

  110. Shoblock JR, Maisonneuve IM, Glick SD. Differences between d-methamphetamine and d-amphetamine in rats: working memory, tolerance, and extinction. Psychopharmacology (Berl) 2003;170(2):150–6.

    CAS  CrossRef  Google Scholar 

  111. Romanides AJ, Duffy P, Kalivas PW. Glutamatergic and dopaminergic afferents to the prefrontal cortex regulate spatial working memory in rats. Neuroscience 1999;92(1):97–106.

    CAS  CrossRef  PubMed  Google Scholar 

  112. Mizoguchi K, Yuzurihara M, Ishige A, Sasaki H, Chui DH, Tabira T. Chronic stress induces impairment of spatial working memory because of prefrontal dopaminergic dysfunction. J Neurosci 2000;20(4):1568–74.

    CAS  PubMed  Google Scholar 

  113. Floresco SB, Phillips AG. Delay-dependent modulation of memory retrieval by infusion of a dopamine D1 agonist into the rat medial prefrontal cortex. Behav Neurosci 2001;115(4):934–9.

    CAS  CrossRef  PubMed  Google Scholar 

  114. Granon S, Passetti F, Thomas KL, Dalley JW, Everitt BJ, Robbins TW. Enhanced and impaired attentional performance after infusion of D1 dopaminergic receptor agents into rat prefrontal cortex. J Neurosci 2000;20(3):1208–15.

    CAS  PubMed  Google Scholar 

  115. Chudasama Y, Robbins TW. Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology (Berl) 2004;174(1):86–98.

    CAS  CrossRef  Google Scholar 

  116. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM. Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996;6(3):243–50.

    CAS  CrossRef  PubMed  Google Scholar 

  117. Weinberger DR, Egan MF, Bertolino A, et al. Prefrontal neurons and the genetics of schizophrenia. Biol Psychiatry 2001;50(11):825–44.

    CAS  CrossRef  PubMed  Google Scholar 

  118. Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes and genetic mechanisms of psychiatric disorders. Nat Rev Neurosci 2006;7(10):818–27.

    CAS  CrossRef  PubMed  Google Scholar 

  119. Egan MF, Goldberg TE, Kolachana BS, et al. Effect of COMT Val108/158 Met genotype on frontal lobe function and risk for schizophrenia. Proc Natl Acad Sci USA 2001;98(12):6917–22.

    CAS  CrossRef  PubMed  Google Scholar 

  120. Mattay VS, Goldberg TE, Fera F, et al. Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci USA 2003;100(10):6186–91.

    CAS  CrossRef  PubMed  Google Scholar 

  121. Apud JA, Mattay V, Chen J, et al. Tolcapone improves cognition and cortical information processing in normal human subjects. Neuropsychopharmacology 2007;32(5):1011–20.

    CAS  CrossRef  PubMed  Google Scholar 

  122. Vijayraghavan S, Wang M, Birnbaum SG, Williams GV, Arnsten AF. Inverted-U dopamine D1 receptor actions on prefrontal neurons engaged in working memory. Nat Neurosci 2007;10(3):376–84.

    CAS  CrossRef  PubMed  Google Scholar 

  123. Rolls ET, Thorpe SJ, Boytim M, Szabo I, Perrett DI. Responses of striatal neurons in the behaving monkey. 3. Effects of iontophoretically applied dopamine on normal responsiveness. Neuroscience 1984;12(4):1201–12.

    CAS  CrossRef  PubMed  Google Scholar 

  124. DeFrance JF, Sikes RW, Chronister RB. Dopamine action in the nucleus accumbens. J Neurophysiol 1985;54(6):1568–77.

    CAS  PubMed  Google Scholar 

  125. Servan-Schreiber D, Printz H, Cohen JD. A network model of catecholamine effects: gain, signal-to-noise ratio, and behavior. Science 1990;249(4971):892–5.

    CAS  CrossRef  PubMed  Google Scholar 

  126. Winterer G, Ziller M, Dorn H, et al. Cortical activation, signal-to-noise ratio and stochastic resonance during information processing in man. Clin Neurophysiol 1999;110(7):1193–203.

