Skip to main content

Dopamine Receptor Modulation of Glutamatergic Neurotransmission

  • 2364 Accesses

Part of the The Receptors book series (REC)

Abstract

Dopamine (DA), a prominent neuromodulator in the brain, regulates neuronal excitability and synaptic transmission. These actions are effected through diverse DA receptor subtypes whose effects vary as a function of a number of factors including pre- or postsynaptic localization and the intracellular signaling cascades they activate. We have chosen the corticostriatal synapse as a model to study the interactions between DA and glutamate, the major excitatory neurotransmitter for striatal inputs. In the striatum, DA receptors modulate glutamate release via presynaptic mechanisms and synaptic responses mediated by activation of postsynaptic glutamate receptors through alterations in voltage-gated channels, phosphorylation of glutamate receptor subunits, as well as physical interactions with other receptors. The outcomes of these actions are diverse and can lead to opposite or synergistic effects. These multiple effects are important to keep the balance between striatal output pathways to coordinate sensorimotor integration.

Keywords

  • Dopamine receptors
  • Glutamate
  • Interactions
  • NMDA

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-60327-333-6_11
  • Chapter length: 22 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-1-60327-333-6
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 11.1

References

  1. Civelli O, Bunzow JR, Grandy DK. Molecular diversity of the dopamine receptors. Annu Rev Pharmacol Toxicol 1993;33:281–307.

    PubMed  CAS  CrossRef  Google Scholar 

  2. Sibley DR, Monsma FJ, Jr. Molecular biology of dopamine receptors. Trends Pharmacol Sci 1992;13(2):61–9.

    PubMed  CAS  CrossRef  Google Scholar 

  3. Neve KA, Seamans JK, Trantham-Davidson H. Dopamine receptor signaling. J Recept Signal Transduct Res 2004;24(3):165–205.

    PubMed  CAS  CrossRef  Google Scholar 

  4. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci 1994; 17:31–108.

    PubMed  CAS  CrossRef  Google Scholar 

  5. Monaghan DT, Bridges RJ, Cotman CW. The excitatory amino acid receptors: their classes, pharmacology, and distinct properties in the function of the central nervous system. Annu Rev Pharmacol Toxicol 1989;29:365–402.

    PubMed  CAS  CrossRef  Google Scholar 

  6. Nakanishi S. Metabotropic glutamate receptors: synaptic transmission, modulation, and plasticity. Neuron 1994;13(5):1031–7.

    PubMed  CAS  CrossRef  Google Scholar 

  7. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A. Magnesium gates glutamate-activated channels in mouse central neurones. Nature 1984;307(5950):462–5.

    PubMed  CAS  CrossRef  Google Scholar 

  8. Fonnum F, Storm-Mathisen J, Divac I. Biochemical evidence for glutamate as neurotransmitter in corticostriatal and corticothalamic fibres in rat brain. Neuroscience 1981;6(5):863–73.

    PubMed  CAS  CrossRef  Google Scholar 

  9. McGeer PL, McGeer EG, Scherer U, Singh K. A glutamatergic corticostriatal path? Brain Res 1977;128(2):369–73.

    PubMed  CAS  CrossRef  Google Scholar 

  10. Lindvall O, Bjorklund A, Skagerberg G. Selective histochemical demonstration of dopamine terminal systems in rat di- and telencephalon: new evidence for dopaminergic innervation of hypothalamic neurosecretory nuclei. Brain Res 1984;306(1–2):19–30.

    PubMed  CAS  CrossRef  Google Scholar 

  11. Freund TF, Powell JF, Smith AD. Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 1984;13(4):1189–215.

    PubMed  CAS  CrossRef  Google Scholar 

  12. Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 1990;13(7):259–65.

    PubMed  CAS  CrossRef  Google Scholar 

  13. Chesselet MF, Delfs JM. Basal ganglia and movement disorders: an update. Trends Neurosci 1996;19(10):417–22.

    PubMed  CAS  Google Scholar 

  14. Graybiel AM. Building action repertoires: memory and learning functions of the basal ganglia. Curr Opin Neurobiol 1995;5(6):733–41.

    PubMed  CAS  CrossRef  Google Scholar 

  15. Rolls ET. Neurophysiology and cognitive functions of the striatum. Rev Neurol (Paris) 1994;150(8–9):648–60.

    CAS  Google Scholar 

  16. Schultz W. Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 1997;7(2):191–7.

    PubMed  CAS  CrossRef  Google Scholar 

  17. Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990;250(4986):1429–32.

