Skip to main content

Dopamine Receptors and Behavior: From Psychopharmacology to Mutant Models

Part of the The Receptors book series (REC)

Abstract

Elucidating the relative involvement of individual dopamine receptor subtypes in the regulation of behavior has been made difficult by anomalies at the psychopharmacology–molecular biology interface; specifically, the extent to which gene cloning has revealed greater diversity in dopamine receptor typology beyond the original D1/D2 classification, to include individual members of D1-like (D1 and D5) and D2-like (D2Short, D2Long, D3, and D4) families, has not been matched by similar progress in developing selective agonists and antagonists for these receptors. Thus, although classical psychopharmacological approaches have been instrumental in defining dopamine-dependent behaviors at the family level, more incisive molecular genetic techniques have been required to determine the functional roles of the individual members of these families. This chapter seeks to (a) summarize the classical psychopharmacology of dopamine receptor subtype function, (b) provide an overview of recent findings in dopamine receptor subtype knockouts across several domains of behavior, and (c) interpret new insights in the context of the limitations of these techniques and prior knowledge of the regulation of behavior by dopamine receptors.

Keywords

  • Dopamine receptor subtypes
  • Behavior
  • Psychopharmacology
  • Selective agonists and antagonists
  • Molecular biology
  • Knockouts
  • Knockins
  • Transgenics
  • Mutant models

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-333-6_13
  • Chapter length: 49 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-333-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)

References

  1. Holmes A, Lachowicz JE, Sibley DR. Phenotypic analysis of dopamine receptor knockout mice; recent insights into the functional specificity of dopamine receptor subtypes. Neuropharmacology 2004;47:1117–34.

    PubMed  CAS  CrossRef  Google Scholar 

  2. Tan S, Hermann B, Borrelli E. Dopaminergic mouse mutants: investigating the roles of the different dopamine receptor subtypes and the dopamine transporter. Int Rev Neurobiol 2003;54:145–97.

    PubMed  CAS  CrossRef  Google Scholar 

  3. Waddington JL, Clifford JJ, McNamara FN, Tomiyama K, Koshikawa N, Croke DT. The psychopharmacology-molecular biology interface: exploring the behavioural roles of dopamine receptor subtypes using targeted gene deletion (‘knockout’). Prog Neuropsychopharmacol Biol Psychiatry 2001;25:925–64.

    PubMed  CAS  CrossRef  Google Scholar 

  4. Waddington JL, O‘Tuathaigh C, O‘Sullivan G, Tomiyama K, Koshikawa N, Croke DT. Phenotypic studies on dopamine receptor subtype and associated signal transduction mutants: insights and challenges from 10 years at the psychopharmacology-molecular biology interface. Psychopharmacology 2005;181:611–38.

    PubMed  CAS  CrossRef  Google Scholar 

  5. Zhou QY, Palmiter RD. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 1995;83:1197–209.

    PubMed  CAS  CrossRef  Google Scholar 

  6. Giros B, Jaber M, Jones SR, Wightman RM, Caron MG. Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter. Nature 1996;379:606–12.

    PubMed  CAS  CrossRef  Google Scholar 

  7. Accili D, Fishburn CS, Drago J, et al. A targeted mutation of the D3 dopamine receptor gene is associated with hyperactivity in mice. Proc Natl Acad Sci USA 1996;93:1945–9.

    PubMed  CAS  CrossRef  Google Scholar 

  8. Baik JH, Picetti R, Saiardi A, et al. Parkinsonian-like locomotor impairment in mice lacking dopamine D2 receptors. Nature 1995;377:424–8.

    PubMed  CAS  CrossRef  Google Scholar 

  9. Rubinstein M, Phillips TJ, Bunzow JR, et al. Mice lacking dopamine D4 receptors are supersensitive to ethanol, cocaine, and methamphetamine. Cell 1997;90:991–1001.

    PubMed  CAS  CrossRef  Google Scholar 

  10. Xu M, Moratalla R, Gold LH, et al. Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses. Cell 1994;79:729–42.

    PubMed  CAS  CrossRef  Google Scholar 

  11. Usiello A, Baik JH, Rouge-Pont F, et al. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 2000;408:199–203.

    PubMed  CAS  CrossRef  Google Scholar 

  12. Wang Y, Xu R, Sasaoka T, Tonegawa S, Kung MP, Sankoorikal EB. Dopamine D2 long receptor-deficient mice display alterations in striatum-dependent functions. J Neurosci 2000;20:8305–14.

    PubMed  CAS  Google Scholar 

  13. Drago J, Padungchaichot P, Accili D, Fuchs S. Dopamine receptors and dopamine transporter in brain function and addictive behaviors: insights from targeted mouse mutants. Dev Neurosci 1998;20:188–203.

    PubMed  CAS  CrossRef  Google Scholar 

  14. Glickstein SB, Schmauss C. Dopamine receptor functions: lessons from knockout mice. Pharmacol Ther 2001;91:63–83.

    PubMed  CAS  CrossRef  Google Scholar 

  15. Sibley DR. New insights into dopaminergic receptor function using antisense and genetically altered animals. Annu Rev Pharmacol Toxicol 1999;39:313–41.

    PubMed  CAS  CrossRef  Google Scholar 

  16. Viggiano D, Ruocco LA, Sadile AG. Dopamine phenotype and behaviour in animal models: in relation to attention deficit hyperactivity disorder. Neurosci Biobehav Rev 2003;27:623–37.

    PubMed  CAS  CrossRef  Google Scholar 

  17. Zhang J, Xu M. Toward a molecular understanding of psychostimulant actions using genetically engineered dopamine receptor knockout mice as model systems. J Addict Dis 2001;20:7–18.

    PubMed  CAS  CrossRef  Google Scholar 

  18. Niznik HB, Sugamori KS, Clifford JJ, Waddington JL. D1-like dopamine receptors: molecular biology and pharmacology. In: Di Chiara G, ed. Handbook of experimental pharmacology: Dopamine in the CNS 1. Berlin: Springer; 2002:121–58.

    CrossRef  Google Scholar 

  19. Waddington JL, Daly SA, Downes RP, Deveney AM, McCauley PG, O‘Boyle KM. Behavioural pharmacology of ‘D1-like’ dopamine receptors: further subtyping, new pharmacological probes and interactions with ‘D2-like’ receptors. Prog Neuropsychopharmacol Biol Psychiatry 1995;19:811–31.