    CAS  CrossRef  PubMed  Google Scholar 

  127. Winterer G, Ziller M, Dorn H, et al. Schizophrenia: reduced signal-to-noise ratio and impaired phase-locking during information processing. Clin Neurophysiol 2000; 111(5):837–49.

    CAS  CrossRef  PubMed  Google Scholar 

  128. Winterer G. Cortical microcircuits in schizophrenia – the dopamine hypothesis revisited. Pharmacopsychiatry 2006;39(Suppl 1):S68–71.

    CrossRef  PubMed  Google Scholar 

  129. Winterer G, Egan MF, Kolachana BS, Goldberg TE, Coppola R, Weinberger DR. Prefrontal electrophysiologic “noise” and catechol-O-methyltransferase genotype in schizophrenia. Biol Psychiatry 2006;60(6):578–84.

    CAS  CrossRef  PubMed  Google Scholar 

  130. Winterer G, Musso F, Beckmann C, et al. Instability of prefrontal signal processing in schizophrenia. Am J Psychiatry 2006;163(11):1960–8.

    CrossRef  PubMed  Google Scholar 

  131. Winterer G, Musso F, Vucurevic G, et al. COMT genotype predicts BOLD signal and noise characteristics in prefrontal circuits. Neuroimage 2006;32(4):1722–32.

    CrossRef  PubMed  Google Scholar 

  132. Winterer G, Weinberger DR. Genes, dopamine and cortical signal-to-noise ratio in schizophrenia. Trends Neurosci 2004;27(11):683–90.

    CAS  CrossRef  PubMed  Google Scholar 

  133. Gallinat J, Bajbouj M, Sander T, et al. Association of the G1947A COMT (Val(108/158)Met) gene polymorphism with prefrontal P300 during information processing. Biol Psychiatry 2003;54(1):40–8.

    CAS  CrossRef  PubMed  Google Scholar 

  134. Winterer G, Coppola R, Goldberg TE, et al. Prefrontal broadband noise, working memory, and genetic risk for schizophrenia. Am J Psychiatry 2004;161(3):490–500.

    CrossRef  PubMed  Google Scholar 

  135. Yang CR, Seamans JK. Dopamine D1 receptor actions in layers V-VI rat prefrontal cortex neurons in vitro: modulation of dendritic-somatic signal integration. J Neurosci 1996;16(5):1922–35.

    CAS  PubMed  Google Scholar 

  136. Zheng P, Zhang XX, Bunney BS, Shi WX. Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neuroscience 1999;91(2):527–35.

    CAS  CrossRef  PubMed  Google Scholar 

  137. Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000;23:185–215.

    CAS  CrossRef  PubMed  Google Scholar 

  138. Gao WJ, Goldman-Rakic PS. Selective modulation of excitatory and inhibitory microcircuits by dopamine. Proc Natl Acad Sci USA 2003;100(5):2836–41.

    CAS  CrossRef  PubMed  Google Scholar 

  139. Gao WJ, Krimer LS, Goldman-Rakic PS. Presynaptic regulation of recurrent excitation by D1 receptors in prefrontal circuits. Proc Natl Acad Sci USA 2001;98(1):295–300.

    CAS  CrossRef  PubMed  Google Scholar 

  140. Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci USA 2001;98(1):301–6.

    CAS  CrossRef  PubMed  Google Scholar 

  141. Seamans JK, Gorelova N, Durstewitz D, Yang CR. Bidirectional dopamine modulation of GABAergic inhibition in prefrontal cortical pyramidal neurons. J Neurosci 2001;21(10):3628–38.

    CAS  PubMed  Google Scholar 

  142. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res 2004;24(3):165–205.

    CAS  CrossRef  PubMed  Google Scholar 

  143. Rosenkranz JA, Johnston D. Dopaminergic regulation of neuronal excitability through modulation of Ih in layer V entorhinal cortex. J Neurosci 2006;26(12):3229–44.

    CAS  CrossRef  PubMed  Google Scholar 

  144. Durstewitz D, Kelc M, Gunturkun O. A neurocomputational theory of the dopaminergic modulation of working memory functions. J Neurosci 1999;19(7):2807–22.

    CAS  PubMed  Google Scholar 

  145. Durstewitz D, Seamans JK, Sejnowski TJ. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J Neurophysiol 2000;83(3):1733–50.

