Skip to main content

VDR and RXR Subcellular Trafficking

  • Chapter
  • First Online:
Vitamin D

Part of the book series: Nutrition and Health ((NH))

  • 4106 Accesses

Abstract

During the past decade, a new dynamic perspective of vitamin D receptor (VDR) and retinoid X receptor (RXR) functions has emerged. The ability to monitor receptor movement in living cells by fluorescent techniques in real time has led to the realization that VDR, RXR, and most other nuclear receptors (NRs) and transcription factors constantly shuttle between the cytoplasm and the nucleus as well as between subnuclear compartments, and revealed the transient nature of receptor–DNA interactions. In this review, the significance of receptor trafficking is first highlighted, along with diseases associated with abnormal receptor localization. The significance of spatial and temporal control of transcription for the regulation of cell growth and differentiation is emphasized. Next, our current knowledge of the nuclear import and export machinery is summarized. Regulation of NR transport is discussed at the level of the receptor (nuclear localization sequence and nuclear export sequence modifications), at the level of import and export receptor expression, and at the level of signal-dependent changes in nuclear pore complex conformation. An understanding of how nuclear architecture and intranuclear NR mobility contribute to gene regulation concludes the review of the general aspects of NR trafficking. Then, information specific for VDR and RXR import, export, and intranuclear trafficking is presented in detail. Conclusions emphasize that understanding the spatial and temporal aspects of VDR functions is important, and express hope that rapid initial progress in this area will not be halted by economic and ideological pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

REFERENCES

  1. Lee SI, Pe’er D, Dudley AM, Church GM, Koller D (2006) Identifying regulatory mechanisms using individual variation reveals key role for chromatin modification. Proc Natl Acad Sci USA 103:14062–14067

    Article  PubMed  CAS  Google Scholar 

  2. Brockmann R, Beyer A, Heinisch JJ, Wilhelm T (2007) Posttranscriptional expression regulation: what determines translation rates? PLoS Comput Biol 3:e57

    Article  PubMed  CAS  Google Scholar 

  3. Liu ET (2005) Systems biology, integrative biology, predictive biology. Cell 121:505–506

    Article  PubMed  CAS  Google Scholar 

  4. Barsony J, McKoy W, DeGrange DA, Liberman UA, Marx SJ (1989) Selective expression of a normal action of the 1,25-dihydroxyvitamin D3 receptor in human skin fibroblasts with hereditary severe defects in multiple actions of that receptor. J Clin Invest 83:2093–2101

    Article  PubMed  CAS  Google Scholar 

  5. Bentivegna A et al (2006) Rubinstein-Taybi Syndrome: spectrum of CREBBP mutations in Italian patients. BMC. Med. Genet. 7:77

    Article  PubMed  CAS  Google Scholar 

  6. Cutress ML, Whitaker HC, Mills IG, Stewart M, Neal DE (2008) Structural basis for the nuclear import of the human androgen receptor. J Cell Sci 121:957–968

    Article  PubMed  CAS  Google Scholar 

  7. Nikolova G, Vilain E (2006) Mechanisms of disease: Transcription factors in sex determination–relevance to human disorders of sex development. Nat Clin Pract Endocrinol Metab 2:231–238

    Article  PubMed  CAS  Google Scholar 

  8. Kiriyama T et al (2008) Restoration of nuclear-import failure caused by triple A syndrome and oxidative stress. Biochem Biophys Res Commun 249:745–753

    Google Scholar 

  9. Bedard JE, Purnell JD, Ware SM (2007) Nuclear import and export signals are essential for proper cellular trafficking and function of ZIC3. Hum Mol Genet 16:187–198

    Article  PubMed  CAS  Google Scholar 

  10. Collier J, Shapiro L (2007) Spatial complexity and control of a bacterial cell cycle. Curr Opin Biotechnol 18:333–340

    Article  PubMed  CAS  Google Scholar 

  11. Burgermeister E, Seger R (2007) MAPK kinases as nucleo-cytoplasmic shuttles for PPARgamma. Cell Cycle 6:1539–1548

    Article  PubMed  CAS  Google Scholar 

  12. Birbach A et al (2002) Signaling molecules of the NF-kappa B pathway shuttle constitutively between cytoplasm and nucleus. J Biol. Chem 277:10842–10851