    PubMed  CAS  CrossRef  Google Scholar 

  20. Waddington JL, Daly SA, McCaulay PG, O‘Boyle KM. Levels of functional interaction between D1-like and D2-like dopamine receptor systems. In: Niznik HB, ed. Dopamine receptors and transporters: Pharmacology, structure and function. New York: Marcel Dekker; 1994:511–37.

    Google Scholar 

  21. Adachi K, Hasegawa M, Fujita S, et al. Prefrontal, accumbal [shell] and ventral striatal mechanisms in jaw movements and non-cyclase-coupled dopamine D1-like receptors. Eur J Pharmacol 2003;473:47–54.

    PubMed  CAS  CrossRef  Google Scholar 

  22. Adachi K, Ikeda H, Hasegawa M, Nakamura S, Waddington JL, Koshikawa N. SK&F 83959 and non-cyclase-coupled dopamine D1-like receptors in jaw movements via dopamine D1-like/D2-like receptor synergism. Eur J Pharmacol 1999;367:143–9.

    PubMed  CAS  CrossRef  Google Scholar 

  23. Fujita S, Lee J, Kiguchi M, et al. Topographical resolution of jaw movements mediated by cyclase- vs. non-cyclase-coupled dopamine D(1)-like receptors: studies with SK&F 83822. Eur J Pharmacol 2006;538:94–100.

    PubMed  CAS  CrossRef  Google Scholar 

  24. Hasegawa M, Adachi K, Nakamura S, Sato M, Waddington JL, Koshikawa N. Ventral striatal vs. accumbal (shell) mechanisms and non-cyclase-coupled dopamine D(1)-like receptors in jaw movements. Eur J Pharmacol 2001;423:171–8.

    PubMed  CAS  CrossRef  Google Scholar 

  25. Makihara Y, Okuda Y, Kawada C, et al. Differential involvement of cyclase- versus non-cyclase-coupled D1-like dopamine receptors in orofacial movement topography in mice: studies with SKF 83822. Neurosci Lett 2007;415:6–10.

    PubMed  CAS  CrossRef  Google Scholar 

  26. Makihara Y, Yamamoto H, Inoue M, Tomiyama K, Koshikawa N, Waddington JL. Topographical effects of D1-like dopamine receptor agonists on orofacial movements in mice and their differential regulation via oppositional versus synergistic D1-like: D2-like interactions: cautionary observations on SK&F 82958 as an anomalous agent. J Psychopharmacol 2004;18:484–95.

    PubMed  CAS  CrossRef  Google Scholar 

  27. Tomiyama K, McNamara FN, Clifford JJ, Kinsella A, Koshikawa N, Waddington JL. Topographical assessment and pharmacological characterization of orofacial movements in mice: dopamine D(1)-like vs. D(2)-like receptor regulation. Eur J Pharmacol 2001;418:47–54.

    PubMed  CAS  CrossRef  Google Scholar 

  28. Setler PE, Sarau HM, Zirkle CL, Saunders HL. The central effects of a novel dopamine agonist. Eur J Pharmacol 1978;50:419–30.

    PubMed  CAS  CrossRef  Google Scholar 

  29. Molloy AG, Waddington JL. Dopaminergic behaviour stereospecific promoted by the D1 agonist R-SK & F 38393 and selectively blocked by the D1 antagonist SCH 23390. Psychopharmacology 1984;82:409–10.

    PubMed  CAS  CrossRef  Google Scholar 

  30. Cromwell HC, Berridge KC. Implementation of action sequences by a neostriatal site: a lesion mapping study of grooming syntax. J Neurosci 1996;16:3444–58.

    PubMed  CAS  Google Scholar 

  31. Kalueff AV, Aldridge JW, LaPorte JL, Murphy DL, Tuohimaa P. Analyzing grooming microstructure in neurobehavioral experiments. Nat Protoc 2007;2:2538–44.

    PubMed  CAS  CrossRef  Google Scholar 

  32. Waddington JL, O‘Boyle KM. Drugs acting on brain dopamine receptors: a conceptual re-evaluation five years after the first selective D1 antagonist. Pharmacol Ther 1989;43:1–52.

    PubMed  CAS  CrossRef  Google Scholar 

  33. Andersen PH, Jansen JA. Dopamine receptor agonists: selectivity and dopamine D1 receptor efficacy. Eur J Pharmacol 1990;188:335–47.

    PubMed  CAS  CrossRef  Google Scholar 

  34. O‘Boyle KM, Gaitanopoulos DE, Brenner M, Waddington JL. Agonist and antagonist properties of benzazepine and thienopyridine derivatives at the D1 dopamine receptor. Neuropharmacology 1989;28:401–5.

    PubMed  CrossRef  Google Scholar 

  35. Jenner P. The rationale for the use of dopamine agonists in Parkinson’s disease. Neurology 1995;45:S6–12.

    PubMed  CAS  CrossRef  Google Scholar 

  36. Graham DL, Hoppenot R, Hendryx A, Self DW. Differential ability of D1 and D2 dopamine receptor agonists to induce and modulate expression and reinstatement of cocaine place preference in rats. Psychopharmacology 2007;191:719–30.

    PubMed  CAS  CrossRef  Google Scholar 

  37. Braun AR, Laruelle M, Mouradian MM. Interactions between D1 and D2 dopamine receptor family agonists and antagonists: the effects of chronic exposure on behavior and receptor binding in rats and their clinical implications. J Neural Transm 1997;104:341–62.

    PubMed  CAS  CrossRef  Google Scholar 

  38. Beninger RJ, Miller R. Dopamine D1-like receptors and reward-related incentive learning. Neurosci Biobehav Rev 1998;22:335–45.

    PubMed  CAS  CrossRef  Google Scholar 

  39. O‘Sullivan GJ, Roth BL, Kinsella A, Waddington JL. SK&F 83822 distinguishes adenylyl cyclase from phospholipase C-coupled dopamine D1-like receptors: behavioural topography. Eur J Pharmacol 2004;486:273–80.

    CrossRef  CAS  Google Scholar 

  40. Rashid AJ, So CH, Kong MM, et al. D1-D2 dopamine receptor heterooligomers with unique pharmacology are coupled to rapid activation of Gq/11 in the striatum. Proc Natl Acad Sci USA 2007;104:654–9.

    PubMed  CAS  CrossRef  Google Scholar 

  41. Arnt J, Hyttel J. Differential involvement of dopamine D-1 and D-2 receptors in the circling behaviour induced by apomorphine, SK & F 38393, pergolide and LY 171555 in 6-hydroxydopamine-lesioned rats. Psychopharmacology 1985;85:346–52.