    CAS  PubMed  Google Scholar 

  146. Compte A, Brunel N, Goldman-Rakic PS, Wang XJ. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 2000;10(9):910–23.

    CAS  CrossRef  PubMed  Google Scholar 

  147. Brunel N, Wang XJ. Effects of neuromodulation in a cortical network model of object working memory dominated by recurrent inhibition. J Comput Neurosci 2001;11(1):63–85.

    CAS  CrossRef  PubMed  Google Scholar 

  148. Durstewitz D, Seamans JK. The computational role of dopamine D1 receptors in working memory. Neural Netw 2002;15(4–6):561–72.

    CrossRef  PubMed  Google Scholar 

  149. Fuster JM. Unit activity in prefrontal cortex during delayed-response performance: neuronal correlates of transient memory. J Neurophysiol 1973;36(1):61–78.

    CAS  PubMed  Google Scholar 

  150. Funahashi S, Bruce CJ, Goldman-Rakic PS. Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 1989;61(2):331–49.

    CAS  PubMed  Google Scholar 

  151. Thurley K, Senn W, Luscher HR. Dopamine increases the gain of the input-output response of rat prefrontal pyramidal neurons. J Neurophysiol 2008;99(6):2985–97

    CrossRef  PubMed  Google Scholar 

  152. Crofts HS, Dalley JW, Collins P, et al. Differential effects of 6-OHDA lesions of the frontal cortex and caudate nucleus on the ability to acquire an attentional set. Cereb Cortex 2001;11(11):1015–26.

    CAS  CrossRef  PubMed  Google Scholar 

  153. Roberts AC, De Salvia MA, Wilkinson LS, et al. 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analog of the Wisconsin Card Sort Test: possible interactions with subcortical dopamine. J Neurosci 1994;14(5 Pt 1): 2531–44.

    CAS  PubMed  Google Scholar 

  154. Chudasama Y, Robbins TW. Psychopharmacological approaches to modulating attention in the five-choice serial reaction time task: implications for schizophrenia. Psychopharmacology (Berl) 2004;174:86–98.

    CAS  CrossRef  Google Scholar 

  155. Floresco SB, Magyar O, Ghods-Sharifi S, Vexelman C, Tse MT. Multiple dopamine receptor subtypes in the medial prefrontal cortex of the rat regulate set-shifting. Neuropsycho\-pharmacology 2006;31(2):297–309.

    CAS  CrossRef  PubMed  Google Scholar 

  156. Nolan KA, Bilder RM, Lachman HM, Volavka J. Catechol O-methyltransferase Val158Met polymorphism in schizophrenia: differential effects of Val and Met alleles on cognitive stability and flexibility. Am J Psychiatry 2004;161(2):359–61.

    CrossRef  PubMed  Google Scholar 

  157. Drabant EM, Hariri AR, Meyer-Lindenberg A, et al. Catechol O-methyltransferase val158met genotype and neural mechanisms related to affective arousal and regulation. Arch Gen Psychiatry 2006;63(12):1396–406.

    CAS  CrossRef  PubMed  Google Scholar 

  158. Dreisbach G, Muller J, Goschke T, et al. Dopamine and cognitive control: the influence of spontaneous eyeblink rate and dopamine gene polymorphisms on perseveration and distractibility. Behav Neurosci 2005;119(2):483–90.

    CAS  CrossRef  PubMed  Google Scholar 

  159. Lee B, Groman S, London ED, Jentsch JD. Dopamine D2/D3 receptors play a specific role in the reversal of a learned visual discrimination in monkeys. Neuropsychopharmacology 2007;32(10):2125–34.

    CAS  CrossRef  PubMed  Google Scholar 

  160. Tost H, Meyer-Lindenberg A, Klein S, et al. D2 antidopaminergic modulation of frontal lobe function in healthy human subjects. Biol Psychiatry 2006;60(11):1196–205.

    CAS  CrossRef  PubMed  Google Scholar 

  161. Mehta MA, Manes FF, Magnolfi G, Sahakian BJ, Robbins TW. Impaired set-shifting and dissociable effects on tests of spatial working memory following the dopamine D2 receptor antagonist sulpiride in human volunteers. Psychopharmacology (Berl) 2004;176(3–4): 331–42.