    Article  PubMed  CAS  Google Scholar 

  13. Aplin AE, Hogan BP, Tomeu J, Juliano RL (2002) Cell adhesion differentially regulates the nucleocytoplasmic distribution of active MAP kinases. J Cell Sci 115:2781–2790

    PubMed  CAS  Google Scholar 

  14. Meyer T, Marg A, Lemke P, Wiesner B, Vinkemeier U (2003) DNA binding controls inactivation and nuclear accumulation of the transcription factor Stat1. Genes Dev 17:1992–2005

    Article  PubMed  CAS  Google Scholar 

  15. Xiao Z, Brownawell AM, Macara IG, Lodish HF (2003) A novel nuclear export signal in Smad1 is essential for its signaling activity. J Biol Chem 278:34245–34252

    Article  PubMed  CAS  Google Scholar 

  16. O’Keefe K, Li H, Zhang Y (2003) Nucleocytoplasmic shuttling of p53 is essential for MDM2-mediated cytoplasmic degradation but not ubiquitination. Mol Cell Biol 23:6396–6405

    Article  PubMed  CAS  Google Scholar 

  17. Wadhwa R et al (2002) Hsp70 family member, mot-2/mthsp70/GRP75, binds to the cytoplasmic sequestration domain of the p53 protein. Exp Cell Res 274:246–253

    Article  PubMed  CAS  Google Scholar 

  18. Stommel JM et al (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18:1660–1672

    Article  PubMed  CAS  Google Scholar 

  19. Kanai M et al (2007) Inhibition of Crm1-p53 interaction and nuclear export of p53 by poly(ADP-ribosyl)ation. Nat. Cell Biol. 9:1175–1183

    Article  PubMed  CAS  Google Scholar 

  20. Foo RS et al (2007) Regulation of p53 tetramerization and nuclear export by ARC. Proc Natl Acad Sci USA 104:20826–20831

    Article  PubMed  CAS  Google Scholar 

  21. Nie L, Sasaki M, Maki CG (2007) Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J Biol Chem 282:14616–14625

    Article  PubMed  CAS  Google Scholar 

  22. Bonamy GM, Allison LA (2006) Oncogenic conversion of the thyroid hormone receptor by altered nuclear transport. Nucl Recept Signal 4:e008

    Article  PubMed  Google Scholar 

  23. Bunn CF et al (2001) Nucleocytoplasmic shuttling of the thyroid hormone receptor alpha. Mol Endocrinol 15:512–533

    Article  PubMed  CAS  Google Scholar 

  24. Zhou ZX, Sar M, Simental JA, Lane MV, Wilson EM (1994) A ligand-dependent bipartite nuclear targeting signal in the human androgen receptor. Requirement for the DNA-binding domain and modulation by NH2-terminal and carboxyl-terminal sequences. J Biol Chem 269:13115–13123

    PubMed  CAS  Google Scholar 

  25. Picard D, Yamamoto KR (1987) Two signals mediate hormone-dependent nuclear localization of the glucocorticoid receptor. EMBO J 6:3333–3340

    PubMed  CAS  Google Scholar 

  26. Poukka H et al (2000) The RING finger protein SNURF modulates nuclear trafficking of the androgen receptor. J Cell Sci 113(Pt 17):2991–3001

    PubMed  CAS  Google Scholar 

  27. Kaku N, Matsuda K, Tsujimura A, Kawata M (2008) Characterization of nuclear import of the domain-specific androgen receptor in association with the importin alpha/beta and Ran-guanosine 5’-triphosphate systems. Endocrinology 149:3960–3969

    Article  PubMed  CAS  Google Scholar 

  28. Palmeri D, Malim MH (1999) Importin beta can mediate the nuclear import of an arginine-rich nuclear localization signal in the absence of importin alpha. Mol Cell Biol 19:1218–1225

    PubMed  CAS  Google Scholar 

  29. Guo D et al (2006) Peroxisome proliferator-activated receptor (PPAR)-binding protein (PBP) but not PPAR-interacting protein (PRIP) is required for nuclear translocation of constitutive androstane receptor in mouse liver. Biochem Biophys Res Commun 347:485–495