    PubMed  CAS  CrossRef  Google Scholar 

  42. Starr BS, Starr MS. Differential effects of dopamine D1 and D2 agonists and antagonists on velocity of movement, rearing and grooming in the mouse. Implications for the roles of D1 and D2 receptors. Neuropharmacology 1986;25:455–63.

    PubMed  CAS  CrossRef  Google Scholar 

  43. Jenner P. Dopamine agonists, receptor selectivity and dyskinesia induction in Parkinson’s disease. Curr Opin Neurol 2003;16(Suppl 1):S3–7.

    PubMed  CAS  CrossRef  Google Scholar 

  44. Yamamoto M, Usuda S, Tachikawa S, Maeno H. Pharmacological studies on a new benzamide derivative, YM-09151-2, with potential neuroleptic properties. Neuropharmacology 1982;21:945–51.

    PubMed  CAS  CrossRef  Google Scholar 

  45. Starr MS. The role of dopamine in epilepsy. Synapse 1996;22:159–94.

    PubMed  CAS  CrossRef  Google Scholar 

  46. Ahlenius S, Salmi P. Behavioral and biochemical effects of the dopamine D3 receptor-selective ligand, 7-OH-DPAT, in the normal and the reserpine-treated rat. Eur J Pharmacol 1994;260:177–81.

    PubMed  CAS  CrossRef  Google Scholar 

  47. Pugsley TA, Davis MD, Akunne HC, et al. Neurochemical and functional characterization of the preferentially selective dopamine D3 agonist PD 128907. J Pharmacol Exp Ther 1995;275:1355–66.

    PubMed  CAS  Google Scholar 

  48. Kagaya T, Yonaga M, Furuya Y, Hashimoto T, Kuroki J, Nishizawa Y. Dopamine D3 agonists disrupt social behavior in rats. Brain Res 1996;721:229–32.

    PubMed  CAS  CrossRef  Google Scholar 

  49. Rogoz Z, Skuza G, Klodzinska A. Anxiolytic-like effects of preferential dopamine D3 receptor agonists in an animal model. Pol J Pharmacol 2003;55:449–54.

    PubMed  CAS  Google Scholar 

  50. Chagas-Martinich L, Carey RJ, Carrera MP. 7-OH-DPAT effects on latent inhibition: low dose facilitation but high dose blockade: implications for dopamine receptor involvement in attentional processes. Pharmacol Biochem Behav 2007;86:441–8.

    PubMed  CAS  CrossRef  Google Scholar 

  51. Micheli F, Heidbreder C. Selective dopamine D3 receptor antagonists: a review 2001–2005. Recent Patents CNS Drug Discov 2006;1:271–88.

    CAS  CrossRef  Google Scholar 

  52. Joyce JN, Millan MJ. Dopamine D3 receptor antagonists as therapeutic agents. Drug Discov Today 2005;10:917–25.

    PubMed  CAS  CrossRef  Google Scholar 

  53. Oak JN, Oldenhof J, Van Tol HH. The dopamine D(4) receptor: one decade of research. Eur J Pharmacol 2000;405:303–27.

    PubMed  CAS  CrossRef  Google Scholar 

  54. Clifford JJ, Waddington JL. Topographically based search for an ‘Ethogram’ among a series of novel D(4) dopamine receptor agonists and antagonists. Neuropsychopharmacology 2000;22:538–44.

    PubMed  CAS  CrossRef  Google Scholar 

  55. Zhang K, Grady CJ, Tsapakis EM, Andersen SL, Tarazi FI, Baldessarini RJ. Regulation of working memory by dopamine D4 receptor in rats. Neuropsychopharmacology 2004;29:1648–55.

    PubMed  CAS  CrossRef  Google Scholar 

  56. Arnsten AF, Murphy B, Merchant K. The selective dopamine D4 receptor antagonist, PNU-101387G, prevents stress-induced cognitive deficits in monkeys. Neuropsychopharmacology 2000;23:405–10.

    PubMed  CAS  CrossRef  Google Scholar 

  57. Zhang K, Davids E, Tarazi FI, Baldessarini RJ. Effects of dopamine D4 receptor-selective antagonists on motor hyperactivity in rats with neonatal 6-hydroxydopamine lesions. Psychopharmacology 2002;161:100–6.

    PubMed  CAS  CrossRef  Google Scholar 

  58. Shah AA, Sjovold T, Treit D. Selective antagonism of medial prefrontal cortex D4 receptors decreases fear-related behaviour in rats. Eur J Neurosci 2004;19:3393–7.

    PubMed  CrossRef  Google Scholar 

  59. Bernaerts P, Tirelli E. Facilitatory effect of the dopamine D4 receptor agonist PD168,077 on memory consolidation of an inhibitory avoidance learned response in C57BL/6 J mice. Behav Brain Res 2003;142:41–52.

    PubMed  CAS  CrossRef  Google Scholar 

  60. Powell SB, Paulus MP, Hartman DS, Godel T, Geyer MA. RO-10-5824 is a selective dopamine D4 receptor agonist that increases novel object exploration in C57 mice. Neuropharmacology 2003;44:473–81.

    PubMed  CAS  CrossRef  Google Scholar 

  61. Drago J, Gerfen CR, Lachowicz JE, et al. Altered striatal function in a mutant mouse lacking D1A dopamine receptors. Proc Natl Acad Sci USA 1994;91:12564–8.

    PubMed  CAS  CrossRef  Google Scholar 

  62. McNamara FN, Clifford JJ, Tighe O, et al. Congenic D1A dopamine receptor mutants: ethologically based resolution of behavioural topography indicates genetic background as a determinant of knockout phenotype. Neuropsychopharmacology 2003;28:86–99.

    PubMed  CAS  CrossRef  Google Scholar 

  63. Smith DR, Striplin CD, Geller AM, et al. Behavioural assessment of mice lacking D1A dopamine receptors. Neuroscience 1998;86:135–46.

    PubMed  CAS  CrossRef  Google Scholar 

  64. Holmes A, Hollon TR, Gleason TC, et al. Behavioral characterization of dopamine D5 receptor null mutant mice. Behav Neurosci 2001;115:1129–44.

    PubMed  CAS  CrossRef  Google Scholar 

  65. Xu M, Hu XT, Cooper DC, et al. Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice. Cell 1994;79:945–55.

    PubMed  CAS  CrossRef  Google Scholar 

  66. El-Ghundi M, Fletcher PJ, Drago J, Sibley DR, O‘Dowd BF, George SR. Spatial learning deficit in dopamine D(1) receptor knockout mice. Eur J Pharmacol 1999;383:95–106.