    PubMed  CAS  CrossRef  Google Scholar 

  18. Haber SN, Nauta WJ. Ramifications of the globus pallidus in the rat as indicated by patterns of immunohistochemistry. Neuroscience 1983;9(2):245–60.

    PubMed  CAS  CrossRef  Google Scholar 

  19. Vincent S, Hokfelt T, Christensson I, Terenius L. Immunohistochemical evidence for a dynorphin immunoreactive striato-nigral pathway. Eur J Pharmacol 1982;85(2):251–2.

    PubMed  CAS  CrossRef  Google Scholar 

  20. Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989;12(10):366–75.

    PubMed  CAS  CrossRef  Google Scholar 

  21. Steiner H, Gerfen CR. Enkephalin regulates acute D2 dopamine receptor antagonist-induced immediate-early gene expression in striatal neurons. Neuroscience 1999;88(3):795–810.

    PubMed  CAS  CrossRef  Google Scholar 

  22. Kawaguchi Y, Wilson CJ, Emson PC. Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin. J Neurosci 1990;10(10):3421–38.

    PubMed  CAS  Google Scholar 

  23. DeLong MR, Wichmann T. Circuits and circuit disorders of the basal ganglia. Arch Neurol 2007;64(1):20–4.

    PubMed  CrossRef  Google Scholar 

  24. Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 1986;9:357–81.

    PubMed  CAS  CrossRef  Google Scholar 

  25. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13(7):266–71.

    PubMed  CAS  CrossRef  Google Scholar 

  26. Le Moine C, Normand E, Guitteny AF, Fouque B, Teoule R, Bloch B. Dopamine receptor gene expression by enkephalin neurons in rat forebrain. Proc Natl Acad Sci USA 1990;87(1):230–4.

    PubMed  CrossRef  Google Scholar 

  27. Surmeier DJ, Eberwine J, Wilson CJ, Cao Y, Stefani A, Kitai ST. Dopamine receptor subtypes colocalize in rat striatonigral neurons. Proc Natl Acad Sci USA 1992;89(21): 10178–82.

    PubMed  CAS  CrossRef  Google Scholar 

  28. Surmeier DJ, Song WJ, Yan Z. Coordinated expression of dopamine receptors in neostriatal medium spiny neurons. J Neurosci 1996;16(20):6579–91.

    PubMed  CAS  Google Scholar 

  29. Ariano MA, Larson ER, Noblett KL, Sibley DR, Levine MS. Coexpression of striatal dopamine receptor subtypes and excitatory amino acid subunits. Synapse 1997;26(4):400–14.

    PubMed  CAS  CrossRef  Google Scholar 

  30. Aizman O, Brismar H, Uhlen P, et al. Anatomical and physiological evidence for D1 and D2 dopamine receptor colocalization in neostriatal neurons. Nat Neurosci 2000;3(3):226–30.

    PubMed  CAS  CrossRef  Google Scholar 

  31. Gong S, Zheng C, Doughty ML, et al. A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 2003;425(6961):917–25.

    PubMed  CAS  CrossRef  Google Scholar 

  32. Cepeda C, Andre VM, Yamazaki I, Wu N, Kleiman-Weiner M, Levine MS. Differential electrophysiological properties of dopamine D1 and D2 receptor-containing striatal medium-sized spiny neurons. Eur J Neurosci 2008;27(3):671–82.

    PubMed  CrossRef  Google Scholar 

  33. Shuen JA, Chen M, Gloss B, Calakos N. Drd1a-tdTomato BAC transgenic mice for simultaneous visualization of medium spiny neurons in the direct and indirect pathways of the basal ganglia. J Neurosci 2008;28(11):2681–5.

    PubMed  CAS  CrossRef  Google Scholar 

  34. Cepeda C, Chandler SH, Shumate LW, Levine MS. Persistent Na+ conductance in medium-sized neostriatal neurons: characterization using infrared videomicroscopy and whole cell patch-clamp recordings. J Neurophysiol 1995;74(3):1343–8.

    PubMed  CAS  Google Scholar 

  35. Surmeier DJ, Kitai ST. D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. Prog Brain Res 1993;99:309–24.

    PubMed  CAS  CrossRef  Google Scholar 

  36. Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 2007;30(5):228–35.

    PubMed  CAS  CrossRef  Google Scholar 

  37. Surmeier DJ, Bargas J, Hemmings HC, Jr., Nairn AC, Greengard P. Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron 1995;14(2):385–97.