    Article  PubMed  CAS  Google Scholar 

  30. Grespin ME et al (2008) Thyroid hormone receptor alpha 1 follows a cooperative CRM1/calreticulin-mediated nuclear export pathway. J Biol Chem 283(16):10568–10580

    Article  CAS  Google Scholar 

  31. Nonclercq D et al (2007) Effect of nuclear export inhibition on estrogen receptor regulation in breast cancer cells. J Mol Endocrinol 39:105–118

    Article  PubMed  CAS  Google Scholar 

  32. Zimmerman TL, Thevananther S, Ghose R, Burns AR, Karpen SJ (2006) Nuclear export of retinoid X receptor alpha in response to interleukin-1beta-mediated cell signaling: roles for JNK and SER260. J Biol Chem 281:15434–15440

    Article  PubMed  CAS  Google Scholar 

  33. Amazit L et al (2003) Subcellular localization and mechanisms of nucleocytoplasmic trafficking of steroid receptor coactivator-1. J Biol Chem 278:32195–32203

    Article  PubMed  CAS  Google Scholar 

  34. Holaska JM et al (2001) Calreticulin Is a receptor for nuclear export. J Cell Biol 152:127–140

    Article  PubMed  CAS  Google Scholar 

  35. Mingot JM, Bohnsack MT, Jakle U, Gorlich D (2004) Exportin 7 defines a novel general nuclear export pathway. EMBO J 23:3227–3236

    Article  PubMed  CAS  Google Scholar 

  36. Kino T et al (2003) Protein 14-3-3sigma interacts with and favors cytoplasmic subcellular localization of the glucocorticoid receptor, acting as a negative regulator of the glucocorticoid signaling pathway. J Biol Chem 278:25651–25656

    Article  PubMed  CAS  Google Scholar 

  37. Stade K, Ford CS, Guthrie C, Weis K (1997) Exportin 1 (Crm1p) is an essential nuclear export factor. Cell 90:1041–1050

    Article  PubMed  CAS  Google Scholar 

  38. Fornerod M, Ohno M (2002) Exportin-mediated nuclear export of proteins and ribonucleoproteins. Results Probl Cell Differ 35:67–91

    PubMed  CAS  Google Scholar 

  39. Ossareh-Nazari B, Bachelerie F, Dargemont C (1997) Evidence for a role of CRM1 in signal-mediated nuclear protein export. Science 278:141–144

    Article  PubMed  CAS  Google Scholar 

  40. Zilliacus J et al (2001) Regulation of glucocorticoid receptor activity by 14-3-3-dependent intracellular relocalization of the corepressor rip140. Mol Endocrinol 15:501–511

    Article  PubMed  CAS  Google Scholar 

  41. Masuyama H, Jefcoat SCJ, MacDonald PN (1997) The N-terminal domain of transcription factor IIB is required for direct interaction with the vitamin D receptor and participates in vitamin D-mediated transcription. Mol Endocrinol 11:218–228

    Article  PubMed  CAS  Google Scholar 

  42. Wiebel FF, Steffensen KR, Treuter E, Feltkamp D, Gustafsson JA (1999) Ligand-independent coregulator recruitment by the triply activatable OR1/retinoid X receptor-alpha nuclear receptor heterodimer [In Process Citation]. Mol Endocrinol 13:1105–1118

    Article  PubMed  CAS  Google Scholar 

  43. Terry LJ, Shows EB, Wente SR (2007) Crossing the nuclear envelope: hierarchical regulation of nucleocytoplasmic transport. Science 318:1412–1416

    Article  PubMed  CAS  Google Scholar 

  44. Heger P, Lohmaier J, Schneider G, Schweimer K, Stauber RH (2001) Qualitative highly divergent nuclear export signals can regulate export by the competition for transport cofactors in vivo. Traffic 2:544–555

    Article  PubMed  CAS  Google Scholar 

  45. Amazit L et al (2007) Regulation of SRC-3 intercompartmental dynamics by estrogen receptor and phosphorylation. Mol Cell Biol 27:6913–6932

    Article  PubMed  CAS  Google Scholar 

  46. Katagiri Y et al (2000) Modulation of retinoid signalling through NGF-induced nuclear export of NGFI-B. Nat Cell Biol 2:435–440