    PubMed  CAS  CrossRef  Google Scholar 

  67. Tran AH, Tamura R, Uwano T, Kobayashi T, Katsuki M, Ono T. Dopamine D1 receptors involved in locomotor activity and accumbens neural responses to prediction of reward associated with place. Proc Natl Acad Sci USA 2005;102:2117–22.

    PubMed  CAS  CrossRef  Google Scholar 

  68. Karasinska JM, George SR, El-Ghundi M, Fletcher PJ, O‘Dowd BF. Modification of dopamine D(1) receptor knockout phenotype in mice lacking both dopamine D(1) and D(3) receptors. Eur J Pharmacol 2000;399:171–81.

    PubMed  CAS  CrossRef  Google Scholar 

  69. Karasinska JM, George SR, Cheng R, O‘Dowd BF. Deletion of dopamine D1 and D3 receptors differentially affects spontaneous behaviour and cocaine-induced locomotor activity, reward and CREB phosphorylation. Eur J Neurosci 2005;22:1741–50.

    PubMed  CrossRef  Google Scholar 

  70. Centonze D, Grande C, Saulle E, et al. Distinct roles of D1 and D5 dopamine receptors in motor activity and striatal synaptic plasticity. J Neurosci 2003;23:8506–12.

    PubMed  CAS  Google Scholar 

  71. Clifford JJ, Tighe O, Croke DT, Sibley DR, Drago J, Waddington JL. Topographical evaluation of the phenotype of spontaneous behaviour in mice with targeted gene deletion of the D1A dopamine receptor: paradoxical elevation of grooming syntax. Neuropharmacology 1998;37:1595–602.

    PubMed  CAS  CrossRef  Google Scholar 

  72. Wong JY, Clifford JJ, Massalas JS, Kinsella A, Waddington JL, Drago J. Essential conservation of D1 mutant phenotype at the level of individual topographies of behaviour in mice lacking both D1 and D3 dopamine receptors. Psychopharmacology 2003;167:167–73.

    PubMed  CAS  Google Scholar 

  73. El-Ghundi M, O‘Dowd BF, Erclik M, George SR. Attenuation of sucrose reinforcement in dopamine D1 receptor deficient mice. Eur J Neurosci 2003;17:851–62.

    PubMed  CrossRef  Google Scholar 

  74. Nitz DA, Kargo WJ, Fleischer J. Dopamine signaling and the distal reward problem. Neuroreport 2007;18:1833–6.

    PubMed  CAS  CrossRef  Google Scholar 

  75. Tomiyama K, McNamara FN, Clifford JJ, et al. Phenotypic resolution of spontaneous and D1-like agonist-induced orofacial movement topographies in congenic dopamine D1A receptor ‘knockout’ mice. Neuropharmacology 2002;42:644–52.

    PubMed  CAS  CrossRef  Google Scholar 

  76. Short JL, Ledent C, Drago J, Lawrence AJ. Receptor crosstalk: characterization of mice deficient in dopamine D1 and adenosine A2A receptors. Neuropsychopharmacology 2006;31:525–34.

    PubMed  CAS  CrossRef  Google Scholar 

  77. El-Ghundi M, O‘Dowd BF, George SR. Prolonged fear responses in mice lacking dopamine D1 receptor. Brain Res 2001;892:86–93.

    PubMed  CAS  CrossRef  Google Scholar 

  78. Drago J, Gerfen CR, Westphal H, Steiner H. D1 dopamine receptor-deficient mouse: cocaine-induced regulation of immediate-early gene and substance P expression in the striatum. Neuroscience 1996;74:813–23.

    PubMed  CAS  CrossRef  Google Scholar 

  79. Clifford JJ, Tighe O, Croke DT, et al. Conservation of behavioural topography to dopamine D1-like receptor agonists in mutant mice lacking the D1A receptor implicates a D1-like receptor not coupled to adenylyl cyclase. Neuroscience 1999;93:1483–9.

    PubMed  CAS  CrossRef  Google Scholar 

  80. Drago F, Contarino A, Busa L. The expression of neuropeptide-induced excessive grooming behavior in dopamine D1 and D2 receptor-deficient mice. Eur J Pharmacol 1999;365:125–31.

    PubMed  CAS  CrossRef  Google Scholar 

  81. Xu M, Guo Y, Vorhees CV, Zhang J. Behavioral responses to cocaine and amphetamine administration in mice lacking the dopamine D1 receptor. Brain Res 2000;852:198–207.

    PubMed  CAS  CrossRef  Google Scholar 

  82. Hiroi N, Martin AB, Grande C, Alberti I, Rivera A, Moratalla R. Molecular dissection of dopamine receptor signaling. J Chem Neuroanat 2002;23:237–42.

    PubMed  CAS  CrossRef  Google Scholar 

  83. Miner LL, Drago J, Chamberlain PM, Donovan D, Uhl GR. Retained cocaine conditioned place preference in D1 receptor deficient mice. Neuroreport 1995;6:2314–6.

    PubMed  CAS  CrossRef  Google Scholar 

  84. Caine SB, Thomsen M, Gabriel KI, et al. Lack of self-administration of cocaine in dopamine D1 receptor knock-out mice. J Neurosci 2007;27:13140–50.

    PubMed  CAS  CrossRef  Google Scholar 

  85. Becker A, Grecksch G, Kraus J, et al. Loss of locomotor sensitisation in response to morphine in D1 receptor deficient mice. Naunyn Schmiedebergs Arch Pharmacol 2001;363:562–8.

    PubMed  CAS  CrossRef  Google Scholar 

  86. Miyamoto S, Mailman RB, Lieberman JA, Duncan GE. Blunted brain metabolic response to ketamine in mice lacking D(1A) dopamine receptors. Brain Res 2001;894:167–80.

    PubMed  CAS  CrossRef  Google Scholar 

  87. El-Ghundi M, George SR, Drago J, et al. Disruption of dopamine D1 receptor gene expression attenuates alcohol-seeking behavior. Eur J Pharmacol 1998;353:149–58.

    PubMed  CAS  CrossRef  Google Scholar 

  88. Crawford CA, Drago J, Watson JB, Levine MS. Effects of repeated amphetamine treatment on the locomotor activity of the dopamine D1A-deficient mouse. Neuroreport 1997;8:2523–7.

    PubMed  CAS  CrossRef  Google Scholar 

  89. Karper PE, De la Rosa H, Newman ER, et al. Role of D1-like receptors in amphetamine-induced behavioral sensitization: a study using D1A receptor knockout mice. Psychopharmacology 2002;159:407–14.