    PubMed  CAS  CrossRef  Google Scholar 

  38. Wang H, Pickel VM. Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol 2002;442(4): 392–404.

    PubMed  CAS  CrossRef  Google Scholar 

  39. Cepeda C, Hurst RS, Altemus KL, et al. Facilitated glutamatergic transmission in the striatum of D2 dopamine receptor-deficient mice. J Neurophysiol 2001;85(2):659–70.

    PubMed  CAS  Google Scholar 

  40. Kornhuber J, Kornhuber ME. Presynaptic dopaminergic modulation of cortical input to the striatum. Life Sci 1986;39(8):699–74.

    PubMed  CAS  CrossRef  Google Scholar 

  41. Maura G, Giardi A, Raiteri M. Release-regulating D-2 dopamine receptors are located on striatal glutamatergic nerve terminals. J Pharmacol Exp Ther 1988;247(2):680–4.

    PubMed  CAS  Google Scholar 

  42. Mitchell PR, Doggett NS. Modulation of striatal [3H]-glutamic acid release by dopaminergic drugs. Life Sci 1980;26(24):2073–81.

    PubMed  CAS  CrossRef  Google Scholar 

  43. Rowlands GF, Roberts PJ. Activation of dopamine receptors inhibits calcium-dependent glutamate release from cortico-striatal terminals in vitro. Eur J Pharmacol 1980;62(2–3):241–2.

    PubMed  CAS  CrossRef  Google Scholar 

  44. Yamamoto BK, Davy S. Dopaminergic modulation of glutamate release in striatum as measured by microdialysis. J Neurochem 1992;58(5):1736–42.

    PubMed  CAS  CrossRef  Google Scholar 

  45. Flores-Hernandez J, Galarraga E, Bargas J. Dopamine selects glutamatergic inputs to neostriatal neurons. Synapse 1997;25(2):185–95.

    PubMed  CAS  CrossRef  Google Scholar 

  46. Hsu KS, Huang CC, Yang CH, Gean PW. Presynaptic D2 dopaminergic receptors mediate inhibition of excitatory synaptic transmission in rat neostriatum. Brain Res 1995;690(2):264–8.

    PubMed  CAS  CrossRef  Google Scholar 

  47. Mercuri N, Bernardi G, Calabresi P, Cotugno A, Levi G, Stanzione P. Dopamine decreases cell excitability in rat striatal neurons by pre- and postsynaptic mechanisms. Brain Res 1985;358(1–2):110–21.

    PubMed  CAS  CrossRef  Google Scholar 

  48. Umemiya M, Raymond LA. Dopaminergic modulation of excitatory postsynaptic currents in rat neostriatal neurons. J Neurophysiol 1997;78(3):1248–55.

    PubMed  CAS  Google Scholar 

  49. Bamford NS, Zhang H, Schmitz Y, et al. Heterosynaptic dopamine neurotransmission selects sets of corticostriatal terminals. Neuron 2004;42(4):653–63.

    PubMed  CAS  CrossRef  Google Scholar 

  50. Dani JA, Zhou FM. Selective dopamine filter of glutamate striatal afferents. Neuron 2004;42(4):522–4.

    PubMed  CAS  CrossRef  Google Scholar 

  51. Harvey J, Lacey MG. A postsynaptic interaction between dopamine D1 and NMDA receptors promotes presynaptic inhibition in the rat nucleus accumbens via adenosine release. J Neurosci 1997;17(14):5271–80.

    PubMed  CAS  Google Scholar 

  52. Yin HH, Lovinger DM. Frequency-specific and D2 receptor-mediated inhibition of glutamate release by retrograde endocannabinoid signaling. Proc Natl Acad Sci USA 2006;103(21):8251–6.

    PubMed  CAS  CrossRef  Google Scholar 

  53. Calabresi P, De Murtas M, Pisani A, et al. Vulnerability of medium spiny striatal neurons to glutamate: role of Na+/K+ ATPase. Eur J Neurosci 1995;7(8):1674–83.

    PubMed  CAS  CrossRef  Google Scholar 

  54. Nicola SM, Malenka RC. Modulation of synaptic transmission by dopamine and norepinephrine in ventral but not dorsal striatum. J Neurophysiol 1998;79(4):1768–76.

    PubMed  CAS  Google Scholar 

  55. Cepeda C, Levine MS. Dopamine and N-methyl-D-aspartate receptor interactions in the neostriatum. Dev Neurosci 1998;20(1):1–18.