    Article  PubMed  CAS  Google Scholar 

  47. Mostaqul H et al (2006) Suppression of receptor interacting protein 140 repressive activity by protein arginine methylation. EMBO J 25:5094–5104

    Article  CAS  Google Scholar 

  48. Li M et al (1998) Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 44:249–254

    Article  PubMed  CAS  Google Scholar 

  49. Ruden DM, Xiao L, Garfinkel MD, Lu X (2005) Hsp90 and environmental impacts on epigenetic states: a model for the trans-generational effects of diethylstibesterol on uterine development and cancer. Hum Mol Genet 14(Spec No 1):R149–R155

    Article  PubMed  CAS  Google Scholar 

  50. Carrigan A et al (2007) An active nuclear retention signal in the glucocorticoid receptor functions as a strong inducer of transcriptional activation. J Biol Chem 282:10963–10971

    Article  PubMed  CAS  Google Scholar 

  51. Yasuhara N et al (2007) Triggering neural differentiation of ES cells by subtype switching of importin-alpha. Nat Cell Biol 9:72–79

    Article  PubMed  CAS  Google Scholar 

  52. Gluz O et al (2008) Nuclear karyopherin alpha2 expression predicts poor survival in patients with advanced breast cancer irrespective of treatment intensity. Int J Cancer 123:1433–1438

    Article  PubMed  CAS  Google Scholar 

  53. Fagerlund R, Kinnunen L, Kohler M, Julkunen I, Melen K (2005) NF-{kappa}B is transported into the nucleus by importin {alpha}3 and importin {alpha}4. J Biol Chem 280:15942–15951

    Article  PubMed  CAS  Google Scholar 

  54. Riddick G, Macara IG (2005) A systems analysis of importin-{alpha}-{beta} mediated nuclear protein import. J Cell Biol 168:1027–1038

    Article  PubMed  CAS  Google Scholar 

  55. Erickson ES, Mooren OL, Moore D, Krogmeier JR, Dunn RC (2006) The role of nuclear envelope calcium in modifying nuclear pore complex structure. Can J Physiol Pharmacol 84:309–318

    Article  PubMed  CAS  Google Scholar 

  56. Sweitzer TD, Hanover JA (1996) Calmodulin activates nuclear protein import: a link between signal transduction and nuclear transport. Proc Natl Acad Sci USA 93:14574–14579

    Article  PubMed  CAS  Google Scholar 

  57. Metivier R, Reid G, Gannon F (2006) Transcription in four dimensions: nuclear receptor-directed initiation of gene expression. EMBO Rep 7:161–167

    Article  PubMed  CAS  Google Scholar 

  58. Han SJ, Tsai SY, Tsai MJ, Omalley BW (2007) Distinct temporal and spatial activities of RU486 on progesterone receptor function in reproductive organs of ovariectomized mice. Endocrinology 148:2471–2486

    Article  PubMed  CAS  Google Scholar 

  59. Hall JM, McDonnell DP (2005) Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5:343–357

    Article  PubMed  Google Scholar 

  60. Schaufele F et al (2000) Temporally distinct and ligand-specific recruitment of nuclear receptor-interacting peptides and cofactors to subnuclear domains containing the estrogen receptor. Mol Endocrinol 14:2024–2039

    Article  PubMed  CAS  Google Scholar 

  61. Lonard DM, O’malley BW (2007) Nuclear receptor coregulators: judges, juries, and executioners of cellular regulation. Mol Cell 27:691–700

    Article  PubMed  CAS  Google Scholar 

  62. Aoyagi S, Archer TK (2008) Dynamics of coactivator recruitment and chromatin modifications during nuclear receptor mediated transcription. Mol Cell Endocrinol 280:1–5

    Article  PubMed  CAS  Google Scholar 

  63. Gruenbaum Y, Margalit A, Goldman RD, Shumaker DK, Wilson KL (2005) The nuclear lamina comes of age. Nat Rev Mol Cell Biol 6:21–31

    Article  PubMed  CAS  Google Scholar 

  64. Lanctot C, Cheutin T, Cremer M, Cavalli G, Cremer T (2007) Dynamic genome architecture in the nuclear space: regulation of gene expression in three dimensions. Nat Rev Genet 8:104–115