    PubMed  CAS  CrossRef  Google Scholar 

  90. McDougall SA, Reichel CM, Cyr MC, Karper PE, Nazarian A, Crawford CA. Importance of D(1) receptors for associative components of amphetamine-induced behavioral sensitization and conditioned activity: a study using D(1) receptor knockout mice. Psychopharmacology 2005;183:20–30.

    PubMed  CAS  CrossRef  Google Scholar 

  91. O‘Sullivan GJ, Dunleavy M, Hakansson K, et al. Dopamine D1 vs D5 receptor-dependent induction of seizures in relation to DARPP-32, ERK1/2 and GluR1-AMPA signalling. Neuropharmacology 2008;54:1051–61.

    PubMed  CrossRef  CAS  Google Scholar 

  92. O‘Sullivan GJ, Clifford JJ, Tomiyama K, et al. D1-like dopamine receptor-mediated function in congenic mutants with D1 vs. D5 receptor ‘knockout’. J Recept Signal Transduct Res 2004;24:107–16.

    PubMed  CrossRef  CAS  Google Scholar 

  93. Montague DM, Striplin CD, Overcash JS, Drago J, Lawler CP, Mailman RB. Quantification of D1B(D5) receptors in dopamine D1A receptor-deficient mice. Synapse 2001;39:319–22.

    PubMed  CAS  CrossRef  Google Scholar 

  94. O‘Sullivan GJ, Kinsella A, Sibley DR, Tighe O, Croke DT, Waddington JL. Ethological resolution of behavioural topography and D1-like versus D2-like agonist responses in congenic D5 dopamine receptor mutants: identification of D5:D2-like interactions. Synapse 2005;55:201–11.

    PubMed  CrossRef  CAS  Google Scholar 

  95. Cromwell HC, Berridge KC, Drago J, Levine MS. Action sequencing is impaired in D1A-deficient mutant mice. Eur J Neurosci 1998;10:2426–32.

    PubMed  CAS  CrossRef  Google Scholar 

  96. O‘Sullivan GJ, Kinsella A, Grandy DK, Tighe O, Croke DT, Waddington JL. Ethological resolution of behavioral topography and D2-like vs. D1-like agonist responses in congenic D4 dopamine receptor ‘knockouts’: identification of D4:D1-like interactions. Synapse 2006;59:107–18.

    PubMed  CrossRef  CAS  Google Scholar 

  97. Valjent E, Pascoli V, Svenningsson P, et al. Regulation of a protein phosphatase cascade allows convergent dopamine and glutamate signals to activate ERK in the striatum. Proc Natl Acad Sci USA 2005;102:491–6.

    PubMed  CAS  CrossRef  Google Scholar 

  98. Dracheva S, Xu M, Kelley KA, et al. Paradoxical locomotor behavior of dopamine D1 receptor transgenic mice. Exp Neurol 1999;157:169–79.

    PubMed  CAS  CrossRef  Google Scholar 

  99. Dracheva S, Haroutunian V. Locomotor behavior of dopamine D1 receptor transgenic/D2 receptor deficient hybrid mice. Brain Res 2001;905:142–51.

    PubMed  CAS  CrossRef  Google Scholar 

  100. Drago J, Padungchaichot P, Wong JY, et al. Targeted expression of a toxin gene to D1 dopamine receptor neurons by cre-mediated site-specific recombination. J Neurosci 1998;18:9845–57.

    PubMed  CAS  Google Scholar 

  101. Gantois I, Fang K, Jiang L, et al. Ablation of D1 dopamine receptor-expressing cells generates mice with seizures, dystonia, hyperactivity, and impaired oral behavior. Proc Natl Acad Sci USA 2007;104:4182–7.

    PubMed  CAS  CrossRef  Google Scholar 

  102. Wong JY, Padungchaichot P, Massalas JS, Drago J. Late direct and transneuronal effects in mice with targeted expression of a toxin gene to D1 dopamine receptor neurons. Neuroscience 2000;95:1035–41.

    PubMed  CAS  CrossRef  Google Scholar 

  103. Tomiyama K, Makihara Y, Yamamoto H, et al. Disruption of orofacial movement topographies in congenic mutants with dopamine D5 but not D4 receptor or DARPP-32 transduction ‘knockout’. Eur Neuropsychopharmacol 2006;16:437–45.

    PubMed  CAS  CrossRef  Google Scholar 

  104. Elliot EE, Sibley DR, Katz JL. Locomotor and discriminative-stimulus effects of cocaine in dopamine D5 receptor knockout mice. Psychopharmacology 2003;169:161–8.

    PubMed  CAS  CrossRef  Google Scholar 

  105. Homanics GE, Quinlan JJ, Firestone LL. Pharmacologic and behavioral responses of inbred C57BL/6 J and strain 129/SvJ mouse lines. Pharmacol Biochem Behav 1999;63:21–6.

    PubMed  CAS  CrossRef  Google Scholar 

  106. Ciliax BJ, Nash N, Heilman C, et al. Dopamine D(5) receptor immunolocalization in rat and monkey brain. Synapse 2000;37:125–45.

    PubMed  CAS  CrossRef  Google Scholar 

  107. Dziewczapolski G, Menalled LB, Garcia MC, Mora MA, Gershanik OS, Rubinstein M. Opposite roles of D1 and D5 dopamine receptors in locomotion revealed by selective antisense oligonucleotides. Neuroreport 1998;9:1–5.

    PubMed  CAS  CrossRef  Google Scholar 

  108. Jung MY, Skryabin BV, Arai M, et al. Potentiation of the D2 mutant motor phenotype in mice lacking dopamine D2 and D3 receptors. Neuroscience 1999;91:911–24.

    PubMed  CAS  CrossRef  Google Scholar 

  109. Kelly MA, Rubinstein M, Asa SL, et al. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 1997;19:103–13.

    PubMed  CAS  CrossRef  Google Scholar 

  110. Yamaguchi H, Aiba A, Nakamura K, et al. Dopamine D2 receptor plays a critical role in cell proliferation and proopiomelanocortin expression in the pituitary. Genes Cells 1996;1:253–68.

    PubMed  CAS  CrossRef  Google Scholar 

  111. Kelly MA, Rubinstein M, Phillips TJ, et al. Locomotor activity in D2 dopamine receptor-deficient mice is determined by gene dosage, genetic background, and developmental adaptations. J Neurosci 1998;18:3470–9.

    PubMed  CAS  Google Scholar 

  112. Boulay D, Depoortere R, Perrault G, Borrelli E, Sanger DJ. Dopamine D2 receptor knock-out mice are insensitive to the hypolocomotor and hypothermic effects of dopamine D2/D3 receptor agonists. Neuropharmacology 1999;38:1389–96.

    PubMed  CAS  CrossRef  Google Scholar 

  113. Clifford JJ, Kinsella A, Tighe O, et al. Comparative, topographically-based evaluation of behavioural phenotype and specification of D(1)-like:D(2) interactions in a line of incipient congenic mice with D(2) dopamine receptor ‘knockout’. Neuropsychopharmacology 2001;25:527–36.

    PubMed  CAS  CrossRef  Google Scholar 

  114. Fowler SC, Zarcone TJ, Vorontsova E, Chen R. Motor and associative deficits in D2 dopamine receptor knockout mice. Int J Dev Neurosci 2002;20:309–21.

    PubMed  CAS  CrossRef  Google Scholar 

  115. Tomiyama K, McNamara FN, Clifford JJ, et al. Comparative phenotypic resolution of spontaneous, D2-like and D1-like agonist-induced orofacial movement topographies in congenic mutants with dopamine D2 vs. D3 receptor ‘knockout’. Synapse 2004;51:71–81.

    PubMed  CAS  CrossRef  Google Scholar 

  116. Maldonado R, Saiardi A, Valverde O, Samad TA, Roques BP, Borrelli E. Absence of opiate rewarding effects in mice lacking dopamine D2 receptors. Nature 1997;388:586–9.

    PubMed  CAS  CrossRef  Google Scholar 

  117. Elmer GI, Pieper JO, Levy J, et al. Brain stimulation and morphine reward deficits in dopamine D2 receptor-deficient mice. Psychopharmacology 2005;182:33–44.

    PubMed  CAS  CrossRef  Google Scholar 

  118. Tran AH, Tamura R, Uwano T, et al. Altered accumbens neural response to prediction of reward associated with place in dopamine D2 receptor knockout mice. Proc Natl Acad Sci USA 2002;99:8986–91.

    PubMed  CAS  CrossRef  Google Scholar 

  119. Kruzich PJ, Grandy DK. Dopamine D2 receptors mediate two-odor discrimination and reversal learning in C57BL/6 mice. BMC Neurosci 2004;5:12.

    PubMed  CrossRef  Google Scholar 

  120. Kruzich PJ, Mitchell SH, Younkin A, Grandy DK. Dopamine D2 receptors mediate reversal learning in male C57BL/6 J mice. Cogn Affect Behav Neurosci 2006;6:86–90.

    PubMed  CrossRef  Google Scholar 

  121. Glickstein SB, Hof PR, Schmauss C. Micelacking dopamine D2 and D3 receptors have spatial working memory deficits. J Neurosci 2002;22:5619–29.

    PubMed  CAS  Google Scholar 

  122. Boulay D, Depoortere R, Oblin A, Sanger DJ, Schoemaker H, Perrault G. Haloperidol-induced catalepsy is absent in dopamine D(2), but maintained in dopamine D(3) receptor knock-out mice. Eur J Pharmacol 2000;391:63–73.

    PubMed  CAS  CrossRef  Google Scholar 

  123. Chen JF, Moratalla R, Impagnatiello F, et al. The role of the D(2) dopamine receptor (D(2)R) in A(2A) adenosine receptor (A(2A)R)-mediated behavioral and cellular responses as revealed by A(2A) and D(2) receptor knockout mice. Proc Natl Acad Sci USA 2001;98:1970–5.

    PubMed  CAS  CrossRef  Google Scholar 

  124. Zahniser NR, Simosky JK, Mayfield RD, et al. Functional uncoupling of adenosine A(2A) receptors and reduced response to caffeine in mice lacking dopamine D2 receptors. J Neurosci 2000;20:5949–57.

    PubMed  CAS  Google Scholar 

  125. Hayward MD, Low MJ. Naloxone’s suppression of spontaneous and food-conditioned locomotor activity is diminished in mice lacking either the dopamine D(2) receptor or enkephalin. Brain Res Mol Brain Res 2005;140:91–8.

    PubMed  CAS  CrossRef  Google Scholar 

  126. Glickstein SB, Schmauss C. Effect of methamphetamine on cognition and repetitive motor behavior of mice deficient for dopamine D2 and D3 receptors. Ann NY Acad Sci 2004;1025:110–8.

    PubMed  CAS  CrossRef  Google Scholar 

  127. Risbrough VB, Masten VL, Caldwell S, Paulus MP, Low MJ, Geyer MA. Differential contributions of dopamine D1, D2, and D3 receptors to MDMA-induced effects on locomotor behavior patterns in mice. Neuropsychopharmacology 2006;31:2349–58.

    PubMed  CAS  CrossRef  Google Scholar 

  128. Palmer AA, Low MJ, Grandy DK, Phillips TJ. Effects of a Drd2 deletion mutation on ethanol-induced locomotor stimulation and sensitization suggest a role for epistasis. Behav Genet 2003;33:311–24.

    PubMed  CrossRef  Google Scholar 

  129. Phillips TJ, Brown KJ, Burkhart-Kasch S, et al. Alcohol preference and sensitivity are markedly reduced in mice lacking dopamine D2 receptors. Nat Neurosci 1998;1:610–5.

    PubMed  CAS  CrossRef  Google Scholar 

  130. Welter M, Vallone D, Samad TA, Meziane H, Usiello A, Borrelli E. Absence of dopamine D2 receptors unmasks an inhibitory control over the brain circuitries activated by cocaine. Proc Natl Acad Sci USA 2007;104:6840–5.

    PubMed  CAS  CrossRef  Google Scholar 

  131. Chausmer AL, Elmer GI, Rubinstein M, Low MJ, Grandy DK, Katz JL. Cocaine-induced locomotor activity and cocaine discrimination in dopamine D2 receptor mutant mice. Psychopharmacology 2002;163:54–61.

    PubMed  CAS  CrossRef  Google Scholar 

  132. Elmer GI, Pieper JO, Rubinstein M, Low MJ, Grandy DK, Wise RA. Failure of intravenous morphine to serve as an effective instrumental reinforcer in dopamine D2 receptor knock-out mice. J Neurosci 2002;22:RC224.

    PubMed  Google Scholar 

  133. Dockstader CL, Rubinstein M, Grandy DK, Low MJ, van der Kooy D. The D2 receptor is critical in mediating opiate motivation only in opiate-dependent and withdrawn mice. Eur J Neurosci 2001;13:995–1001.