    CAS  CrossRef  Google Scholar 

  162. McDowell S, Whyte J, D‘Esposito M. Differential effect of a dopaminergic agonist on prefrontal function in traumatic brain injury patients. Brain 1998;121(Pt 6):1155–64.

    CrossRef  PubMed  Google Scholar 

  163. Mehta MA, Sahakian BJ, McKenna PJ, Robbins TW. Systemic sulpiride in young adult volunteers simulates the profile of cognitive deficits in Parkinson’s disease. Psychopharmacology (Berl) 1999;146(2):162–74.

    CAS  CrossRef  Google Scholar 

  164. Mehta MA, Swainson R, Ogilvie AD, Sahakian J, Robbins TW. Improved short-term spatial memory but impaired reversal learning following the dopamine D(2) agonist bromocriptine in human volunteers. Psychopharmacology (Berl) 2001;159(1):10–20.

    CAS  CrossRef  Google Scholar 

  165. Luciana M, Collins PF. Dopaminergic modulation of working memory for spatial but not object cues in normal volunteers. J Cognit Neurosci 1997;9:330–347.

    CrossRef  Google Scholar 

  166. Kimberg DY, D‘Esposito M, Farah MJ. Effects of bromocriptine on human subjects depend on working memory capacity. Neuroreport 1997;8(16):3581–5.

    CAS  CrossRef  PubMed  Google Scholar 

  167. Frank MJ, O‘Reilly RC. A mechanistic account of striatal dopamine function in human cognition: psychopharmacological studies with cabergoline and haloperidol. Behav Neurosci 2006;120(3):497–517.

    CAS  CrossRef  PubMed  Google Scholar 

  168. Cools R, Sheridan M, Jacobs E, D‘Esposito M. Impulsive personality predicts dopamine-dependent changes in frontostriatal activity during component processes of working memory. J Neurosci 2007;27(20):5506–14.

    CAS  CrossRef  PubMed  Google Scholar 

  169. Reuter M, Peters K, Schroeter K, et al. The influence of the dopaminergic system on cognitive functioning: a molecular genetic approach. Behav Brain Res 2005;164(1):93–9.

    CAS  CrossRef  PubMed  Google Scholar 

  170. Forbes EE, Brown SM, Kimak M, Ferrell RE, Manuck SB, Hariri AR. Genetic variation in components of dopamine neurotransmission impacts ventral striatal reactivity associated with impulsivity. Mol Psychiatry 2009;14(1):60–70.

    Google Scholar 

  171. Dalley JW, Fryer TD, Brichard L, et al. Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 2007;315(5816):1267–70.

    CAS  CrossRef  PubMed  Google Scholar 

  172. Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison KE. Genetic triple dissociation reveals multiple roles for dopamine in reinforcement learning. Proc Natl Acad Sci USA 2007;104(41):16311–6.

    CAS  CrossRef  PubMed  Google Scholar 

  173. Mehta MA, Montgomery AJ, Kitamura Y, Grasby PM. Dopamine D2 receptor occupancy levels of acute sulpiride challenges that produce working memory and learning impairments in healthy volunteers. Psychopharmacology (Berl) 2008;196(1):157–65.

    CAS  CrossRef  Google Scholar 

  174. Frank MJ, Santamaria A, O‘Reilly RC, Willcutt E. Testing computational models of dopamine and noradrenaline dysfunction in attention deficit/hyperactivity disorder. Neuropsychopharmacology 2007;32(7):1583–99.

    CAS  CrossRef  PubMed  Google Scholar 

  175. Wang X, Zhong P, Gu Z, Yan Z. Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex. J Neurosci 2003;23(30):9852–61.

    CAS  PubMed  Google Scholar 

  176. Wang X, Zhong P, Yan Z. Dopamine D4 receptors modulate GABAergic signaling in pyramidal neurons of prefrontal cortex. J Neurosci 2002;22(21):9185–93.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy K. Seamans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Seamans, J.K., Robbins, T.W. (2010). Dopamine Modulation of the Prefrontal Cortex and Cognitive Function. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_14

Download citation