    Article  PubMed  CAS  Google Scholar 

  65. Zaidi SK et al (2007) Nuclear microenvironments in biological control and cancer. Nat Rev Cancer 7:454–463

    Article  PubMed  CAS  Google Scholar 

  66. Misteli T (2008) Physiological importance of RNA and protein mobility in the cell nucleus. Histochem Cell Biol 129:5–11

    Article  PubMed  CAS  Google Scholar 

  67. Gasser SM (2002) Visualizing chromatin dynamics in interphase nuclei. Science 296:1412–1416

    Article  PubMed  CAS  Google Scholar 

  68. Dundr M et al (2007) Actin-dependent intranuclear repositioning of an active gene locus in vivo. J Cell Biol 179:1095–1103

    Article  PubMed  CAS  Google Scholar 

  69. Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16:857–872

    Article  PubMed  CAS  Google Scholar 

  70. Matsuda K, Nishi M, Takaya H, Kaku N, Kawata M (2008) Intranuclear mobility of estrogen receptor alpha and progesterone receptors in association with nuclear matrix dynamics. J Cell Biochem 103:136–148

    Article  PubMed  CAS  Google Scholar 

  71. Maruvada P, Baumann CT, Hager GL, Yen PM (2003) Dynamic shuttling and intranuclear mobility of nuclear hormone receptors. J Biol Chem 278:12425–12432

    Article  PubMed  CAS  Google Scholar 

  72. Prufer K, Boudreaux J (2007) Nuclear localization of liver X receptor alpha and beta is differentially regulated. J Cell Biochem 100:69–85

    Article  PubMed  CAS  Google Scholar 

  73. Marcelli M et al (2006) Quantifying effects of ligands on androgen receptor nuclear translocation, intranuclear dynamics, and solubility. J Cell Biochem 98:770–788

    Article  PubMed  CAS  Google Scholar 

  74. Meijsing SH, Elbi C, Luecke HF, Hager GL, Yamamoto KR (2007) The ligand binding domain controls glucocorticoid receptor dynamics independent of ligand release. Mol Cell Biol 27:2442–2451

    Article  PubMed  CAS  Google Scholar 

  75. Zhu PJ et al (2008) A miniaturized glucocorticoid receptor translocation assay using enzymatic fragment complementation evaluated with qHTS. Comb Chem High Throughput Screen 11:545–559

    Article  PubMed  Google Scholar 

  76. Davis JR, Kakar M, Lim CS (2007) Controlling protein compartmentalization to overcome disease. Pharm Res 24:17–27

    Article  PubMed  CAS  Google Scholar 

  77. Torgerson TR, Colosia AD, Donahue JP, Lin YZ, Hawiger J (1998) Regulation of NF-kappa B, AP-1, NFAT, and STAT1 nuclear import in T lymphocytes by noninvasive delivery of peptide carrying the nuclear localization sequence of NF-kappa B p50. J Immunol 161:6084–6092

    PubMed  CAS  Google Scholar 

  78. Liu D et al (2004) Nuclear import of proinflammatory transcription factors is required for massive liver apoptosis induced by bacterial lipopolysaccharide. J Biol Chem 279:48434–48442

    Article  PubMed  CAS  Google Scholar 

  79. Kakar M, Davis JR, Kern SE, Lim CS (2007) Optimizing the protein switch: altering nuclear import and export signals, and ligand binding domain. J Control Release 120:220–232

    Article  PubMed  CAS  Google Scholar 

  80. Dong S, Stenoien DL, Qiu J, Mancini MA, Tweardy DJ (2004) Reduced intranuclear mobility of APL fusion proteins accompanies their mislocalization and results in sequestration and decreased mobility of retinoid X receptor alpha. Mol Cell Biol 24:4465–4475

    Article  PubMed  CAS  Google Scholar 

  81. Buentig N et al (2004) Predictive impact of retinoid X receptor-alpha-expression in renal-cell carcinoma. Cancer Biother Radiopharm 19:331–342

    Article  PubMed  CAS  Google Scholar 

  82. Barsony J, Pike JW, DeLuca HF, Marx SJ (1990) Immunocytology with microwave-fixed fibroblasts shows 1 alpha,25-dihydroxyvitamin D3-dependent rapid and estrogen-dependent slow reorganization of vitamin D receptors. J Cell Biol 111:2385–2395