    PubMed  CAS  CrossRef  Google Scholar 

  134. Caine SB, Negus SS, Mello NK, et al. Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J Neurosci 2002;22:2977–88.

    PubMed  CAS  Google Scholar 

  135. Bozzi Y, Borrelli E. Dopamine D2 receptor signaling controls neuronal cell death induced by muscarinic and glutamatergic drugs. Mol Cell Neurosci 2002;19:263–71.

    PubMed  CAS  CrossRef  Google Scholar 

  136. Bozzi Y, Vallone D, Borrelli E. Neuroprotective role of dopamine against hippocampal cell death. J Neurosci 2000;20:8643–9.

    PubMed  CAS  Google Scholar 

  137. Fetsko LA, Xu R, Wang Y. Effects of age and dopamine D2L receptor-deficiency on motor and learning functions. Neurobiol Aging 2005;26:521–30.

    PubMed  CAS  CrossRef  Google Scholar 

  138. Smith JW, Fetsko LA, Xu R, Wang Y.Dopamine D2L receptor knockout mice display deficits in positive and negative reinforcing properties of morphine and in avoidance learning. Neuroscience 2002;113:755–65.

    PubMed  CAS  CrossRef  Google Scholar 

  139. Vargas-Perez H, Borrelli E, Diaz JL. Wheel running use in dopamine D2L receptor knockout mice. Neurosci Lett 2004;366:172–5.

    PubMed  CAS  CrossRef  Google Scholar 

  140. Vukhac KL, Sankoorikal EB, Wang Y. Dopamine D2L receptor- and age-related reduction in offensive aggression. Neuroreport 2001;12:1035–8.

    PubMed  CAS  CrossRef  Google Scholar 

  141. Fetsko LA, Xu R, Wang Y. Alterations in D1/D2 synergism may account for enhanced stereotypy and reduced climbing in mice lacking dopamine D2L receptor. Brain Res 2003;967:191–200.

    PubMed  CAS  CrossRef  Google Scholar 

  142. Xu R, Hranilovic D, Fetsko LA, Bucan M, Wang Y. Dopamine D2S and D2L receptors may differentially contribute to the actions of antipsychotic and psychotic agents in mice. Mol Psychiatry 2002;7:1075–82.

    PubMed  CAS  CrossRef  Google Scholar 

  143. Centonze D, Usiello A, Costa C, et al. Chronic haloperidol promotes corticostriatal long-term potentiation by targeting dopamine D2L receptors. J Neurosci 2004;24:8214–22.

    PubMed  CAS  CrossRef  Google Scholar 

  144. Vallone D, Pignatelli M, Grammatikopoulos G, et al. Activity, non-selective attention and emotionality in dopamine D2/D3 receptor knock-out mice. Behav Brain Res 2002;130:141–8.

    PubMed  CAS  CrossRef  Google Scholar 

  145. Xu M, Koeltzow TE, Santiago GT, et al. Dopamine D3 receptor mutant mice exhibit increased behavioral sensitivity to concurrent stimulation of D1 and D2 receptors. Neuron 1997;19:837–48.

    PubMed  CAS  CrossRef  Google Scholar 

  146. Joseph JD, Wang YM, Miles PR, et al. Dopamine autoreceptor regulation of release and uptake in mouse brain slices in the absence of D(3) receptors. Neuroscience 2002;112:39–49.

    PubMed  CAS  CrossRef  Google Scholar 

  147. Boulay D, Depoortere R, Rostene W, Perrault G, Sanger DJ. Dopamine D3 receptor agonists produce similar decreases in body temperature and locomotor activity in D3 knock-out and wild-type mice. Neuropharmacology 1999;38:555–65.

    PubMed  CAS  CrossRef  Google Scholar 

  148. Betancur C, Lepee-Lorgeoux I, Cazillis M, Accili D, Fuchs S, Rostene W. Neurotensin gene expression and behavioral responses following administration of psychostimulants and antipsychotic drugs in dopamine D(3) receptor deficient mice. Neuropsychopharmacology 2001;24:170–82.

    PubMed  CAS  CrossRef  Google Scholar 

  149. Narita M, Mizuo K, Mizoguchi H, Sakata M, Tseng LF, Suzuki T. Molecular evidence for the functional role of dopamine D3 receptor in the morphine-induced rewarding effect and hyperlocomotion. J Neurosci 2003;23:1006–12.

    PubMed  CAS  Google Scholar 

  150. Siuciak JA, Fujiwara RA. The activity of pramipexole in the mouse forced swim test is mediated by D2 rather than D3 receptors. Psychopharmacology 2004;175:163–9.

    PubMed  CAS  CrossRef  Google Scholar 

  151. McNamara FN, Clifford JJ, Tighe O, et al. Phenotypic, ethologically based resolution of spontaneous and D(2)-like vs D(1)-like agonist-induced behavioural topography in mice with congenic D(3) dopamine receptor ‘knockout’. Synapse 2002;46:19–31.

    PubMed  CAS  CrossRef  Google Scholar 

  152. Steiner H, Fuchs S, Accili D. D3 dopamine receptor-deficient mouse: evidence for reduced anxiety. Physiol Behav 1997;63:137–41.

    PubMed  CAS  CrossRef  Google Scholar 

  153. Leggio GM, Micale V, Drago F. Increased sensitivity to antidepressants of D3 dopamine receptor-deficient mice in the forced swim test (FST). Eur Neuropsychopharmacol 2008;18:271–7.

    PubMed  CAS  CrossRef  Google Scholar 

  154. Le Foll B, Diaz J, Sokoloff P. Neuroadaptations to hyperdopaminergia in dopamine D3 receptor-deficient mice. Life Sci 2005;76:1281–96.

    PubMed  CrossRef  CAS  Google Scholar 

  155. Carta AR, Gerfen CR, Steiner H. Cocaine effects on gene regulation in the striatum and behavior: increased sensitivity in D3 dopamine receptor-deficient mice. Neuroreport 2000;11:2395–9.

    PubMed  CAS  CrossRef  Google Scholar 

  156. Le Foll B, Frances H, Diaz J, Schwartz JC, Sokoloff P. Role of the dopamine D3 receptor in reactivity to cocaine-associated cues in mice. Eur J Neurosci 2002;15:2016–26.

    PubMed  CrossRef  Google Scholar 

  157. McNamara RK, Logue A, Stanford K, Xu M, Zhang J, Richtand NM. Dose-response analysis of locomotor activity and stereotypy in dopamine D3 receptor mutant mice following acute amphetamine. Synapse 2006;60:399–405.

    PubMed  CAS  CrossRef  Google Scholar 

  158. Pritchard LM, Logue AD, Hayes S, et al. 7-OH-DPAT and PD 128907 selectively activate the D3 dopamine receptor in a novel environment. Neuropsychopharmacology 2003;28:100–7.

    PubMed  CAS  CrossRef  Google Scholar 

  159. Leriche L, Schwartz JC, Sokoloff P. The dopamine D3 receptor mediates locomotor hyperactivity induced by NMDA receptor blockade. Neuropharmacology 2003;45:174–81.

    PubMed  CAS  CrossRef  Google Scholar 

  160. Pritchard LM, Newman AH, McNamara RK, et al. The dopamine D3 receptor antagonist NGB 2904 increases spontaneous and amphetamine-stimulated locomotion. Pharmacol Biochem Behav 2007;86:718–26.

    PubMed  CAS  CrossRef  Google Scholar 

  161. Le Foll B, Sokoloff P, Stark H, Goldberg SR. Dopamine D3 receptor ligands block nicotine-induced conditioned place preferences through a mechanism that does not involve discriminative-stimulus or antidepressant-like effects. Neuropsychopharmacology 2005;30:720–30.

    PubMed  Google Scholar 

  162. Koeltzow TE, Xu M, Cooper DC, et al. Alterations in dopamine release but not dopamine autoreceptor function in dopamine D3 receptor mutant mice. J Neurosci 1998;18:2231–8.

    PubMed  CAS  Google Scholar 

  163. Schwartz JC, Diaz J, Pilon C, Sokoloff P. Possible implications of the dopamine D(3) receptor in schizophrenia and in antipsychotic drug actions. Brain Res Brain Res Rev 2000;31:277–87.

    PubMed  CAS  CrossRef  Google Scholar 

  164. Diaz J, Pilon C, Le Foll B, et al. Dopamine D3 receptors expressed by all mesencephalic dopamine neurons. J Neurosci 2000;20:8677–84.

    PubMed  CAS  Google Scholar 

  165. Munafo MR, Yalcin B, Willis-Owen SA, Flint J. Association of the dopamine D4 receptor (DRD4) gene and approach-related personality traits: meta-analysis and new data. Biol Psychiatry 2008;63:197–206.

    PubMed  CAS  CrossRef  Google Scholar 

  166. Dulawa SC, Grandy DK, Low MJ, Paulus MP, Geyer MA. Dopamine D4 receptor-knock-out mice exhibit reduced exploration of novel stimuli. J Neurosci 1999;19:9550–6.

    PubMed  CAS  Google Scholar 

  167. Falzone TL, Gelman DM, Young JI, Grandy DK, Low MJ, Rubinstein M. Absence of dopamine D4 receptors results in enhanced reactivity to unconditioned, but not conditioned, fear. Eur J Neurosci 2002;15:158–64.

    PubMed  CrossRef  Google Scholar 

  168. Faraone SV, Doyle AE, Mick E, Biederman J. Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder. Am J Psychiatry 2001;158:1052–7.

    PubMed  CAS  CrossRef  Google Scholar 

  169. Grady DL, Chi HC, Ding YC, et al. High prevalence of rare dopamine receptor D4 alleles in children diagnosed with attention-deficit hyperactivity disorder. Mol Psychiatry 2003;8:536–45.

    PubMed  CAS  CrossRef  Google Scholar 

  170. Avale ME, Falzone TL, Gelman DM, Low MJ, Grandy DK, Rubinstein M. The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder. Mol Psychiatry 2004;9:718–26.

    PubMed  CAS  Google Scholar 

  171. Katz JL, Chausmer AL, Elmer GI, Rubinstein M, Low MJ, Grandy DK. Cocaine-induced locomotor activity and cocaine discrimination in dopamine D4 receptor mutant mice. Psychopharmacology 2003;170:108–14.

    PubMed  CAS  CrossRef  Google Scholar 

  172. Kruzich PJ, Suchland KL, Grandy DK. Dopamine D4 receptor-deficient mice, congenic on the C57BL/6 J background, are hypersensitive to amphetamine. Synapse 2004;53:131–9.

    PubMed  CAS  CrossRef  Google Scholar 

  173. Montkowski A, Poettig M, Mederer A, Holsboer F. Behavioural performance in three substrains of mouse strain 129. Brain Res 1997;762:12–8.

    PubMed  CAS  CrossRef  Google Scholar 

  174. Fishburn CS, Carmon S, Fuchs S. Molecular cloning and characterisation of the gene encoding the murine D4 dopamine receptor. FEBS Lett 1995;361:215–9.

    PubMed  CAS  CrossRef  Google Scholar 

  175. Gan L, Falzone TL, Zhang K, Rubinstein M, Baldessarini RJ, Tarazi FI. Enhanced expression of dopamine D(1) and glutamate NMDA receptors in dopamine D(4) receptor knockout mice. J Mol Neurosci 2004;22:167–78.

    PubMed  CAS  CrossRef  Google Scholar 

  176. Kobayashi M, Iaccarino C, Saiardi A, et al. Simultaneous absence of dopamine D1 and D2 receptor-mediated signaling is lethal in mice. Proc Natl Acad Sci USA 2004;101:11465–70.

    PubMed  CAS  CrossRef  Google Scholar 

  177. Ridray S, Griffon N, Mignon V, et al. Coexpression of dopamine D1 and D3 receptors in islands of Calleja and shell of nucleus accumbens of the rat: opposite and synergistic functional interactions. Eur J Neurosci 1998;10:1676–86.

    PubMed  CAS  CrossRef  Google Scholar 

  178. Glickstein SB, Schmauss C. Focused motor stereotypies do not require enhanced activation of neurons in striosomes. J Comp Neurol 2004;469:227–38.

    PubMed  CrossRef  Google Scholar 

Download references

Acknowledgments

The authors’ studies are supported by Science Foundation Ireland [GO’S, CO’T, JLW] and a grant for promotion of multidisciplinary research projects entitled Translational Research Network on Orofacial Neurological Disorders from the Ministry of Education, Culture, Sports, Science and Technology, Japan [KT, JLW, NK].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John L. Waddington .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

O’Sullivan, G.J., O’Tuathaigh, C., Tomiyama, K., Koshikawa, N., Waddington, J.L. (2010). Dopamine Receptors and Behavior: From Psychopharmacology to Mutant Models. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_13

Download citation