    PubMed  CAS  CrossRef  Google Scholar 

  56. Flores-Hernandez J, Cepeda C, Hernandez-Echeagaray E, et al. Dopamine enhancement of NMDA currents in dissociated medium-sized striatal neurons: role of D1 receptors and DARPP-32. J Neurophysiol 2002;88(6):3010–20.

    PubMed  CAS  CrossRef  Google Scholar 

  57. Liu JC, DeFazio RA, Espinosa-Jeffrey A, Cepeda C, de Vellis J, Levine MS. Calcium modulates dopamine potentiation of N-methyl-D-aspartate responses: electrophysiological and imaging evidence. J Neurosci Res 2004;76(3):315–22.

    PubMed  CAS  CrossRef  Google Scholar 

  58. Greengard P. The neurobiology of slow synaptic transmission. Science 2001;294 (5544):1024–30.

    PubMed  CAS  CrossRef  Google Scholar 

  59. Bloom FE, Costa E, Salmoiraghi GC. Anesthesia and the responsiveness of individual neurons of the caudate nucleus of the cat to acetylcholine, norepinephrine and dopamine administered by microelectrophoresis. J Pharmacol Exp Ther 1965;150(2):244–52.

    PubMed  CAS  Google Scholar 

  60. Spencer HJ, Havlicek V. Alterations by anesthetic agents of the responses of rat striatal neurons to iontophoretically applied amphetamine, acetylcholine, noradrenaline, and dopamine. Can J Physiol Pharmacol 1974;52(4):808–13.

    PubMed  CAS  CrossRef  Google Scholar 

  61. Norcross K, Spehlmann R. A quantitative analysis of the excitatory and depressant effects of dopamine on the firing of caudatal neurons: electrophysiological support for the existence of two distinct dopamine-sensitive receptors. Brain Res 1978;156(1):168–74.

    PubMed  CAS  CrossRef  Google Scholar 

  62. Herrling PL, Hull CD. Iontophoretically applied dopamine depolarizes and hyperpolarizes the membrane of cat caudate neurons. Brain Res 1980;192(2):441–62.

    PubMed  CAS  CrossRef  Google Scholar 

  63. Calabresi P, Mercuri N, Stanzione P, Stefani A, Bernardi G. Intracellular studies on the dopamine-induced firing inhibition of neostriatal neurons in vitro: evidence for D1 receptor involvement. Neuroscience 1987;20(3):757–71.

    PubMed  CAS  CrossRef  Google Scholar 

  64. Hernandez-Lopez S, Bargas J, Surmeier DJ, Reyes A, Galarraga E. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 1997;17(9):3334–42.

    PubMed  CAS  Google Scholar 

  65. Cepeda C, Buchwald NA, Levine MS. Neuromodulatory actions of dopamine in the neostriatum are dependent upon the excitatory amino acid receptor subtypes activated. Proc Natl Acad Sci USA 1993;90(20):9576–80.

    PubMed  CAS  CrossRef  Google Scholar 

  66. Levine MS, Altemus KL, Cepeda C, et al. Modulatory actions of dopamine on NMDA receptor-mediated responses are reduced in D1A-deficient mutant mice. J Neurosci 1996;16(18):5870–82.

    PubMed  CAS  Google Scholar 

  67. Hernandez-Echeagaray E, Starling AJ, Cepeda C, Levine MS. Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neurons: are dendrites necessary? Eur J Neurosci 2004;19(9):2455–63.

    PubMed  CrossRef  Google Scholar 

  68. Delle Donne KT, Sesack SR, Pickel VM. Ultrastructural immunocytochemical localization of the dopamine D2 receptor within GABAergic neurons of the rat striatum. Brain Res 1997;746(1–2):239–55.

    PubMed  CAS  CrossRef  Google Scholar 

  69. Hersch SM, Ciliax BJ, Gutekunst CA, et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 1995;15(7 Pt 2):5222–37.

    PubMed  CAS  Google Scholar 

  70. Bettler B, Mulle C. Review: neurotransmitter receptors. II. AMPA and kainate receptors. Neuropharmacology 1995;34(2):123–39.

    PubMed  CAS  CrossRef  Google Scholar 

  71. Bleakman D, Lodge D. Neuropharmacology of AMPA and kainate receptors. Neuropharmacology 1998;37(10–11):1187–204.

    PubMed  CAS  CrossRef  Google Scholar 

  72. Tavalin SJ, Colledge M, Hell JW, Langeberg LK, Huganir RL, Scott JD. Regulation of GluR1 by the A-kinase anchoring protein 79 (AKAP79) signaling complex shares properties with long-term depression. J Neurosci 2002;22(8):3044–51.

    PubMed  CAS  Google Scholar 

  73. Hernandez-Lopez S, Tkatch T, Perez-Garci E, et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 2000;20(24):8987–95.

    PubMed  CAS  Google Scholar 

  74. Nicola SM, Surmeier J, Malenka RC. Dopaminergic modulation of neuronal excitability in the striatum and nucleus accumbens. Annu Rev Neurosci 2000;23:185–215.

    PubMed  CAS  CrossRef  Google Scholar 

  75. Bernard V, Somogyi P, Bolam JP. Cellular, subcellular, and subsynaptic distribution of AMPA-type glutamate receptor subunits in the neostriatum of the rat. J Neurosci 1997;17(2):819–33.

    PubMed  CAS  Google Scholar 

  76. Ghasemzadeh MB, Sharma S, Surmeier DJ, Eberwine JH, Chesselet MF. Multiplicity of glutamate receptor subunits in single striatal neurons: an RNA amplification study. Mol Pharmacol 1996;49(5):852–9.

    PubMed  CAS  Google Scholar 

  77. Stefani A, Chen Q, Flores-Hernandez J, Jiao Y, Reiner A, Surmeier DJ. Physiological and molecular properties of AMPA/Kainate receptors expressed by striatal medium spiny neurons. Dev Neurosci 1998;20(2–3):242–52.

    PubMed  CAS  CrossRef  Google Scholar 

  78. Snyder GL, Allen PB, Fienberg AA, et al. Regulation of phosphorylation of the GluR1 AMPA receptor in the neostriatum by dopamine and psychostimulants in vivo. J Neurosci 2000;20(12):4480–8.

    PubMed  CAS  Google Scholar 

  79. Banke TG, Bowie D, Lee H, Huganir RL, Schousboe A, Traynelis SF. Control of GluR1 AMPA receptor function by cAMP-dependent protein kinase. J Neurosci 2000;20(1): 89–102.

    PubMed  CAS  Google Scholar 

  80. Roche KW, O‘Brien RJ, Mammen AL, Bernhardt J, Huganir RL. Characterization of multiple phosphorylation sites on the AMPA receptor GluR1 subunit. Neuron 1996;16(6): 1179–88.

    PubMed  CAS  CrossRef  Google Scholar 

  81. Lindgren N, Usiello A, Goiny M, et al. Distinct roles of dopamine D2L and D2S receptor isoforms in the regulation of protein phosphorylation at presynaptic and postsynaptic sites. Proc Natl Acad Sci USA 2003;100(7):4305–9.

    PubMed  CAS  CrossRef  Google Scholar 

  82. Nishi A, Snyder GL, Greengard P. Bidirectional regulation of DARPP-32 phosphorylation by dopamine. J Neurosci 1997;17(21):8147–55.

    PubMed  CAS  Google Scholar 

  83. Yan Z, Hsieh-Wilson L, Feng J, et al. Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat Neurosci 1999;2(1):13–7.

    PubMed  CAS  CrossRef  Google Scholar 

  84. Price CJ, Kim P, Raymond LA. D1 dopamine receptor-induced cyclic AMP-dependent protein kinase phosphorylation and potentiation of striatal glutamate receptors. J Neurochem 1999;73(6):2441–6.

    PubMed  CAS  CrossRef  Google Scholar 

  85. Chao SZ, Ariano MA, Peterson DA, Wolf ME. D1 dopamine receptor stimulation increases GluR1 surface expression in nucleus accumbens neurons. J Neurochem 2002;83(3):704–12.

    PubMed  CAS  CrossRef  Google Scholar 

  86. Sun X, Milovanovic M, Zhao Y, Wolf ME. Acute and chronic dopamine receptor stimulation modulates AMPA receptor trafficking in nucleus accumbens neurons cocultured with prefrontal cortex neurons. J Neurosci 2008;28(16):4216–30.

    PubMed  CAS  CrossRef  Google Scholar 

  87. West AR, Grace AA. Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 2002;22(1):294–304.

    PubMed  CAS  Google Scholar 

  88. Cepeda C, Radisavljevic Z, Peacock W, Levine MS, Buchwald NA. Differential modulation by dopamine of responses evoked by excitatory amino acids in human cortex. Synapse 1992;11(4):330–41.

    PubMed  CAS  CrossRef  Google Scholar 

  89. Blank T, Nijholt I, Teichert U, et al. The phosphoprotein DARPP-32 mediates cAMP-dependent potentiation of striatal N-methyl-D-aspartate responses. Proc Natl Acad Sci USA 1997;94(26):14859–64.

    PubMed  CAS  CrossRef  Google Scholar 

  90. Cepeda C, Colwell CS, Itri JN, Chandler SH, Levine MS. Dopaminergic modulation of NMDA-induced whole cell currents in neostriatal neurons in slices: contribution of calcium conductances. J Neurophysiol 1998;79(1):82–94.

    PubMed  CAS  Google Scholar 

  91. Cepeda C, Itri JN, Flores-Hernandez J, Hurst RS, Calvert CR, Levine MS. Differential sensitivity of medium- and large-sized striatal neurons to NMDA but not kainate receptor activation in the rat. Eur J Neurosci 2001;14(10):1577–89.

    PubMed  CAS  CrossRef  Google Scholar 

  92. Chen G, Greengard P, Yan Z. Potentiation of NMDA receptor currents by dopamine D1 receptors in prefrontal cortex. Proc Natl Acad Sci USA 2004;101(8):2596–600.

    PubMed  CAS  CrossRef  Google Scholar 

  93. Chergui K, Lacey MG. Modulation by dopamine D1-like receptors of synaptic transmission and NMDA receptors in rat nucleus accumbens is attenuated by the protein kinase C inhibitor Ro 32-0432. Neuropharmacology 1999;38(2):223–31.

    PubMed  CAS  CrossRef  Google Scholar 

  94. Colwell CS, Levine MS. Excitatory synaptic transmission in neostriatal neurons: regulation by cyclic AMP-dependent mechanisms. J Neurosci 1995;15(3 Pt 1):1704–13.

    PubMed  CAS  Google Scholar 

  95. Levine MS, Li Z, Cepeda C, Cromwell HC, Altemus KL. Neuromodulatory actions of dopamine on synaptically-evoked neostriatal responses in slices. Synapse 1996;24(1):65–78.

    PubMed  CAS  CrossRef  Google Scholar 

  96. Seamans JK, Durstewitz D, Christie BR, Stevens CF, Sejnowski TJ. Dopamine D1/D5 receptor modulation of excitatory synaptic inputs to layer V prefrontal cortex neurons. Proc Natl Acad Sci USA 2001;98(1):301–6.

    PubMed  CAS  CrossRef  Google Scholar 

  97. Tseng KY, O‘Donnell P. Dopamine-glutamate interactions controlling prefrontal cortical pyramidal cell excitability involve multiple signaling mechanisms. J Neurosci 2004;24(22):5131–9.

    PubMed  CAS  CrossRef  Google Scholar 

  98. Wang J, O‘Donnell P. D(1) dopamine receptors potentiate nmda-mediated excitability increase in layer V prefrontal cortical pyramidal neurons. Cereb Cortex 2001;11(5):452–62.

    PubMed  CAS  CrossRef  Google Scholar 

  99. Zheng P, Zhang XX, Bunney BS, Shi WX. Opposite modulation of cortical N-methyl-D-aspartate receptor-mediated responses by low and high concentrations of dopamine. Neuroscience 1999;91(2):527–35.

    PubMed  CAS  CrossRef  Google Scholar 

  100. Seamans JK, Yang CR. The principal features and mechanisms of dopamine modulation in the prefrontal cortex. Prog Neurobiol 2004;74(1):1–58.

    PubMed  CAS  CrossRef  Google Scholar 

  101. Snyder GL, Fienberg AA, Huganir RL, Greengard P. A dopamine/D1 receptor/protein kinase A/dopamine- and cAMP-regulated phosphoprotein (Mr 32 kDa)/protein phosphatase-1 pathway regulates dephosphorylation of the NMDA receptor. J Neurosci 1998;18(24):10297–303.

    PubMed  CAS  Google Scholar 

  102. Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 2006;26(17):4690–700.

    PubMed  CAS  CrossRef  Google Scholar 

  103. Dunah AW, Standaert DG. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 2001;21(15):5546–58.

    PubMed  CAS  Google Scholar 

  104. Dunah AW, Sirianni AC, Fienberg AA, Bastia E, Schwarzschild MA, Standaert DG. Dopamine D1-dependent trafficking of striatal N-methyl-D-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 2004;65(1):121–9.

    PubMed  CAS  CrossRef  Google Scholar 

  105. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-D-aspartate receptors. J Biol Chem 2003;278(22):20196–202.

    PubMed  CAS  CrossRef  Google Scholar 

  106. Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002;111(2):219–30.

    PubMed  CAS  CrossRef  Google Scholar 

  107. Pei L, Lee FJ, Moszczynska A, Vukusic B, Liu F. Regulation of dopamine D1 receptor function by physical interaction with the NMDA receptors. J Neurosci 2004;24(5):1149–58.

    PubMed  CAS  CrossRef  Google Scholar 

  108. Cui C, Xu M, Atzori M. Voltage-dependent block of N-methyl-D-aspartate receptors by dopamine D1 receptor ligands. Mol Pharmacol 2006;70(5):1761–70.

    PubMed  CAS  CrossRef  Google Scholar 

  109. Scott L, Kruse MS, Forssberg H, Brismar H, Greengard P, Aperia A. Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc Natl Acad Sci USA 2002;99(3):1661–4.

    PubMed  CAS  CrossRef  Google Scholar 

  110. Scott L, Zelenin S, Malmersjo S, et al. Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci USA 2006;103(3):762–7.

    PubMed  CAS  CrossRef  Google Scholar 

  111. Changeux JP, Edelstein SJ. Allosteric mechanisms of signal transduction. Science 2005;308(5727):1424–8.

    CAS  CrossRef  PubMed  Google Scholar 

  112. Cepeda C, Colwell CS, Itri JN, Gruen E, Levine MS. Dopaminergic modulation of early signs of excitotoxicity in visualized rat neostriatal neurons. Eur J Neurosci 1998; 10(11):3491–7.

    PubMed  CAS  CrossRef  Google Scholar 

  113. Colwell CS, Levine MS. Glutamate receptor-induced toxicity in neostriatal cells. Brain Res 1996;724(2):205–12.

    PubMed  CAS  CrossRef  Google Scholar 

  114. Ariano MA, Wang J, Noblett KL, Larson ER, Sibley DR. Cellular distribution of the rat D4 dopamine receptor protein in the CNS using anti-receptor antisera. Brain Res 1997;752(1–2):26–34.

    PubMed  CAS  CrossRef  Google Scholar 

  115. Tarazi FI, Zhang K, Baldessarini RJ. Dopamine D4 receptors: beyond schizophrenia. J Recept Signal Transduct Res 2004;24(3):131–47.

    PubMed  CAS  CrossRef  Google Scholar 

  116. Rubinstein M, Cepeda C, Hurst RS, et al. Dopamine D4 receptor-deficient mice display cortical hyperexcitability. J Neurosci 2001;21(11):3756–63.

    PubMed  CAS  Google Scholar 

  117. Wang X, Zhong P, Gu Z, Yan Z. Regulation of NMDA receptors by dopamine D4 signaling in prefrontal cortex. J Neurosci 2003;23(30):9852–61.

    PubMed  CAS  Google Scholar 

  118. Kotecha SA, Oak JN, Jackson MF, et al. A D2 class dopamine receptor transactivates a receptor tyrosine kinase to inhibit NMDA receptor transmission. Neuron 2002;35(6): 1111–22.

    PubMed  CAS  CrossRef  Google Scholar 

  119. Beazely MA, Tong A, Wei WL, Van Tol H, Sidhu B, MacDonald JF. D2-class dopamine receptor inhibition of NMDA currents in prefrontal cortical neurons is platelet-derived growth factor receptor-dependent. J Neurochem 2006;98(5):1657–63.

    PubMed  CAS  CrossRef  Google Scholar 

  120. Liu XY, Chu XP, Mao LM, et al. Modulation of D2R-NR2B interactions in response to cocaine. Neuron 2006;52(5):897–909.

    PubMed  CAS  CrossRef  Google Scholar 

  121. Sakimura K, Kutsuwada T, Ito I, et al. Reduced hippocampal LTP and spatial learning in mice lacking NMDA receptor epsilon 1 subunit. Nature 1995;373(6510):151–5.

    PubMed  CAS  CrossRef  Google Scholar 

  122. Li R, Huang FS, Abbas AK, Wigstrom H. Role of NMDA receptor subtypes in different forms of NMDA-dependent synaptic plasticity. BMC Neurosci 2007;8(1):55.

    PubMed  CAS  CrossRef  Google Scholar 

  123. Liu Y, Wong TP, Aarts M, et al. NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci 2007;27(11):2846–57.

    PubMed  CAS  CrossRef  Google Scholar 

  124. von Engelhardt J, Coserea I, Pawlak V, et al. Excitotoxicity in vitro by NR2A- and NR2B-containing NMDA receptors. Neuropharmacology 2007;53(1):10–7.

    CrossRef  CAS  Google Scholar 

  125. Surmeier DJ, Reiner A, Levine MS, Ariano MA. Are neostriatal dopamine receptors co-localized? Trends Neurosci 1993;16(8):299–305.

    PubMed  CAS  CrossRef  Google Scholar 

  126. Gonon F. Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 receptors in the rat striatum in vivo. J Neurosci 1997;17(15):5972–8.

    PubMed  CAS  Google Scholar 

  127. Levesque M, Parent A. The striatofugal fiber system in primates: a reevaluation of its organization based on single-axon tracing studies. Proc Natl Acad Sci USA 2005;102(33): 11888–93.

    PubMed  CAS  CrossRef  Google Scholar 

  128. Wickens JR, Reynolds JN, Hyland BI. Neural mechanisms of reward-related motor learning. Curr Opin Neurobiol 2003;13(6):685–90.

    PubMed  CAS  CrossRef  Google Scholar 

  129. Schmidt WJ, Kretschmer BD. Behavioural pharmacology of glutamate receptors in the basal ganglia. Neurosci Biobehav Rev 1997;21(4):381–92.

    PubMed  CAS  CrossRef  Google Scholar 

  130. DiFiglia M. Excitotoxic injury of the neostriatum: a model for Huntington’s disease. Trends Neurosci 1990;13(7):286–9.

    PubMed  CAS  CrossRef  Google Scholar 

  131. Cepeda C, Ariano MA, Calvert CR, et al. NMDA receptor function in mouse models of Huntington disease. J Neurosci Res 2001;66(4):525–39.

    PubMed  CAS  CrossRef  Google Scholar 

  132. Levine MS, Klapstein GJ, Koppel A, et al. Enhanced sensitivity to N-methyl-D-aspartate receptor activation in transgenic and knockin mouse models of Huntington’s disease. J Neurosci Res 1999;58(4):515–32.

    PubMed  CAS  CrossRef  Google Scholar 

  133. Zeron MM, Hansson O, Chen N, et al. Increased sensitivity to N-methyl-D-aspartate receptor-mediated excitotoxicity in a mouse model of Huntington’s disease. Neuron 2002;33(6):849–60.

    PubMed  CAS  CrossRef  Google Scholar 

  134. Hardingham GE, Fukunaga Y, Bading H. Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 2002;5(5):405–14.

    PubMed  CAS  Google Scholar 

  135. Yang CR, Chen L. Targeting prefrontal cortical dopamine D1 and N-methyl-D-aspartate receptor interactions in schizophrenia treatment. Neuroscientist 2005;11(5):452–70.

    PubMed  CAS  CrossRef  Google Scholar 

  136. Bozzi Y, Borrelli E. Dopamine in neurotoxicity and neuroprotection: what do D2 receptors have to do with it? Trends Neurosci 2006;29(3):167–74.

    PubMed  CAS  CrossRef  Google Scholar 

  137. Day M, Wang Z, Ding J, et al. Selective elimination of glutamatergic synapses on striatopallidal neurons in Parkinson disease models. Nat Neurosci 2006;9(2):251–9.

    PubMed  CAS  CrossRef  Google Scholar 

  138. Cepeda C, Walsh JP, Hull CD, Howard SG, Buchwald NA, Levine MS. Dye-coupling in the neostriatum of the rat: I. Modulation by dopamine-depleting lesions. Synapse 1989;4(3):229–37.

    PubMed  CAS  CrossRef  Google Scholar 

  139. Galarraga E, Bargas J, Martinez-Fong D, Aceves J. Spontaneous synaptic potentials in dopamine-denervated neostriatal neurons. Neurosci Lett 1987;81(3):351–5.

    PubMed  CAS  CrossRef  Google Scholar 

  140. Neely MD, Schmidt DE, Deutch AY. Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons. Neuroscience 2007;149(2):457–64.

    PubMed  CAS  CrossRef  Google Scholar 

  141. Cepeda C, Levine MS. Where do you think you are going? The NMDA-D1 receptor trap. Sci STKE 2006;2006(333):20.

    Google Scholar 

  142. Greengard P, Allen PB, Nairn AC. Beyond the dopamine receptor: the DARPP-32/protein phosphatase-1 cascade. Neuron 1999;23(3):435–47.

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Acknowledgments

Supported by USPHS grants NS33538 and NS41574.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Levine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cepeda, C., André, V.M., Jocoy, E.L., Levine, M.S. (2010). Dopamine Receptor Modulation of Glutamatergic Neurotransmission. In: Neve, K. (eds) The Dopamine Receptors. The Receptors. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-333-6_11

Download citation