    Article  PubMed  CAS  Google Scholar 

  83. Prufer K, Racz A, Lin GC, Barsony J (2000) Dimerization with retinoid X receptors promotes nuclear localization and subnuclear targeting of vitamin D receptors. J Biol Chem 275:41114–41123

    Article  PubMed  CAS  Google Scholar 

  84. Racz A, Barsony J (1999) Hormone-dependent translocation of vitamin D receptors is linked to transactivation. J Biol Chem 274:19352–19360

    Article  PubMed  CAS  Google Scholar 

  85. Michigami T et al (1999) Identification of amino acid sequence in the hinge region of human vitamin D receptor that transfers a cytosolic protein to the nucleus. J Biol Chem 274:33531–33538

    Article  PubMed  CAS  Google Scholar 

  86. Sunn KL, Cock TA, Crofts LA, Eisman JA, Gardiner EM (2001) Novel N-terminal variant of human VDR. Mol Endocrinol 15:1599–1609

    Article  PubMed  CAS  Google Scholar 

  87. Klopot A, Hance KW, Peleg S, Barsony J, Fleet JC (2006) Nucleo-cytoplasmic cycling of the vitamin D receptor in the enterocyte-like cell line, Caco-2. J Cell Biochem

    Google Scholar 

  88. Lin XF et al (2004) RXRalpha acts as a carrier for TR3 nuclear export in a 9-cis retinoic acid-dependent manner in gastric cancer cells. J Cell Sci 117:5609–5621

    Article  PubMed  CAS  Google Scholar 

  89. Yasmin R, Williams RM, Xu M, Noy N (2005) Nuclear import of the retinoid X receptor, the vitamin D receptor, and their mutual heterodimer. J Biol Chem 280:40152–40160

    Article  PubMed  CAS  Google Scholar 

  90. Putkey JA, Wecksler WR, Norman AW (1978) The interaction of 1,25-dihydroxyvitamin D3 with its intestinal mucosa receptor: kinetic parameters and structural requirements. Lipids 13:723–729

    Article  PubMed  CAS  Google Scholar 

  91. Clemens TL et al (1988) Immunocytochemical localization of the 1,25-dihydroxyvitamin D3 receptor in target cells. Endocrinology 122:1224–1230

    Article  PubMed  CAS  Google Scholar 

  92. Dornas RA et al (2007) Distribution of vitamin D3 receptor in the epididymal region of roosters (Gallus domesticus) is cell and segment specific. Gen. Comp Endocrinol 150:414–418

    Article  PubMed  CAS  Google Scholar 

  93. Prufer K, Schroder CRABJ (2000) Cell cycle dependence of vitamin D receptor expression. In: Norman AW, Boillon R, Thomasset M (eds) Vitamin D Endocrine System: structural, biological, genetic and clinical aspects. Vitamin D Workshop, Inc., Riverside, CA, 379–382

    Google Scholar 

  94. Wu-Wong JR, Nakane M, Ma J, Ruan X, Kroeger PE (2007) VDR-mediated gene expression patterns in resting human coronary artery smooth muscle cells. J Cell Biochem 100:1395–1405

    Article  PubMed  CAS  Google Scholar 

  95. Reichrath J, Mittmann M, Kamradt J, Muller SM (1997) Expression of retinoid-X receptors (-alpha,-beta,-gamma) and retinoic acid receptors (-alpha,-beta,-gamma) in normal human skin: an immunohistological evaluation. Histochem J 29:127–133

    Article  PubMed  CAS  Google Scholar 

  96. Hsieh JC et al (1998) Novel nuclear localization signal between the two DNA-binding zinc fingers in the human vitamin D receptor. J Cell Biochem 70:94–109

    Article  PubMed  CAS  Google Scholar 

  97. Yu Z, Lee CH, Chinpaisal C, Wei LN (1998) A constitutive nuclear localization signal from the second zinc-finger of orphan nuclear receptor TR2. J Endocrinol 159:53–60

    Article  PubMed  CAS  Google Scholar 

  98. Luo Z, Rouvinen J, Maenpaa PH (1994) A peptide C-terminal to the second Zn finger of human vitamin D receptor is able to specify nuclear localization. Eur J Biochem 223:381–387

    Article  PubMed  CAS  Google Scholar 

  99. Prufer K, Barsony J (2002) Retinoid X receptor dominates the nuclear import and export of the unliganded vitamin D receptor. Mol Endocrinol 16:1738–1751

    Article  PubMed  CAS  Google Scholar 

  100. Swamy N, Mohr SC, Xu W, Ray R (1999) Vitamin D receptor interacts with DnaK/heat shock protein 70: identification of DnaK interaction site on vitamin D receptor. Arch Biochem Biophys 363:219–226

    Article  PubMed  CAS  Google Scholar 

  101. Miyauchi Y et al (2005) Importin 4 is responsible for ligand-independent nuclear translocation of vitamin D receptor. J Biol Chem 280:40901–40908

    Article  PubMed  CAS  Google Scholar 

  102. Hong SH, Privalsky ML (2000) The SMRT corepressor is regulated by a MEK-1 kinase pathway: inhibition of corepressor function is associated with SMRT phosphorylation and nuclear export. Mol Cell Biol 20:6612–6625

    Article  PubMed  CAS  Google Scholar 

  103. Stenoien DL et al (2000) Subnuclear trafficking of estrogen receptor-alpha and steroid receptor coactivator-1. Mol Endocrinol 14:518–534

    Article  PubMed  CAS  Google Scholar 

  104. Stenoien DL et al (2001) FRAP reveals that mobility of oestrogen receptor-alpha is ligand- and proteasome-dependent. Nat Cell Biol 3:15–23

    Article  PubMed  CAS  Google Scholar 

  105. Akiyama TE, Baumann CT, Sakai S, Hager GL, Gonzalez FJ (2002) Selective intranuclear redistribution of PPAR isoforms by RXR alpha. Mol Endocrinol 16:707–721

    Article  PubMed  CAS  Google Scholar 

  106. Becker M et al (2002) Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep 3:1188–1194

    Article  PubMed  CAS  Google Scholar 

  107. McNally JG, Muller WG, Walker D, Wolford R, Hager GL (2000) The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:1262–1265

    Article  PubMed  CAS  Google Scholar 

  108. Barsony J, Prufer K (2002) Vitamin D receptor and retinoid X receptor interactions in motion. Vitam Horm 65:345–376

    Article  PubMed  CAS  Google Scholar 

  109. Kim S, Shevde NK, Pike JW (2005) 1,25-Dihydroxyvitamin D3 stimulates cyclic vitamin D receptor/retinoid X receptor DNA-binding, co-activator recruitment, and histone acetylation in intact osteoblasts. J Bone Miner Res 20:305–317

    Article  PubMed  CAS  Google Scholar 

  110. Masuyama H, MacDonald PN (1998) Proteasome-mediated degradation of the vitamin D receptor (VDR) and a putative role for SUG1 interaction with the AF-2 domain of VDR. J Cell Biochem 71:429–440

    Article  PubMed  CAS  Google Scholar 

  111. Prufer K, Schroder C, Hegyi K, Barsony J (2002) Degradation of RXRs influences sensitivity of rat osteosarcoma cells to the antiproliferative effects of calcitriol. Mol Endocrinol 16:961–976

    Article  PubMed  CAS  Google Scholar 

  112. Chen M, Singer L, Scharf A, von Mikecz A (2008) Nuclear polyglutamine-containing protein aggregates as active proteolytic centers. J Cell Biol 180:697–704

    Article  PubMed  CAS  Google Scholar 

  113. Zhang C et al (2003) Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. J Biol Chem 278:35325–35336

    Article  PubMed  CAS  Google Scholar 

  114. Lian JB et al (2001) Contributions of nuclear architecture and chromatin to vitamin D-dependent transcriptional control of the rat osteocalcin gene. Steroids 66:159–170

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Barsony, J. (2010). VDR and RXR Subcellular Trafficking. In: Holick, M. (eds) Vitamin D. Nutrition and Health. Humana Press. https://doi.org/10.1007/978-1-60327-303-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-303-9_6

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60327-300-8

  • Online ISBN: 978-1-60327-303-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics