Vitamin D pp 61-97 | Cite as

The Functional Metabolism and Molecular Biology of Vitamin D Action

Part of the Nutrition and Health book series (NH)


The evolution of our understanding of the biological impact of vitamin D is briefly reviewed, with a focus on the physiology and endocrinology of the vitamin D system. This chapter attempts to bring the molecular discoveries in vitamin D metabolism and mechanisms of action in to focus on known physiology and endocrinology. The latest developments on metabolism of vitamin D, the enzymes involved, and the genes responsible are presented. The impact of the molecular discoveries on current views of the importance of vitamin D in public health is also presented.

Key Words

Vitamin D vitamin D metabolism calcium intestine bone 25-hydroxyvitamin D 1,25-dihydroxyvitamin D vitamin D receptor calcium transport bone mobilization 


  1. 1.
    Mellanby E (1919) An experimental investigation on rickets. Lancet 1:407–412Google Scholar
  2. 2.
    McCollum EV, Simmonds N, Becker JE et al (1922) Studies on experimental rickets. XXI. An experimental demonstration of the existence of a vitamin which promotes calcium deposition. J Biol Chem 53:293–312Google Scholar
  3. 3.
    Huldshinsky K (1919) Heilung von rachitis durch kunstlickhe hohensonne. Deut Med Wochschr 45:712–713CrossRefGoogle Scholar
  4. 4.
    Chick H, Palzell EJ, Hume EM (1923) Studies of rickets in Vienna 1919–1922. Medical Research Council.Google Scholar
  5. 5.
    Hess A ed. (1929) In: Rickets, including osteomalacia and tetany. Lee & Febiger, Philadelphia, pp. 22–37Google Scholar
  6. 6.
    Sebrell WH, Harris RS (1954) Vitamin D group. The vitamins. Academic Press, New York, pp 1131–1266Google Scholar
  7. 7.
    Steenbock H, Black A (1924) Fat-soluble vitamins. XVII. The induction of growth-promoting and calcifying properties in a ration by exposure to ultraviolet light. J Biol Chem 61:405–422Google Scholar
  8. 8.
    Scriver CR, Reade TM, DeLuca HF et al (1978) Serum 1,25-(OH)2D3 levels in normal subjects and in patients with hereditary rickets or bone disease. N Engl J Med 299:976–979PubMedCrossRefGoogle Scholar
  9. 9.
    Fraser D, Kooh SW, Kind HP et al (1973) Pathogenesis of hereditary vitamin D-dependent rickets: An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. N Engl J Med 289:817–822PubMedCrossRefGoogle Scholar
  10. 10.
    Kim CJ, Kaplan LE, Perwad F et al (2007) Vitamin D 1α-hydroxylase deficiency. J Clin Endocrinol Metab 92(8):3177–3182PubMedCrossRefGoogle Scholar
  11. 11.
    Porcu L, Meloni A, Casula L et al (2002) A novel splicing defect (IVS6+1G—>T) in a patient with pseudovitamin D deficiency rickets. J Endocrinol Invest 25:557–560PubMedGoogle Scholar
  12. 12.
    Wang X, Zhang MYH, Miller WL et al (2002) Novel gene mutations in patients with 1α-hydroxylase deficiency that confer partial enzyme activity in vitro. J Clin Endocrinol Metab 87(6):2424–2430PubMedCrossRefGoogle Scholar
  13. 13.
    Wang JT, Lin C-J, Burridge SM et al (1998) Genetics of vitamin D 1α-hydroxylase deficiency in 17 families. Am J Hum Genet 63:1694–1702PubMedCrossRefGoogle Scholar
  14. 14.
    Fu GK, Lin D, Zhang MYH et al (1997) Cloning of human 25-hyroxyvitamin D-1α-hydroxylase and mutations causing vitamin D-dependent rickets type 1. Mol Endo 11:1961–1970CrossRefGoogle Scholar
  15. 15.
    Kitanaka S, Murayama A, Sakaki T et al (1999) No enzyme activity of 25-hydroxyvitamin D3 1α-hydroxylase gene product in pseudovitamin D deficiency rickets, including that with mild clinical manifestation. J Clin Endocrinol Metab 84:4111–4117PubMedCrossRefGoogle Scholar
  16. 16.
    Kitanaka S, Takeyama K-I, Murayama A et al (1998) Inactivating mutations in the 25-hydroxyvitamin D3 1α-hydroxylase gene in patients with pseudovitamin D-deficiency rickets. N Engl J Med 338:653–661PubMedCrossRefGoogle Scholar
  17. 17.
    Yoshida T, Monkawa T, Tenenhouse HS et al (1998) Two novel 1α-hydroxylase mutations in French-Canadians with vitamin D dependency rickets type I. Kidney Int 54:1437–1443PubMedCrossRefGoogle Scholar
  18. 18.
    Smith SJ, Rucka AK, Berry JL et al (1999) Novel mutations in the 1α-hydroxylase (P450c1) gene in three families with pseudovitamin D-deficiency rickets resulting in loss of functional enzyme activity in blood-derived macrophages. J Bone Miner Res 14:730–739PubMedCrossRefGoogle Scholar
  19. 19.
    Brommage R, Jarnagin K, DeLuca HF et al (1983) 1- hydroxylation But not 24- hydroxylation of vitamin D is required for skeletal mineralization in rats. Am J Physiol 244:E298–E304PubMedGoogle Scholar
  20. 20.
    Eil C, Lieberman UA, Rosen JF et al (1981) A cellular defect in hereditary vitamin D-dependent rickets Type II: defective nuclear uptake of 1,25-dihydroxyvitamin D in cultured skin fibroblasts. N Engl J Med 304:1588–1591PubMedCrossRefGoogle Scholar
  21. 21.
    Bell NH, Hamstra AJ, DeLuca HF (1978) Vitamin D-dependent rickets Type II: Resistance of target organs to 1,25-dihydroxyvitamin D. N Engl J Med 298:996–999PubMedCrossRefGoogle Scholar
  22. 22.
    Rosen JF, Fleischman AR, Finberg L et al (1979) Rickets with alopecia: An inborn error of vitamin D metabolism. J Pediatrics 94:729–735CrossRefGoogle Scholar
  23. 23.
    Marx SJ, Liberman UA, Eil C et al (1984) Hereditary resistance to 1,25-dihydroxyvitamin D. Rec Prog Horm Res 40:589–620PubMedGoogle Scholar
  24. 24.
    Wiese RJ, Goto H, Prahl JM et al (1993) Vitamin D-dependency rickets type II: truncated vitamin D receptor in three kindreds. Mol Cell Endocrinol 90:197–201PubMedCrossRefGoogle Scholar
  25. 25.
    Liberman UA, Marx SJ (1990) Vitamin D dependent rickets. In: Favus MJ (ed) Primer on the metabolic bone diseases and disorders of mineral metabolism, 1st edn. William Byrd Press, Richmond, 178–182Google Scholar
  26. 26.
    Liberman UA (2007) Vitamin D-resistant diseases. J Bone Miner Res 22(S2):V105–V107PubMedCrossRefGoogle Scholar
  27. 27.
    Underwood JL, DeLuca HF (1983) Vitamin D is not directly necessary for bone growth and mineralization. Am J Physiol 246:E493–E498Google Scholar
  28. 28.
    DeLuca HF (1967) Mechanism of action and metabolic fate of vitamin D. Vitam Horm 1967(25):315–367CrossRefGoogle Scholar
  29. 29.
    DeLuca HF, Schnoes HK (1983) Vitamin D: recent advances. Ann Rev Biochem 52:411–439PubMedCrossRefGoogle Scholar
  30. 30.
    Schachter D, Rosen SM (1959) Active transport of Ca45 by the small intestine and its dependence on vitamin D. Am J Physiol 196:357–362PubMedGoogle Scholar
  31. 31.
    Higaki M, Takahashi M, Suzuki T et al (1965) Metabolic activities of vitamin D in animals. III. Biogenesis of vitamin D sulfate in animal tissues. J Vitaminol 11:261–265CrossRefGoogle Scholar
  32. 32.
    Martin DL, DeLuca HF (1969) Calcium transport and the role of vitamin D. Arch Biochem Biophys 134:139–148PubMedCrossRefGoogle Scholar
  33. 33.
    Walling MW, Rothman SS (1969) Phosphate-independent, carrier-mediated active transport of calcium by rat intestine. Am J Physiol 217:1144–1148PubMedGoogle Scholar
  34. 34.
    Wasserman RH, Kallfelz FA, Comar CL (1961) Active transport of calcium by rat duodenum in vivo. Science 133:883–884PubMedCrossRefGoogle Scholar
  35. 35.
    Schachter D (1963) Vitamin D and the active transport of calcium by the small intestine. In: Wasserman RH (ed) The transfer of calcium and strontium across biological membranes. Academic Press, New York, 197–210Google Scholar
  36. 36.
    Chen TC, Castillo L, Korycka-Dahl M et al (1974) Role of vitamin D metabolites in phosphate transport of rat intestine. J Nutr 104:1056–1060PubMedGoogle Scholar
  37. 37.
    Walling MW (1977) Effects of 1,25-dihydroxyvitamin D3 on active intestinal inorganic phosphate absorption. In: Norman AW, Schaefer K, Coburn JW (eds) Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism. Walter de Gruyter, Berlin, 321–330Google Scholar
  38. 38.
    Harrison HE, Harrison HC (1962) Intestinal transport of phosphate: Action of vitamin D, calcium, and potassium. Am J Physiol 201:1007–1012Google Scholar
  39. 39.
    Nicolaysen R, Eeg-Larsen N (1956) The mode of action of vitamin D. In: Wolstenholme GWE, O’Connor CM (eds) Ciba foundation symposium on bone structure and metabolism. Little, Brown, and Co., Boston, 175–186Google Scholar
  40. 40.
    Yamamoto M, Kawanobe Y, Takahashi H et al (1984) Vitamin D deficiency and renal calcium transport in the rat. J Clin Invest 74:507–513PubMedCrossRefGoogle Scholar
  41. 41.
    Carlsson A (1952) Tracer experiments on the effect of vitamin D on the skeletal metabolism of calcium and phosphorus. Acta Physiol Scand 26:212–220PubMedCrossRefGoogle Scholar
  42. 42.
    Rasmussen H, DeLuca H, Arnaud C et al (1963) The relationship between vitamin D and parathyroid hormone. J Clin Invest 42:1940–1946PubMedCrossRefGoogle Scholar
  43. 43.
    Morii H, Lund J, Neville PF et al (1967) Biological activity of a vitamin D metabolite. Arch Biochem Biophys 120(3):508–512CrossRefGoogle Scholar
  44. 44.
    Steenbock H, Herting DC (1955) Vitamin D and growth. J Nutr 57:449–468PubMedGoogle Scholar
  45. 45.
    Cramer JW, Steenbock H (1956) Calcium metabolism and growth in the rat on a low phosphorus diet as affected by vitamin D and increases in calcium intake. Arch Biochem Biophys 63:9–13PubMedCrossRefGoogle Scholar
  46. 46.
    Darwish HM, DeLuca HF (1996) Analysis of binding of the 1,25-dihydroxyvitamin D3 receptor to positive and negative vitamin D response elements. Arch Biochem Biophys 334:223–234PubMedCrossRefGoogle Scholar
  47. 47.
    Demay MB, Kiernan MS, DeLuca HF et al (1992) Sequences in the human parathyroid hormone gene that bind the 1,25-dihydroxyvitamin D3 receptor and mediate transcriptional repression in response to 1,25-dihydroxyvitamin D3. Proc Natl Acad Sci USA 89:8097–8101PubMedCrossRefGoogle Scholar
  48. 48.
    Silver J, Naveh-Many T, Mayer H et al (1986) Regulation of vitamin D metabolites of parathyroid hormone gene transcription in vivo in the rat. J Clin Invest 78:1296–1301PubMedCrossRefGoogle Scholar
  49. 49.
    DeLuca HF (1981) The transformation of a vitamin into a hormone – the vitamin D story. Harvey Lect 75:333–379Google Scholar
  50. 50.
    DeLuca HF (1985) The vitamin D-calcium axis – 1983. In: Rubin RP, Weiss GB, Putney JW Jr (eds) Calcium in biological systems, vol 53. Plenum Publishing Corporation, New York, 491–511CrossRefGoogle Scholar
  51. 51.
    Liu S, Tang W, Zhou J et al (2006) Fibroblast growth factor 23 is a counter-regulatory phosphaturic hormone for vitamin D. J Am Soc Nephrol 17(5):1305–1315 (Epub 2006, April 5)PubMedCrossRefGoogle Scholar
  52. 52.
    Shimada T, Kakitani M, Yamazaki Y et al (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J Clin Invest 113(4):562–658Google Scholar
  53. 53.
    Bellin SA, Herting DC, Cramer JW et al (1954) The effect of vitamin D on urinary citrate in relation to calcium phosphorus and urinary phosphorus. Arch Biochem Biophys 80:18–23CrossRefGoogle Scholar
  54. 54.
    Neville PF, DeLuca HF (1966) The synthesis of [1,2-3H]-vitamin D3 and the tissue localization of a 0.25 μg (10 IU) dose per rat. Biochemistry 5:2201–2207PubMedCrossRefGoogle Scholar
  55. 55.
    Norman AW, Lund J, DeLuca HF (1964) Biologically active forms of vitamin D3 in kidney and intestine. Arch Biochem Biophys 108:12–21PubMedCrossRefGoogle Scholar
  56. 56.
    Lund J, DeLuca HF (1966) Biologically active metabolites of vitamin D3 from bone, liver, and blood serum. J Lipid Res 7:739–744PubMedGoogle Scholar
  57. 57.
    DeLuca HF (1974) Vitamin D: the vitamin and the hormone. Fed Proc 33:2211–2219PubMedGoogle Scholar
  58. 58.
    Vieth R (1999) Vitamin D supplementation, 25-hydroxyvitamin D concentrations, and safety. Am J Clin Nutr 69:842–856PubMedGoogle Scholar
  59. 59.
    Windus A, Bock F (1937) Uber das provitamin aus dem sterin der schweineschwarte. Z Physiol Chem 245:168–170Google Scholar
  60. 60.
    Esvelt RP, Schnoes HK, DeLuca HF (1978) Vitamin D3 from rat skins irradiated in vitro with ultraviolet light. Arch Biochem Biophys 188:282–286PubMedCrossRefGoogle Scholar
  61. 61.
    Windus A, Schenck F, Weder Fv (1936) Uber das antirachitisch wirksame bestrahlungs-produkt aus 7-dehydro-cholesterin. Hoppe-Seylers Z Physiol Chem 241:100–103CrossRefGoogle Scholar
  62. 62.
    Velluz L, Amiard G (1949) Chimie organique-le precalciferol. Compt Rend 228:692–694Google Scholar
  63. 63.
    Holick MF, Clark MB (1978) The photobiogenesis and metabolism of vitamin D. Fed Proc 37:2567–2574PubMedGoogle Scholar
  64. 64.
    Ponchon G, DeLuca HF, Suda T (1970) Metabolism of (1,2)3H-vitamin D3 and (26,27)3H-25-hydroxyvitamin D3 in rachitic chicks. Arch Biochem Biophys 141:397–408PubMedCrossRefGoogle Scholar
  65. 65.
    Horsting M, DeLuca HF (1969) In vitro production of 25-hydroxycholecalciferol. Biochem Biophys Commun 36:251–256CrossRefGoogle Scholar
  66. 66.
    Prosser DE, Jones G (2004) Enzymes involved in the activation and inactivation of vitamin D. Trends Biochem Sci 29(13):664–673PubMedCrossRefGoogle Scholar
  67. 67.
    Guo Y-D, Strugnell S, Back DW et al (1993) Transfected human liver cytochrome P-450 hydroxylates vitamin D analogs at different side-chain positions. Proc Natl Acad Sci USA 90:8668–8672PubMedCrossRefGoogle Scholar
  68. 68.
    Pikuleva IA, Bjorkhem I, Waterman MR (1997) Expression, purification, and enzymatic properties of recombinant human cytochrome P450c27 (CYP27). Arch Biochem Biophys 343(1):123–130PubMedCrossRefGoogle Scholar
  69. 69.
    Rosen H, Reshef A, Maeda N et al (1998) Markedly reduced bile acid synthesis but maintained levels of cholesterol and vitamin D metabolites in mice with disrupted sterol 27-hydroxylase gene. J Biol Chem 273(24):14805–14812PubMedCrossRefGoogle Scholar
  70. 70.
    Repa JJ, Mangelsdorf DJ (2000) The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Ann Rev Cell Dev Biol 16:459–481CrossRefGoogle Scholar
  71. 71.
    Ohyama Y, Yamasaki T (2004) Eight cytochrome P450 s catalyze vitamin D metabolism. Front Biosci 9:3007–3018PubMedCrossRefGoogle Scholar
  72. 72.
    Fraser DR, Kodicek E (1970) Unique biosynthesis by kidney of a biologically active vitamin D metabolite. Nature 228:764–766PubMedCrossRefGoogle Scholar
  73. 73.
    Gray R, Boyle I, DeLuca HF (1971) Vitamin D metabolism: the role of kidney tissue. Science 172:1232–1234PubMedCrossRefGoogle Scholar
  74. 74.
    Boyle IT, Miravet L, Gray RW et al (1972) The response of intestinal calcium transport to 25-hydroxy and 1,25-dihydroxyvitamin D in nephrectomized rats. Endocrinology 90:605–608PubMedCrossRefGoogle Scholar
  75. 75.
    Holick MF, Garabedian M, DeLuca HF (1972) 1,25-Dihydroxycholecalciferol: metabolite of vitamin D3 active on bone in anephric rats. Science 176:1146–1147PubMedCrossRefGoogle Scholar
  76. 76.
    Wong RG, Norman AW, Reddy CR et al (1972) Biologic effects of 1,25-dihydroxycholecalciferol (a highly active vitamin D metabolite) in acutely uremic rats. J Clin Invest 51:1287–1291PubMedCrossRefGoogle Scholar
  77. 77.
    Dardenne O, Prud’Homme J, Arabian A (2001) Targeted inactivation of the 25-hyroxyvitamin D3-1α-hydroxylase gene (CYP27B1) creates an animal model of pseudovitamin D-deficiency rickets. Endocrinology 142:3135–3141PubMedCrossRefGoogle Scholar
  78. 78.
    Panda DK, Miao D, Tremblay ML et al (2001) Targeted ablation of the 25-hydroxyvitamin D 1α-hydroxylase enzyme: Evidence for skeletal, reproductive, and immune dysfunction. Proc Natl Acad Sci USA 98(13):7498–7503PubMedCrossRefGoogle Scholar
  79. 79.
    Norman AW (2008) From vitamin D to hormone D: fundamentals of the vitamin D endocrine system essential for good health. Am J Clin Nutr 88:491S–499SPubMedCrossRefGoogle Scholar
  80. 80.
    Bikle DD, Chang S, Crumrine D et al (2004) 25 Hydroxyvitamin D 1α-hydroxylase is required for optimal epidermal differentiation and permeability barrier homeostasis. J Invest Dermatol 122:984–992PubMedCrossRefGoogle Scholar
  81. 81.
    Hewison M, Adams JS (2005) Extra-renal 1α-hydroxylase activity and human disease. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin D, vol 79, 2nd edn. Elsevier Academic Press, San Diego, CA, 1379–1400CrossRefGoogle Scholar
  82. 82.
    Barbour GL, Coburn JW, Slatopolsky E et al (1981) Hypercalcemia in an anephric patient with sarcoidosis: Evidence for extrarenal generation of 1,25-dihydroxyvitamin D. N Engl J Med 305(8):440–443PubMedCrossRefGoogle Scholar
  83. 83.
    Jones G, Ramshaw H, Zhang A et al (1999) Expression and activity of vitamin D-metabolizing cytochrome P450 s (CYP1α and CYP24) in human nonsmall cell lung carcinomas. Endocrinology 140(7):3303–3310PubMedCrossRefGoogle Scholar
  84. 84.
    Reeve L, Tanaka Y, DeLuca HF (1983) Studies on the site of 1,25-dihydroxyvitamin D3 synthesis in vivo. J Biol Chem 258(6):3615–3617PubMedGoogle Scholar
  85. 85.
    Shultz TD, Fox J, Heath H 3rd et al (1983) Do tissues other than the kidney produce 1,25-dihydroxyvitamin D3 in vivo? A reexamination. Proc Natl Acad Sci USA 80(6):1746–1750PubMedCrossRefGoogle Scholar
  86. 86.
    Vanhooke JL, Prahl JM, Kimmel-Jehan C et al (2006) CYP27B1 null mice with LacZ reporter gene display no 25-hydroxyvitamin D3-1α-hydroxylase promoter activity in the skin. Proc Natl Acad Sci USA 103(1):75–80PubMedCrossRefGoogle Scholar
  87. 87.
    Pedersen JI, Shobaki HH, Holmberg I et al (1983) 25-Hydroxyvitamin D3-24-hydroxylase in rat kidney mitochondria. J Biol Chem 258:742–746PubMedGoogle Scholar
  88. 88.
    Omdahl JL, Morris HA, May BK (2002) Hydroxylase enzymes of the vitamin D pathway: Expression, function, and regulation. Annu Rev Nutr 22:139–166PubMedCrossRefGoogle Scholar
  89. 89.
    Akiyoshi-Shibata M, Sakaki T, Ohyama Y (1994) Further oxidation of hydroxycalcidiol by calcidiol 24-hydroxylase. Eur J Biochem 224:335–343PubMedCrossRefGoogle Scholar
  90. 90.
    Beckman MJ, Tadikonda P, Werner E et al (1996) Human 25-hydroxyvitamin D3-24-hydroxylase, a multicatalytic enzyme. Biochemistry 35:8465–8472PubMedCrossRefGoogle Scholar
  91. 91.
    Makin G, Lohnes D, Byford V et al (1989) Target cell metabolism of 1,25-dihydroxyvitamin D3 to calcitroic acid. Evidence for a pathway in kidney and bone involving 24-oxidation. Biochem J 262(1):173–180PubMedGoogle Scholar
  92. 92.
    Reddy GS, Tserng KY (1989) Calcitroic acid end product of renal metabolism of 1,25-dihydroxyvitamin D3 through C-24 oxidation pathway. Biochemistry 28(4):1763–1769PubMedCrossRefGoogle Scholar
  93. 93.
    Esvelt RP, Rivizzani MA, Paaren HE (1981) Synthesis of calcitroic acid, a metabolite of 1,25-dihydroxycholecalciferol. J Org Chem 46:456–458CrossRefGoogle Scholar
  94. 94.
    Onisko BL, Esvelt RP, Schnoes HK et al (1980) Metabolites of 1,25-dihydroxyvitamin D3 in rat bile. Biochemistry 19:4124–4130PubMedCrossRefGoogle Scholar
  95. 95.
    Rasmussen H, Bordier P (1978) Vitamin D and bone. Metab Bone Dis Rel Res 1:7–13CrossRefGoogle Scholar
  96. 96.
    Ornoy A, Goodwin D, Noff D, Edelstein S (1978) 24,25-dihydroxyvitamin D is a metabolite of vitamin D essential for bone formation. Nature 276:517–519PubMedCrossRefGoogle Scholar
  97. 97.
    Henry HL, Taylor AN, Norman AW (1977) Response of chick parathyroid glands to the vitamin D metabolites 1,25-dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3. J Nutr 107:1918–1926PubMedGoogle Scholar
  98. 98.
    Garabedian M, Lieberherr M, Nguyen TM et al (1978) In vitro production and activity of 24,25-dihydroxycholecalciferol in cartilage and calvarium. Clin Orthop Relat Res 135:241–248PubMedGoogle Scholar
  99. 99.
    Henry HL, Norman AW (1978) Vitamin D: two dihydroxylated metabolites are required for normal chicken egg hatchability. Science 201:835–837PubMedCrossRefGoogle Scholar
  100. 100.
    Jarnagin K, Brommage R, DeLuca HF (1983) 1-But not 24-hydroxylation of vitamin D is required for growth and reproduction in rats. Am J Physiol 244:E290–E297PubMedGoogle Scholar
  101. 101.
    Halloran BP, DeLuca HF, Barthell E (1981) An examination of the importance of 24-hydroxylation to the function of vitamin D during early development. Endocrinology 108:2067–2071PubMedCrossRefGoogle Scholar
  102. 102.
    Miller SC, Halloran BP, DeLuca HF (1981) Studies on the role of 24-hydroxylation of vitamin D in the mineralization of cartilage and bone of vitamin D-deficient rats. Calcif Tissue Int 33:489–497PubMedCrossRefGoogle Scholar
  103. 103.
    St-Arnaud R, Arabian A, Glorieux FH (1996) Abnormal bone development in mice deficient for the vitamin D 24-hydroxylase gene. ASBMR 18th Annual Meeting. Seattle, WA, p S126Google Scholar
  104. 104.
    St-Arnaud R, Arabian A, Travers R (2000) Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology 141(7):2658–2666PubMedCrossRefGoogle Scholar
  105. 105.
    Brown EM, Gamba G, Riccardi D (1993) Cloning and characterization of an extracellular Ca+2-sensing receptor from bovine parathyroid. Nature 366:575–580PubMedCrossRefGoogle Scholar
  106. 106.
    Omdahl JL, Gray RW, Boyle IT et al (1972) Regulation of metabolism of 25-hydroxycholecalciferol metabolism by kidney tissue in vitro by dietary calcium. Nat N Biol 237:63–64Google Scholar
  107. 107.
    Garabedian M, Holick MF, DeLuca HF et al (1972) Control of 25-hydroxycholecalciferol metabolism by the parathyroid glands. Proc Natl Acad Sci USA 69:1673–1676PubMedCrossRefGoogle Scholar
  108. 108.
    Fraser DR, Kodicek E (1973) Regulation of 25-hydroxycholecalciferol-1-hydroxylase activity in kidney by parathyroid hormone. Nat N Biol 241:163–166Google Scholar
  109. 109.
    Garabedian M, Tanaka Y, Holick MF et al (1974) Response of intestinal calcium transport and bone calcium mobilization to 1,25-dihydroxyvitamin D3 in thyroparathyroidectomized rats. Endocrinology 94:1022–1027PubMedCrossRefGoogle Scholar
  110. 110.
    Forte LR, Nickols GA, Anast CS (1976) Renal adenylate cyclase and the interrelationship between parathyroid hormone and vitamin D in the regulation of urinary phosphate and adenosine cyclin 3ʹ,5ʹmonophosphate excretion. J Clin Invest 57:559–568PubMedCrossRefGoogle Scholar
  111. 111.
    Tanaka Y, DeLuca HF (1973) The control of 25-hydroxyvitamin D metabolism by inorganic phosphorus. Arch Biochem Biophys 154:566–574PubMedCrossRefGoogle Scholar
  112. 112.
    Baxter LA, DeLuca HF (1976) Stimulation of 25-hydroxyvitamin D3-1-hydroxylase by phosphate depletion. J Biol Chem 251:3158–3161PubMedGoogle Scholar
  113. 113.
    Hughes MR, Brumbaugh PF, Haussler MR (1975) Regulation of serum 1,25-dihydroxyvitamin D3 by calcium and phosphate in the rat. Science 190:578–580PubMedCrossRefGoogle Scholar
  114. 114.
    Gray RW (1987) Evidence that somatomedins mediate the effect of hypophosphatemia to increase serum 1,25-dihydroxyvitamin D3 levels in rats. Endocrinology 121:504–512PubMedCrossRefGoogle Scholar
  115. 115.
    Halloran BP, Spencer EM (1988) Dietary phosphorus and 1,25-dihydroxyvitamin D metabolism: Influence of insulin-like growth factor-1. Endocrinology 123:1225–1229PubMedCrossRefGoogle Scholar
  116. 116.
    Spencer EM, Tobiassen O (1981) The mechanism of the action of growth hormone on vitamin D metabolism in the rat. Endocrinology 108:1064–1070PubMedCrossRefGoogle Scholar
  117. 117.
    Gray RW (1981) Control of plasma 1,25-(OH)2-vitamin D concentrations by calcium and phosphorus in the rat: effects of hypophysectomy. Calcif Tissue Int 33:485–488PubMedCrossRefGoogle Scholar
  118. 118.
    Pahuja DN, DeLuca HF (1981) Role of the hypophysis in the regulation of vitamin D metabolism. Mol Cell Endocrinol 23:345–350PubMedCrossRefGoogle Scholar
  119. 119.
    Brown DJ, Spanos E, MacIntyre I (1980) Role of pituitary hormones in regulating renal vitamin D metabolism in man. Br Med J 280:277PubMedCrossRefGoogle Scholar
  120. 120.
    Liu S, Zhou J, Tang W (2006) Pathogenic role of Fgf23 in Hyp mice. Am J Physiol Endocrinol Metab 291(1):E38–E49PubMedCrossRefGoogle Scholar
  121. 121.
    Tanaka Y, Frank H, DeLuca HF (1973) Biological activity of 1,25-dihydroxyvitamin D3 in the rat. Endocrinology 92:417–422PubMedCrossRefGoogle Scholar
  122. 122.
    Tanaka Y, Lorenc RS, DeLuca HF (1975) The role of 1,25-dihydroxyvitamin D3 and parathyroid hormone in the regulation of chick renal 25-hydroxyvitamin D3-24-hydroxylase. Arch Biochem Biophys 171:521–526CrossRefGoogle Scholar
  123. 123.
    Tanaka Y, DeLuca HF (1974) Stimulation of 24,25-dihydroxyvitamin D3 production by 1,25-dihydroxyvitamin D3. Science 183:1198–1200PubMedCrossRefGoogle Scholar
  124. 124.
    Shinki T, Jin CH, Nishimura A (1992) Parathyroid hormone inhibits 25-hydroxyvitamin D3-24-hydroxylase mRNA expression stimulated by 1,25-dihydroxyvitamin D3 in rat kidney but not in intestine. J Biol Chem 267:13757–13762PubMedGoogle Scholar
  125. 125.
    Zierold C, Darwish HM, DeLuca HF (1994) Identification of a vitamin D-response element in the rat calcidiol (25-hydroxyvitamin D3) 24-hydroxylase gene. Proc Natl Acad Sci USA 91:900–902PubMedCrossRefGoogle Scholar
  126. 126.
    Ohyama Y, Ozono K, Uchida M (1994) Identification of a vitamin D-responsive element in the 5'-flanking region of the rat 25-hydroxyvitamin D3 24-hydroxylase gene. J Biol Chem 269:10545–10550PubMedGoogle Scholar
  127. 127.
    Wu SX, Finch J, Zhong M (1996) Expression of the renal 25-hydroxyvitamin D-24-hydroxylase gene-regulation by dietary phosphate. Am J Phys 40:F203–F208Google Scholar
  128. 128.
    Brenza HL, Kimmel-Jehan C, Jehan F (1998) Parathyroid hormone activation of the 25-hydroxyvitamin D3-1α-hydroxylase gene promoter. Proc Natl Acad Sci USA 95:1387–1391PubMedCrossRefGoogle Scholar
  129. 129.
    Brenza HL (2002) Regulation of 25-hydroxyvitamin D3-1α-hydroxylase gene expression. Ph.D. Thesis. University of Wisconsin-Madison.Google Scholar
  130. 130.
    Strom M, Sandgren ME, Brown TA et al (1989) 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA 86:9770–9773PubMedCrossRefGoogle Scholar
  131. 131.
    Healy KD, Zella JB, Prahl JM et al (2003) Regulation of the murine renal vitamin D receptor by 1,25-dihydroxyvitamin D3 and calcium. Proc Natl Acad Sci USA 100(17):9733–9737PubMedCrossRefGoogle Scholar
  132. 132.
    Sandgren ME, DeLuca HF (1990) Serum calcium and vitamin D regulate 1,25-dihydroxyvitamin D3 receptor concentration in rat kidney in vivo. Proc Natl Acad Sci USA 87(11):4312–4314PubMedCrossRefGoogle Scholar
  133. 133.
    Goff JP, Reinhardt TA, Beckman MJ et al (1990) Contrasting effects of exogenous 1,25-dihydroxyvitamin D [1,25-(OH)2D] versus endogenous 1,25-(OH)2D, induced by dietary calcium restriction, on vitamin D receptors. Endocrinology 126(2):1031–1035PubMedCrossRefGoogle Scholar
  134. 134.
    Beckman MJ, DeLuca HF (2002) Regulation of renal vitamin D receptor is an important determinant of 1α,25-dihydroxyvitamin D3 levels in vivo. Arch Biochem Biophys 401(1):44–52PubMedCrossRefGoogle Scholar
  135. 135.
    Naveh-Many T, Silver J (1990) Regulation of parathyroid hormone gene expression by hypocalcemia, hypercalcemia, and vitamin D in the rat. J Clin Invest 86:1313–1319PubMedCrossRefGoogle Scholar
  136. 136.
    Stumpf WE, Sar M, DeLuca HF (1981) Sites of action of 1,25(OH)2 vitamin D3 identified by thaw-mount autoradiography. In: Cohn DV, Talmage RV, Matthews JL (eds) Hormonal control of calcium metabolism. Excerpta Medica, Amsterdam-Oxford-Princeton, pp 222–229Google Scholar
  137. 137.
    Brumbaugh PF, Haussler MR (1975) Nuclear and cytoplasmic binding components for vitamin D metabolites. Life Sci 16:353PubMedCrossRefGoogle Scholar
  138. 138.
    Kream BE, Reynolds RD, Knutson JC (1976) Intestinal cytosol binders of 1,25-dihydroxyvitamin D3 and 25-hydroxyvitamin D3. Arch Biochem Biophys 176:779–787PubMedCrossRefGoogle Scholar
  139. 139.
    Baker AR, McDonnell DP, Hughes M (1988) Cloning and expression of full-length cDNA encoding human vitamin D receptor. Proc Natl Acad Sci USA 85:3294–3298PubMedCrossRefGoogle Scholar
  140. 140.
    Burmester JK, Wiese RJ, Maeda N et al (1988) Structure and regulation of the rat 1,25-dihydroxyvitamin D3 receptor. Proc Natl Acad Sci USA 85:9499–9502PubMedCrossRefGoogle Scholar
  141. 141.
    Pike JW, Shevde NK (2005) The vitamin D receptor. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin D, vol 11, 2nd edn. Elsevier Academic Press, San Diego, CA, pp 167–191Google Scholar
  142. 142.
    McDonnell DP, Scott RA, Kerner SA et al (1989) Functional domains of the human vitamin D3 receptor regulate osteocalcin gene expression. Mol Endocrinol 3:635–644PubMedCrossRefGoogle Scholar
  143. 143.
    Umesono K, Murakami KK, Thompson CC (1991) Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65:1255–1266PubMedCrossRefGoogle Scholar
  144. 144.
    Zella LA, Kim S, Shevde NK et al (2006) Enhancers located within two introns of the vitamin D receptor gene mediate transcriptional autoregulation by 1,25-dihydroxyvitamin D3 . Mol Endocrinol 20(6):1231–1247PubMedCrossRefGoogle Scholar
  145. 145.
    Kim S, Yamazaki M, Zella LA (2006) Activation of receptor activator of NF-kappaB ligand gene expression by 1,25-dihydroxyvitamin D3 is mediated through multiple long-range enhancers. Mol Cell Biol 26(17):6469–6486PubMedCrossRefGoogle Scholar
  146. 146.
    Carlberg C, Seuter S (2007) The vitamin D receptor. Dermatol Clin 25:515–523PubMedCrossRefGoogle Scholar
  147. 147.
    Kutuzova GD, DeLuca HF (2004) Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D3 stimulated calcium absorption and clarify its immunomodulatory properties. Arch Biochem Biophys 432(2):152–166PubMedCrossRefGoogle Scholar
  148. 148.
    Kutuzova GD, DeLuca HF (2007) 1,25-Dihydroxyvitamin D3 regulates genes responsible for detoxification in intestine. Toxicol Appl Pharmacol 218(1):37–44PubMedCrossRefGoogle Scholar
  149. 149.
    Chen KS, DeLuca HF (1995) Cloning of the human 1α,25-dihydroxyvitamin D3 24-hydroxylase gene promoter and identification of two vitamin D-responsive elements. Biochim Biophys Acta 1263(1):1–9PubMedGoogle Scholar
  150. 150.
    Carlberg C, Dunlop TW, Frank C (2005) Molecular basis of the diversity of vitamin D target genes. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin D, vol 18, 2nd edn. Elsevier Academic Press, San Diego, CA, pp 313–325CrossRefGoogle Scholar
  151. 151.
    Nagai M, Sato N (1999) Reciprocal gene expression of osteoclastogenesis inhibitory factor and osteoclast differentiation factor regulates osteoclast formation. Biochem Biophys Res Commun 257:719–723PubMedCrossRefGoogle Scholar
  152. 152.
    Strom M, Sandgren ME, Brown TA et al (1989) 1,25-Dihydroxyvitamin D3 up-regulates the 1,25-dihydroxyvitamin D3 receptor in vivo. Proc Natl Acad Sci USA 86(24):9770–9773PubMedCrossRefGoogle Scholar
  153. 153.
    Naveh-Many T, Marx R, Keshet E (1990) Regulation of 1,25-dihydroxyvitamin D3 receptor gene expression by 1,25-dihydroxyvitamin D3 in the parathyroid in vivo. J Clin Invest 86(6):1968–1975PubMedCrossRefGoogle Scholar
  154. 154.
    Huang L, Xu J, Wood DJ et al (2000) Gene expression of osteoprotegerin ligand, osteoprotegerin, and receptor activator of NF-kappaB in giant cell tumor of bone. Possible involvement in tumor cell-induced osteoclast-like cell formation. Am J Pathol 156(3):761–767PubMedCrossRefGoogle Scholar
  155. 155.
    Shevde NK, Plum LA, Clagett-Dame M et al (2002) A potent analog of 1α,25-dihydroxyvitamin D3 selectively induced bone formation. Proc Natl Acad Sci USA 99(21):13487–13491PubMedCrossRefGoogle Scholar
  156. 156.
    Fleet JC (2004) Rapid, membrane-initiated actions of 1,25 dihydroxyvitamin D: What are they and what do they mean? J Nutr 134:3215–3218PubMedGoogle Scholar
  157. 157.
    Norman AW, Mizwicki MT, Norman DPG (2004) Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev Drug Discov 3(1):27–41PubMedCrossRefGoogle Scholar
  158. 158.
    Demay MB (2005) Mouse models of vitamin D receptor ablation. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin D, vol 20, 2nd edn. Elsevier Academic Press, San Diego, CA, pp 341–349CrossRefGoogle Scholar
  159. 159.
    Nemere I, Yoshimoto Y, Norman AW (1984) Calcium transport in perfused duodena from normal chicks: enhancement within fourteen minutes of exposure to 1,25-dihydroxyvitamin D3. Endocrinology 115(4):1476–1483PubMedCrossRefGoogle Scholar
  160. 160.
    Nagpal S, Na S, Rathnachalam R (2005) Noncalcemic actions of vitamin D receptor ligands. Endocrine Rev 26(5):662–687CrossRefGoogle Scholar
  161. 161.
    Dusso AS, Negrea L, Gunawardhana S et al (1991) On the mechanisms for the selective action of vitamin D analogs. Endocrinology 128(4):1687–1692PubMedCrossRefGoogle Scholar
  162. 162.
    Binderup L, Binderup E, Godtfredsen WO (2005) Development of new vitamin D analogs. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin D, vol 84, 2nd edn. Elsevier Academic Press, San Diego, CA, pp 1489–1510CrossRefGoogle Scholar
  163. 163.
    Kissmeyer A-M, Binderup L (1991) Calcipotriol (MC 903): pharmacokinetics in rats and biological activities of metabolites. A comparative study with 1,25(OH)2D3. Biochem Pharmacol 41(11):1601–1606PubMedCrossRefGoogle Scholar
  164. 164.
    Segaert S, Duvold LB (2006) Calcipotriol cream: a review of its use in the management of psoriasis. J Dermatolog Treat 17(6):327–337PubMedCrossRefGoogle Scholar
  165. 165.
    Sicinski RR, Prahl JM, Smith CM (1998) New 1α,25-dihydroxy-19-norvitamin D3 compounds of high biological activity: synthesis and biological evaluation of 2-hydroxymethyl, 2-methyl, and 2-methylene analogues. J Med Chem 41(23):4662–4674PubMedCrossRefGoogle Scholar
  166. 166.
    Ke HZ, Qi H, Crawford DT et al (2005) A new vitamin D analog, 2MD, restores trabecular and cortical bone mass and strength in ovariectomized rats with established osteopenia. J Bone Miner Res 20:1742–1755PubMedCrossRefGoogle Scholar
  167. 167.
    Plum LA, Fitzpatrick LA, Ma X et al (2006) 2MD, a new anabolic agent for osteoporosis treatment. Osteoporosis Int 17(5):704–715CrossRefGoogle Scholar
  168. 168.
    Slatopolsky E, Finch JL, Brown AJ (2007) Effect of 2-methylene-19-nor(20S)-1α-hydroxy-bishomopregnacalciferol (2MbisP), an analog of vitamin D, on secondary hyperparathyroidism. J Bone Miner Res 22:686–694PubMedCrossRefGoogle Scholar
  169. 169.
    DeLuca HF, Plum LA, Clagett-Dame M (2007) Selective analogs of 1α,25-dihydroxyvitamin D3 for the study of specific functions of vitamin D. J Steroid Biochem Mol Biol 103(3–5):263–268PubMedCrossRefGoogle Scholar
  170. 170.
    Brown AJ, Slatopolsky E (2007) Drug insight: vitamin D analogs in the treatment of secondary hyperparathyroidism in patients with chronic kidney disease. Nat Clin Pract Endocrinol Metab 3(2):134–144PubMedCrossRefGoogle Scholar
  171. 171.
    Slatopolsky E, Finch J, Ritter C et al (1995) A new analog of calcitriol, 19-nor-1,25(OH)2D2, suppresses parathyroid hormone secretion in uremic rats in the absence of hypercalcemia. Am J Kidney Dis 26(5):852–860PubMedCrossRefGoogle Scholar
  172. 172.
    Tocchini-Valentini G, Rochel N, Wurtz JM et al (2001) Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands. Proc Natl Acad Sci USA 98(10):5491–5496PubMedCrossRefGoogle Scholar
  173. 173.
    Tocchini-Valentini G, Rochel N, Wurtz J-M et al (2004) Crystal structures of the vitamin D nuclear receptor liganded with the vitamin D side chain analogues calcipotriol and seocalcitol, receptor agonists of clinical importance. Insights into a structural basis for the switching of calcipotriol to a receptor antagonist by further side chain modification. J Med Chem 47:1956–1961PubMedCrossRefGoogle Scholar
  174. 174.
    Rochel N, Wurtz JM, Mitschler A et al (2000) The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand. Molec Cell 5:173–179PubMedCrossRefGoogle Scholar
  175. 175.
    Vanhooke JL, Benning MM, Bauer CB et al (2004) Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D3 hormone analogues and a LXXLL-containing coactivator peptide. Biochemistry 43(14):4101–4110PubMedCrossRefGoogle Scholar
  176. 176.
    Vanhooke JL, Tadi BP, Benning MM et al (2007) New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 with conformationally restricted side chains: Evaluation of biological activity and structural determination of VDR-bound conformations. Arch Biochem Biophys 460:161–165PubMedCrossRefGoogle Scholar
  177. 177.
    Van den Bemd GC, Pols HA, Birkenhäger JC et al (1996) Conformational change and enhanced stabilization of the vitamin D receptor by the 1,25-dihydroxyvitamin D3 analog KH1060. Proc Natl Acad Sci USA 93(20):10685–10690PubMedCrossRefGoogle Scholar
  178. 178.
    Väisänen S, Juntunen K, Itkonen A et al (1997) Conformational studies of human vitamin-D receptor by antipeptide antibodies, partial proteolytic digestion and ligand binding. Eur J Biochem 248(1):156–162PubMedCrossRefGoogle Scholar
  179. 179.
    Castillo AI, Sánchez-Martinez R, Jiménez-Lara AM et al (2006) Characterization of vitamin D receptor ligands with cell-specific and dissociated activity. Mol Endocrinol 20(12):3093–3104PubMedCrossRefGoogle Scholar
  180. 180.
    Yamamoto H, Shevde NK, Warrier A et al (2003) 2-Methylene-19-nor-(20S)-1,25-dihydroxyvitamin D3 potently stimulates gene-specific DNA binding of the vitamin D receptor in osteoblasts. J Biol Chem 278(34):31756–31765PubMedCrossRefGoogle Scholar
  181. 181.
    Peleg S, Sastry M, Collins ED (1995) Distinct conformational changes induced by 20-epi analogues of 1α,25-dihydroxyvitamin D3 are associated with enhanced activation of the vitamin D receptor. J Biol Chem 270(18):10551–10558PubMedCrossRefGoogle Scholar
  182. 182.
    Christakos S, Norman AW (1979) Studies on the mode of action of calciferol. XVIII. Evidence for a specific high affinity binding protein for 1,25 dihydroxyvitamin D3 in chick kidney and pancreas. Biochem Biophys Res Commun 89(1):56–63PubMedCrossRefGoogle Scholar
  183. 183.
    Veldman CM, Cantorna MT, DeLuca HF (2000) Expression of 1,25-dihydroxyvitamin D3 receptor in the immune system. Arch Biochem Biophys 374(2):334–338PubMedCrossRefGoogle Scholar
  184. 184.
    Evans KN, Bulmer JN, Kilby MD et al (2004) Vitamin D and placental-decidual function. J Soc Gynecol Investig 11(5):263–271PubMedCrossRefGoogle Scholar
  185. 185.
    Merke J, Milde P, Lewicka S et al (1989) Identification and regulation of 1,25-dihydroxyvitamin D3 receptor activity and biosynthesis of 1,25-dihydroxyvitamin D3. Studies in cultured bovine aortic endothelial cells and human dermal capillaries. J Clin Invest 83(6):1903–1915PubMedCrossRefGoogle Scholar
  186. 186.
    Perez A, Raab R, Chen TC (1996) Safety and efficacy of oral calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol 134(6):1070–1078PubMedCrossRefGoogle Scholar
  187. 187.
    Pèrez A, Chen TC, Turner A (1996) Efficacy and safety of topical calcitriol (1,25-dihydroxyvitamin D3) for the treatment of psoriasis. Br J Dermatol 134(2):238–246PubMedCrossRefGoogle Scholar
  188. 188.
    Yang S, Smith C, Prahl JM et al (1993) Vitamin D deficiency suppresses cell-mediated immunity in vivo. Arch Biochem Biophys 303(1):98–106PubMedCrossRefGoogle Scholar
  189. 189.
    Yang S, Smith C, DeLuca HF (1993) 1α,25-Dihydroxyvitamin D3 and 19-nor-1α,25-dihydroxyvitamin D2 suppress immunoglobulin production and thymic lymphocyte proliferation in vivo. Biochim Biophys Acta 1158(3):279–286PubMedCrossRefGoogle Scholar
  190. 190.
    Niino M, Fukazawa T, Kikuchi S (2008) Therapeutic potential of vitamin D for multiple sclerosis. Curr Med Chem 15:499–505PubMedCrossRefGoogle Scholar
  191. 191.
    DeLuca HF, Cantorna MT (2001) Vitamin D: its role and uses in immunology. FASEB J 15(14):2569–2585CrossRefGoogle Scholar
  192. 192.
    Tai K, Need AG, Horowitz M, Chapman IM (2008) Vitamin D, glucose, insulin, and insulin sensitivity. Nutrition 24:269–285Google Scholar
  193. 193.
    Abe J, Nakamura K, Takita Y (1990) Prevention of immunological disorders in MRL/l mice by a new synthetic analogue of vitamin D3: 22-oxa-1α,25-dihydroxyvitamin D3. J Nutr Sci Vitaminol (Tokyo) 6(1):21–31CrossRefGoogle Scholar
  194. 194.
    Deeb K, Trump DL, Johnson CS (2007) Vitamin D signaling pathways in cancer: potential for anticancer therapeutics. Nat Rev Cancer 7(9):684–700PubMedCrossRefGoogle Scholar
  195. 195.
    Garland CF, Gorham ED, Mohr SB (2007) Vitamin D and prevention of breast cancer: pooled analysis. J Steroid Biochem Mol Biol 103(3–5):708–711PubMedCrossRefGoogle Scholar
  196. 196.
    Gorham ED, Garland CF, Garland FC (2007) Optimal vitamin D status for colorectal cancer prevention: a quantitative meta analysis. Am J Prev Med 32(3):210–216PubMedCrossRefGoogle Scholar
  197. 197.
    Munger KL, Levin LI, Hollis BW (2007) Elevated serum 25-hydroxyvitamin D predicts a decreased risk of MS. Mult Scler 13:280–307Google Scholar
  198. 198.
    Giovannucci E, Liu Y, Hollis BW et al (2008) 25-Hydroxyvitamin D and risk of myocardial infarction in men: a prospective study. Arch Intern Med 168(11):1174–1180PubMedCrossRefGoogle Scholar
  199. 199.
    Sayre RM, Dowdy JC, Shepherd JG (2007) Reintroduction of a classic vitamin D ultraviolet source. J Steroid Biochem Mol Biol 103(3–5):686–688PubMedCrossRefGoogle Scholar
  200. 200.
    Rajakumar K, Greenspan SL, Thomas SB et al (2007) SOLAR ultraviolet radiation and vitamin D a historical perspective. Am J Public Health 97(10):1746–1754PubMedCrossRefGoogle Scholar
  201. 201.
    Lim HW, Carucci JA, Spencer JM et al (2007) Commentary: A responsible approach to maintaining adequate serum vitamin D levels. J Am Acad Dermatol 57:594–595PubMedCrossRefGoogle Scholar
  202. 202.
    Rosenstreich S, Rich C, Volwiler W (1971) Deposition in and release of vitamin D3 from body fat: evidence for a storage site in the rat. J Clin Invest 50:679–687PubMedCrossRefGoogle Scholar
  203. 203.
    Vieth R (1990) The mechanisms of vitamin D toxicity. Bone Miner 11(3):267–272PubMedCrossRefGoogle Scholar
  204. 204.
    Shepard RM, DeLuca HF (1980) Determination of vitamin D and its metabolites in plasma. Methods Enzymol 67:393–413PubMedCrossRefGoogle Scholar
  205. 205.
    MacLaughlin J, Holick MF (1985) Aging decreases the capacity of human skin to produce vitamin D3 . J Clin Invest 76(4):1536–1538PubMedCrossRefGoogle Scholar
  206. 206.
    Aksnes L, Rodland O, Aarskog D (1988) Serum levels of vitamin D3 and 25-hydroxyvitamin D3 in elderly and young adults. Bone Min 3:351–357Google Scholar
  207. 207.
    Clemens TL, Adams JS, Henderson SL et al (1981) Increased skin pigment reduces the capacity of skin to synthesise vitamin D3. Lancet 1(8263):74–76Google Scholar
  208. 208.
    Matsuoka LY, Wortsman J, Haddad JG et al (1990) Skin types and epidermal photosynthesis of vitamin D3. J Am Acad Dermatol 23:525–526PubMedCrossRefGoogle Scholar
  209. 209.
    Matsuoka LY, Wortsman J, Haddad JG et al (1991) Racial pigmentation and the cutaneous synthesis of vitamin D. Arch Dermatol 127:536–538PubMedCrossRefGoogle Scholar
  210. 210.
    Liel Y, Ulmer E, Shary J et al (1988) Low circulating vitamin D in obesity. Calcif Tissue Int 43:199–201PubMedCrossRefGoogle Scholar
  211. 211.
    Wortsman J, Matsuoka LY, Chen TC et al (2000) Decreased bioavailability of vitamin D in obesity. Am J Clin Nutr 72:690–693 (Erratum: Am J Clin Nutr 2003;77:1342.)PubMedGoogle Scholar
  212. 212.
    Matsuoka LY, Ide L, Wortsman J et al (1987) Sunscreens suppress cutaneous vitamin D3 synthesis. J Clin Endocrinol Metab 64:1165–1168PubMedCrossRefGoogle Scholar
  213. 213.
    Loré F, Di Cairano G, Periti P et al (1982) Effect of the administration of 1,25-dihydroxyvitamin D3 on serum levels of 25-hydroxyvitamin D in postmenopausal osteoporosis. Calcif Tissue Int 34:539–541PubMedCrossRefGoogle Scholar
  214. 214.
    Baran DT, Milne ML (1983) 1,25 Dihydroxyvitamin D-induced inhibition of [3H]-25 hydroxyvitamin D production by the rachitic rat liver in vitro. Calcif Tissue Int 35(4–5):461–464PubMedCrossRefGoogle Scholar
  215. 215.
    Bell NH, Shaw S, Turner RT (1984) Evidence that 1,25-dihydroxyvitamin D3 inhibits the hepatic production of 25-hydroxyvitamin D in man. J Clin Invest 74:1540–1544PubMedCrossRefGoogle Scholar
  216. 216.
    Halloran BP, Bikle DD, Levens MJ et al (1986) Chronic 1,25-dihydroxyvitamin D3 administration in the rat reduces the serum concentration of 25-hydroxyvitamin D by increasing metabolic clearance rate. J Clin Invest 78:622–628PubMedCrossRefGoogle Scholar
  217. 217.
    Berlin T, Björkhem I (1987) On the regulatory importance of 1,25-dihydroxyvitamin D3 and dietary calcium on serum levels of 25-hydroxyvitamin D3 in rats. Biochem Biophys Res Commun 144(2):1055–1058PubMedCrossRefGoogle Scholar
  218. 218.
    Halloran BP, Castro ME (1989) Vitamin D kinetics in vivo: effect of 1,25-dihydroxyvitamin D administration. Am J Physiol 256:E686–E691PubMedGoogle Scholar
  219. 219.
    Hahn TJ, Birge SJ, Scharp CR et al (1972) Phenobarbital-induced alterations in vitamin D metabolism. J Clin Invest 51(4):742–748Google Scholar
  220. 220.
    Hahn TJ, Hendin BA, Scharp CR et al (1972) Effect of chronic anticonvulsant therapy on serum 25-hydroxycalciferol levels in adults. N Engl J Med 287(18):900–904PubMedCrossRefGoogle Scholar
  221. 221.
    Hahn TJ, Hendin BA, Scharp CR (1975) Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N Engl J Med 292:550–554CrossRefGoogle Scholar
  222. 222.
    Stamp TCB, Round JM, Rowe DJF et al (1972) Plasma levels and therapeutic effect of 25-hydroxycholecalciferol in epileptic patients taking anticonvulsant drugs. Br Med J 4:9–12PubMedCrossRefGoogle Scholar
  223. 223.
    Bouillon R, Reynaert J, Claes JH (1975) The effect of anticonvulsant therapy on serum levels of 25-hydroxy-vitamin D3 calcium, and parathyroid hormone. J Clin Endocrinol Metab 41:1130–1135PubMedCrossRefGoogle Scholar
  224. 224.
    Jubitz W, Haussler MR, McCain TA (1977) Plasma 1,25-dihydroxyvitamin D levels in patients receiving anticonvulsant drugs. J Clin Endocrinol Metab 44(4):617–621CrossRefGoogle Scholar
  225. 225.
    Gascon-Barré M, Delvin EE, Glorieux FH et al (1981) Influence of vitamin D3 status, phenobarbital, and diphenylhydantoin treatment on the plasma 25-hydroxyvitamin D3 concentrations in the rat. Can J Physiol Pharmacol 59(10):1073–1081PubMedCrossRefGoogle Scholar
  226. 226.
    Sambrook P (2005) Glucocorticoids and vitamin D. In: Feldman D, Pike JW, Glorieux FH, (eds) Vitamin D, vol 73, 2nd edn. Elsevier Academic Press, San Diego, CA, pp 1239–1251CrossRefGoogle Scholar
  227. 227.
    Preece MA, Tomlinson S, Ribot CA et al (1975) Studies of vitamin D deficiency in man. Quart J Med, New Series XLIV(176):575–589Google Scholar
  228. 228.
    Baker MR, Peacock M, Nordin BEC (1980) The decline in vitamin D status with age. Age Ageing 9:249–252PubMedCrossRefGoogle Scholar
  229. 229.
    Omdahl JL, Garry PJ, Hunsaker LA (1982) Nutritional status in a healthy elderly population: vitamin D. Am J Clin Nutr 36:1225–1233PubMedGoogle Scholar
  230. 230.
    Need AG, Morris HA, Horowitz M et al (1993) Effects of skin thickness, age, body fat, and sunlight on serum 25-hydroxyvitamin D. Am J Clin Nutr 58:882–885PubMedGoogle Scholar
  231. 231.
    Preece MA, Ford JA, McIntosh WB (1973) Vitamin D deficiency among Asian immigrants to Britain. Lancet i(7809):907–910CrossRefGoogle Scholar
  232. 232.
    Bell NH, Greene A, Epstein S et al (1985) Evidence of alteration of the vitamin D-endocrine system in blacks. J Clin Invest 76:470–473PubMedCrossRefGoogle Scholar
  233. 233.
    Pietrek J, Kokot F, Kuska J (1978) Kinetics of serum 25-hydroxyvitamin D in patients with acute renal failure. Am J Clin Nutr 31:1919–1926PubMedGoogle Scholar
  234. 234.
    Hidiroglou M, Williams CJ, Ivan M (1979) Pharmacokinetics and amounts of 25-hydroxycholecalciferol in sheep affected by osteodystrophy. J Dairy Sci 62:567–571PubMedCrossRefGoogle Scholar
  235. 235.
    Khamiseh G, Vaziri ND, Oveisi F (1991) Vitamin D absorption, plasma concentration and urinary excretion of 25-hydroxyvitamin D in nephritic syndrome. Proc Soc Exp Biol Med 196:210–213PubMedGoogle Scholar
  236. 236.
    Fox J, Della-Santina CP (1989) Oral verapamil and calcium and vitamin D metabolism in rats: effect of dietary calcium. Am J Physiol 257:E632–E638PubMedGoogle Scholar
  237. 237.
    Clements MR, Johnson L, Fraser DR (1987) A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature 325:62–65PubMedCrossRefGoogle Scholar
  238. 238.
    Vieth R, Fraser D, Kooh SW (1987) Low dietary calcium reduces 25-hydroxycholecalciferol in plasma of rats. J Nutr 117:914–918PubMedGoogle Scholar
  239. 239.
    Dominguez JH, Gray RW, Lemann J Jr. (1976) Dietary phosphate deprivation in women and men: Effects on mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-vitamin D. J Clin Endocrinol Metab 45(5):1056–1068CrossRefGoogle Scholar
  240. 240.
    Bell NH, Epstein S, Greene A (1985) Evidence for alteration of the vitamin D-endocrine system in obese subjects. J Clin Invest 76:370–373PubMedCrossRefGoogle Scholar
  241. 241.
    Compston JE, Vedi S, Ledger JE (1981) Vitamin D status and bone histomorphometry in gross obesity. Am J Clin Nutr 34:2359–32363PubMedGoogle Scholar
  242. 242.
    Hey H, Stokholm KH, Lund BJ (1982) Vitamin D deficiency in obese patients and changes in circulating vitamin D metabolites following jejunoileal bypass. Int J Obes 6:473–479PubMedGoogle Scholar
  243. 243.
    Kubota M, Ohno J, Shiina Y et al (1982) Vitamin D metabolism in pregnant rabbits: Differences between the maternal and fetal response to administration of large amounts of vitamin D3. Endocrinology 110(6):1950–1956PubMedCrossRefGoogle Scholar
  244. 244.
    Delvin EE, Gilbert M, Pere MC et al (1988) In vivo metabolism of calcitriol in the pregnant rabbit doe. J Dev Physiol 10:451–459PubMedGoogle Scholar
  245. 245.
    Paulson SK, DeLuca HF, Battaglia F (1987) Plasma levels of vitamin D metabolites in fetal and pregnant ewes. Proc Soc Exp Biol Med 185(3):267–271PubMedGoogle Scholar
  246. 246.
    Paulson SK, Ford KK, Langman CB (1990) Pregnancy does not alter the metabolic clearance of 1,25-dihydroxyvitamin D in rats. Am J Physiol 258:E158–E162PubMedGoogle Scholar
  247. 247.
    Omdahl JL, Jelinek G, Eaton RP (1977) Kinetic analysis of 25-hydroxyvitamin D3 metabolism in strontium-induced rickets in the chick. J Clin Invest 60:1202–1210PubMedCrossRefGoogle Scholar
  248. 248.
    Gupta MM, Round JM, Stamp TCB (1974) Spontaneous cure of vitamin-D deficiency in Asians during summer in Britain. Lancet 1(7858):586–588PubMedCrossRefGoogle Scholar
  249. 249.
    Haddad JG, Stamp TCB (1974) Circulating 25-hydroxyvitamin D in man. Am J Med 57:57–62PubMedCrossRefGoogle Scholar
  250. 250.
    Stamp TCB, Round JM (1974) Seasonal changes in human plasma levels of 25-hydroxyvitamin D. Nature 247:563–565PubMedCrossRefGoogle Scholar
  251. 251.
    McLaughlin M, Raggatt PR, Brown DJ et al (1974) Seasonal variations in serum 25-hydroxycholecalciferol in healthy people. Lancet 1(7857):536–538PubMedCrossRefGoogle Scholar
  252. 252.
    Pettifor JM, Ross FP, Solomon L (1978) Seasonal variation in serum 25-hydroxycholecalciferol concentrations in elderly South African patients with fractures of femoral neck. Br Med J 1(6116):826–827PubMedCrossRefGoogle Scholar
  253. 253.
    Hidiroglou M, Proulx JG, Roubos D (1979) 25-Hydroxyvitamin D in plasma of cattle. J Dairy Sci 62:1076–1080PubMedCrossRefGoogle Scholar
  254. 254.
    Juttmann JR, Visser TJ, Buurman C et al (1981) Seasonal fluctuations in serum concentrations of vitamin D metabolites in normal subjects. Br Med J 282:1349–1352CrossRefGoogle Scholar
  255. 255.
    Chesney RW, Rosen JF, Hamstra AJ (1981) Absence of seasonal variation in serum concentrations of 1,25-dihydroxyvitamin D despite a rise in 25-hydroxyvitamin-D in summer. J Clin Endocrinol Metab 53(1):139–142PubMedCrossRefGoogle Scholar
  256. 256.
    Smith BS, Wright H (1984) Relative contributions of diet and sunshine to the overall vitamin D status of the grazing ewe. Vet Rec 115:537–538PubMedCrossRefGoogle Scholar
  257. 257.
    Van der Klis FRM, Jonxis JHP, van Doormaal JJ et al (1996) Changes in vitamin-D metabolites and parathyroid hormone in plasma following cholecalciferol administration to pre- and postmenopausal women in the Netherlands in early spring and to postmenopausal women in Curaçao. Br J Nutr 75:637–646CrossRefGoogle Scholar
  258. 258.
    O’Leary TJ, Jones G, Yip A et al (1986) The effects of chloroquine on serum 1,25-dihydroxyvitamin D and calcium metabolism in sarcoidosis. N Engl J Med 315(12):727–730PubMedCrossRefGoogle Scholar
  259. 259.
    Barré PE, Gascon-Barré M, Meakins JL et al (1987) Hydroxychloroquine treatment of hypercalcemia in a patient with sarcoidosis undergoing hemodialysis. Am J Med 82(6):1259–1262PubMedCrossRefGoogle Scholar
  260. 260.
    Adams JS, Diz MM, Sharma OP (1989) Effective reduction in the serum 1,25-dihydroxyvitamin D and calcium concentration in sarcoidosis-associated hypercalcemia with short-course chloroquine therapy. Ann Intern Med 111(5):437–438PubMedGoogle Scholar
  261. 261.
    Henry HL (2005) The 25-hydroxyvitamin D 1α-hydroxylase. In: Feldman D, Pike JW, Glorieux FH (eds) Vitamin D, vol 5, 2nd edn. Elsevier Academic Press, San Diego, CA, pp 69–83CrossRefGoogle Scholar
  262. 262.
    Baksi SN, Kenny AD (1981) Vitamin D metabolism in Japanese quail: gonadal hormones and dietary calcium effects. Am J Physiol 241(4):E275–E280PubMedGoogle Scholar
  263. 263.
    Tanaka Y, Castillo L, DeLuca HF (1976) Control of renal vitamin D hydroxylases in birds by sex hormones. Proc Natl Acad Sci USA 73(8):2701–2705PubMedCrossRefGoogle Scholar
  264. 264.
    Haussler MR, Hughes MR, McCain TA et al (1977) 1,25-Dihydroxyvitamin D3: Mode of action in intestine and parathyroid glands, Assay in humans and isolation of its glycoside from Solanum Malacoxylon. Calcif Tissue Res 22(Suppl):1–18PubMedCrossRefGoogle Scholar
  265. 265.
    Pike JW, Toverud S, Boass A et al (1977) Circulating 1α,25-(OH)2D during physiological states of calcium stress. In: Norman A, Schaefer K, Coburn J, DeLuca H, Fraser D, Grigoleit HG, Herrath DV (eds) Vitamin D: biochemical, chemical, and clinical aspects related to calcium metabolism (Proceedings of the third workshop on vitamin D). De Gruyter, New York, pp 187–189Google Scholar
  266. 266.
    Gallagher JC, Riggs BL, Eisman J et al (1979) Intestinal calcium absorption and serum vitamin D metabolites in normal subjects and osteoporotic patients – Effect of age and dietary calcium. J Clin Invest 64(3):729–736PubMedCrossRefGoogle Scholar
  267. 267.
    Chesney RW, Rosen JF, Hamstra AJ et al (1980) Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am J Dis Child 134(2):135–139PubMedGoogle Scholar
  268. 268.
    Lund B, Clausen N, Lund B et al (1980) Age-dependent variations in serum 1,25-dihydroxyvitamin D in childhood. Acta Endocrinol 94:426–429PubMedGoogle Scholar
  269. 269.
    Seino Y, Shimotsuji T, Yamaoka K et al (1980) Plasma 1,25-dihydroxyvitamin D concentrations in cords, newborns, infants, and children. Calcif Tissue Int 30:1–3PubMedCrossRefGoogle Scholar
  270. 270.
    Gray RW (1981) Effects of age and sex on the regulation of plasma 1,25-(OH)2D by phosphorus in the rat. Calcif Tissue Int 33(5):477–484PubMedCrossRefGoogle Scholar
  271. 271.
    Gray RW, Gambert SR (1982) Effect of age on plasma 1,25-(OH)2 vitamin D in the rat. Age 5(2):54–56CrossRefGoogle Scholar
  272. 272.
    Manolagas SC, Culler FL, Howard JE et al (1983) The cytoreceptor assay for 1,25-dihydroxyvitamin D and its application to clinical studies. J Clin Endcrinol Metab 56:751–760CrossRefGoogle Scholar
  273. 273.
    Armbrecht HJ, Forte LR, Halloran BP (1984) Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D, and PTH. Am J Physiol 246:E266–E270PubMedGoogle Scholar
  274. 274.
    Epstein S, Bryce G, Hinman JW et al (1986) The influence of age on bone mineral regulating hormones. Bone 7:421–425PubMedCrossRefGoogle Scholar
  275. 275.
    Buchanan JR, Myers CA, Greer RBIII (1988) Effect of declining renal function on bone density in aging women. Calcif Tissue Int 43:1–6PubMedCrossRefGoogle Scholar
  276. 276.
    Fox J (1990) Production and metabolic clearance rates of 1,25-dihydroxyvitamin D3 during maturation in rats: Studies using a rapid, primed-infusion technique. Horm Metab Res 22:278–282PubMedCrossRefGoogle Scholar
  277. 277.
    Glass AR, Eil C (1986) Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D. J Clin Endocrinol Metab 63(3):766–769PubMedCrossRefGoogle Scholar
  278. 278.
    Glass AR, Eil C (1988) Ketoconazole-induced reduction in serum 1,25-dihydroxyvitamin D and total serum calcium in hypercalcemic patients. J Clin Endocrinol Metab 66(5):934–938PubMedCrossRefGoogle Scholar
  279. 279.
    Saggese G, Bertelloni S, Baroncelli GI et al (1993) Ketoconazole decreases the serum ionized calcium and 1,25-dihydroxyvitamin D3 levels in tuberculosis-associated hypercalcemia. Am J Dis Child 147(3):270–273PubMedGoogle Scholar
  280. 280.
    Boyle IT, Gray RW, DeLuca HF (1971) Regulation by calcium of in vivo synthesis of 1,25-dihydroxycholecalciferol and 21,25-dihydroxycholecalciferol. Proc Natl Acad Sci USA 68(9):2131–2134PubMedCrossRefGoogle Scholar
  281. 281.
    Morrissey RL, Wasserman RH (1971) Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes. Am J Physiol 220(5):1509–1515PubMedGoogle Scholar
  282. 282.
    Haussler MR, Baylink DJ, Hughes MR (1976) The assay of 1α,25-dihydroxyvitamin D3: Physiologic and pathologic modulation of circulating hormone levels. Clin Endocrinol 5:151s–165sCrossRefGoogle Scholar
  283. 283.
    Hughes MR, Baylink DJ, Jones PG et al (1976) Radioligand receptor assay for 25-hydroxyvitamin D2/D3 and 1α,25-dihydroxyvitamin D2/D3. J Clin Invest 58:61–70PubMedCrossRefGoogle Scholar
  284. 284.
    Taylor CM, Caverzasio J, Jung A (1983) Unilateral nephrectomy and 1,25-dihydroxyvitamin D3. Kidney Int 24:37–42PubMedCrossRefGoogle Scholar
  285. 285.
    Fox J, Ross R (1985) Effects of low phosphorus and low calcium diets on the production and metabolic clearance rates of 1,25-dihydroxycholecalciferol in pigs. J Endocr 105:169–173PubMedCrossRefGoogle Scholar
  286. 286.
    Paulson SK, Kenny AD (1985) Effect of dietary mineral and vitamin D content and parathyroidectomy on the plasma disappearance rate of 1,25-dihydroxyvitamin D3 in rats. Biopharm Drug Dispos 6:359–372PubMedCrossRefGoogle Scholar
  287. 287.
    Jongen MJ, Bishop JE, Cade C et al (1987) Effect of dietary calcium, phosphate and vitamin D deprivation on the pharmacokinetics of 1,25-dihydroxyvitamin D3 in the rat. Horm Metab Res 19:481–485PubMedCrossRefGoogle Scholar
  288. 288.
    Baxter LA, DeLuca HF (1976) Stimulation of 25-hydroxyvitamin D3-1α-hydroxylase by phosphate depletion. J Biol Chem 251(10):3158–3161PubMedGoogle Scholar
  289. 289.
    Gray RW, Wilz DR, Caldas AE et al (1977) The importance of phosphate in regulating plasma 1,25-(OH)2-vitamin D levels in humans: Studies in healthy subjects, in calcium-stone formers and in patients with primary hyperparathyroidism. J Clin Endocrinol Metab 45:299–306PubMedCrossRefGoogle Scholar
  290. 290.
    Gray RW, Garthwaite TL, Phillips LS (1983) Growth hormone and triiodothyronine permit an increase in plasma 1,25(OH)2D concentrations in response to dietary phosphate deprivation in hypophysectomized rats. Calcif Tissue Int 35:100–106PubMedCrossRefGoogle Scholar
  291. 291.
    Llach F, Massry SG (1985) On the mechanism of secondary hyperparathyroidism in moderate renal insufficiency. J Clin Endocrinol Metab 61:601–606PubMedCrossRefGoogle Scholar
  292. 292.
    Rader JI, Baylink DJ, Hughes MR et al (1979) Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. Am J Physiol 236(2):E118–E122PubMedGoogle Scholar
  293. 293.
    Insogna KL, Broadus AE, Gertner JM (1983) Impaired phosphorus conservation and 1,25 dihydroxyvitamin D generation during phosphorus deprivation in familial hypophosphatemic rickets. J Clin Invest 71:1561–1569CrossRefGoogle Scholar
  294. 294.
    Lufkin EG, Kumar R, Heath HIII (1983) Hyperphosphatemic tumoral calcinosis: Effects of phosphate depletion on vitamin D metabolism, and of acute hypocalcemia on parathyroid hormone secretion and action. J Clin Endocrinol Metab 56(6):1319–1322PubMedCrossRefGoogle Scholar
  295. 295.
    Maierhofer WJ, Gray RW, Lemann J Jr. (1984) Phosphate deprivation increases serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int 25:571–575PubMedCrossRefGoogle Scholar
  296. 296.
    Portale AA, Booth BE, Halloran BP et al (1984) Effect of dietary phosphorus on circulating concentrations of 1,25-dihydroxyvitamin D and immunoreactive parathyroid hormone in children with moderate renal insufficiency. J Clin Invest 73:1580–1589PubMedCrossRefGoogle Scholar
  297. 297.
    Portale AA, Halloran BP, Murphy MM et al (1986) Oral intake of phosphorus can determine the serum concentration of 1,25-dihydroxyvitamin D by determining its production rate in humans. J Clin Invest 77:7–12PubMedCrossRefGoogle Scholar
  298. 298.
    Halloran BP, Barthell EN, DeLuca HF (1979) Vitamin D metabolism during pregnancy and lactation in the rat. Proc Natl Acad Sci USA 76(11):5549–5553PubMedCrossRefGoogle Scholar
  299. 299.
    Kumar R, Cohen WR, Silva P et al (1979) Elevated 1,25-dihydroxyvitamin D plasma levels in normal human pregnancy and lactation. J Clin Invest 63:342–344PubMedCrossRefGoogle Scholar
  300. 300.
    Steichen JJ, Tsang RC, Gratton TL et al (1980) Vitamin D homeostasis in the perinatal period: 1,25-dihydroxyvitamin D in maternal, cord, and neonatal blood. N Engl J Med 302(6):315–319PubMedCrossRefGoogle Scholar
  301. 301.
    Wieland P, Fischer JA, Trechsel U et al (1980) Perinatal parathyroid hormone, vitamin D metabolites, and calcitonin in man. Am J Physiol 239(5):E385–E390PubMedGoogle Scholar
  302. 302.
    Mawer EB, Backhouse J, Hill LF et al (1975) Vitamin D metabolism and parathyroid function in man. Clin Sci Mol Med 48:349–365PubMedGoogle Scholar
  303. 303.
    Kaplan RA, Haussler MR, Deftos LJ et al (1977) The role of 1α,25-dihydroxyvitamin D in the mediation of intestinal hyperabsorption of calcium in primary hyperparathyroidism and absorptive hypercalciuria. J Clin Invest 59:756–760PubMedCrossRefGoogle Scholar
  304. 304.
    Lambert PW, Hollis BW, Bell NH et al (1980) Demonstration of a lack of change in serum 1α,25-dihydroxyvitamin D in response to parathyroid extract in pseudohypoparathyroidism. J Clin Invest 66:782–791PubMedCrossRefGoogle Scholar
  305. 305.
    Piel CF, Doorf BS, Avioli LV (1973) Metabolism of tritiated 25-hydroxycholecalciferol in chronically uremic children before and after successful renal homotransplantation. J Clin Endocrinol Metab 37:944–948PubMedCrossRefGoogle Scholar
  306. 306.
    Eisman JA, Hamstra AJ, Kream BE et al (1976) A sensitive, precise, and convenient method for determination of 1,25-dihydroxyvitamin D in human plasma. Arch Biochem Biophys 176(1): 235–243PubMedCrossRefGoogle Scholar
  307. 307.
    Christiansen C, Christensen MS, Melsen F et al (1981) Mineral metabolism in chronic renal failure with specific reference to serum concentration of 1,25(OH)2D and 24,25(OH)2D. Clin Nephrol 15(1):18–22PubMedGoogle Scholar
  308. 308.
    Juttmann JR, Buurman CJ, De Kam E et al (1981) Serum concentrations of metabolites of vitamin D in patients with chronic renal failure (CRF). Consequences for the treatment with 1α-hydroxy derivatives. Clin Endocrinol (Oxf) 14(3):225–236CrossRefGoogle Scholar
  309. 309.
    Papapoulos SE, Clemens TL, Sandler LM et al (1982) The effect of renal function on changes in circulating concentrations of 1,25-dihydroxycholecalciferol after an oral dose. Clin Sci 62:427–429PubMedGoogle Scholar
  310. 310.
    Pitts TO, Piraino BH, Mitro R (1988) Hyperparathyroidism and 1,25-dihydroxyvitamin D deficiency in mild, moderate, and severe renal failure. J Clin Endocrinol Metab 67:876–881PubMedCrossRefGoogle Scholar
  311. 311.
    Dusso A, Lopez-Hilker S, Lewis-Finch J et al (1989) Metabolic clearance rate and production rate of calcitriol in uremia. Kidney Int 35:860–864PubMedCrossRefGoogle Scholar
  312. 312.
    Patel S, Simpson RU, Hsu CH (1989) Effect of vitamin D metabolites on calcitriol metabolism in experimental renal failure. Kidney Int 36:234–239PubMedCrossRefGoogle Scholar
  313. 313.
    Portale AA, Booth BE, Tsai HC et al (1982) Reduced plasma concentration of 1,25-dihydroxyvitamin D in children with moderate renal insufficiency. Kidney Int 21:627–643PubMedCrossRefGoogle Scholar
  314. 314.
    Wilson L, Felsenfeld A, Drezner MK et al (1985) Altered divalent ion metabolism n early renal failure: Role of 1,25(OH)2D. Kidney Int 27:565–573PubMedCrossRefGoogle Scholar
  315. 315.
    St. John A, Thomas MB, Davies CP et al (1992) Determinants of intact parathyroid hormone and free 1,25-dihydroxyvitamin D levels in mild and moderate renal failure. Nephron 61:422–427CrossRefGoogle Scholar
  316. 316.
    Salusky IB, Goodman WG, Horst R et al (1990) Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis XVI(2):126–132Google Scholar
  317. 317.
    Fox J (1988) Verapamil induces PTH resistance but increases duodenal calcium absorption in rats. Am J Physiol 255:E702–E707PubMedGoogle Scholar
  318. 318.
    Avioli LV, Lee SW, McDonald JE et al (1967) Metabolism of vitamin D3 3H in human subjects – Distribution in blood, bile, feces, and urine. J Clin Invest 46(6):983–992PubMedCrossRefGoogle Scholar
  319. 319.
    Gray RW, Weber HP, Dominguez JH et al (1974) The metabolism of vitamin D3 and 25-hydroxyvitamin D3 in normal and anephric humans. J Clin Endocrinol Metab 39:1045–1056PubMedCrossRefGoogle Scholar
  320. 320.
    Arnaud SB, Goldsmith RS, Lambert PW et al (1975) 25-Hydroxyvitamin D3: Evidence of an enterohepatic circulation in man. Proc Soc Exp Biol Med 149:570–572PubMedGoogle Scholar
  321. 321.
    Norman AW, DeLuca HF (1963) The preparation of [3H]-vitamin D2 and D3 – Their localization in the rat. Biochemistry 2:1160–1168PubMedCrossRefGoogle Scholar
  322. 322.
    Haddad JG Jr, Boisseau V, Avioli LV (1971) Placental transfer of vitamin D3 and 25-hydroxycholecalciferol in the rat. J Lab Clin Med 77(6):908–915PubMedGoogle Scholar
  323. 323.
    Rojanasathit S, Haddad JG (1976) Hepatic accumulation of vitamin D3 and 25-hydroxyvitamin D3. Biochim Biophys Acta 421:12–21PubMedCrossRefGoogle Scholar
  324. 324.
    Weisman Y, Vargas A, Duckett G et al (1978) Synthesis of 1,25-dihydroxyvitamin D in the nephrectomized pregnant rat. Endocrinology 103(6):1992–1996PubMedCrossRefGoogle Scholar
  325. 325.
    Weisman Y, Sapir R, Harell A et al (1976) Maternal-perinatal interrelationships of vitamin D metabolism in rats. Biochim Biophys Acta 428:388–395PubMedCrossRefGoogle Scholar
  326. 326.
    Dueland S, Pedersen JI, Helgerud P et al (1983) Absorption, distribution, and transport of vitamin D3 and 25-hydroxyvitamin D3 in the rat. Am J Physiol 245:E463–E467PubMedGoogle Scholar
  327. 327.
    Noff D, Edelstein S (1978) Vitamin D and its hydroxylated metabolites in the rat. Placental and lacteal transport, subsequent metabolic pathways and tissue distribution. Horm Res 9:292–300PubMedCrossRefGoogle Scholar
  328. 328.
    Larsson S-E, Lorentzon R (1977) Excretion of active metabolites of vitamin D in urine and bile of the adult rat. Clin Sci Mol Med 53:373–377PubMedGoogle Scholar
  329. 329.
    Stumpf WE, O’Brien LP (1987) Autoradiographic studies with [3H]-1,25 dihydroxyvitamin D3 in thyroid and associated tissues of the neck region. Histochemistry 87(1):53–58PubMedCrossRefGoogle Scholar
  330. 330.
    Stumpf WE, Hayakawa N (2007) Salivary glands epithelial and myoepithelial cells are major vitamin D targets. Eur J Drug Metab Pharmacokinet 32(3):123–129PubMedCrossRefGoogle Scholar
  331. 331.
    Stumpf WE, Sar M, O’Brien LP (1987) Vitamin D sites of action in the pituitary studied by combined autoradiography-immunohistochemistry. Histochemistry 88(1):11–16PubMedCrossRefGoogle Scholar
  332. 332.
    Frolik CA, DeLuca HF (1973) Stimulation of 1,25-dihydroxycholecalciferol metabolism in vitamin D-deficient rats by 1,25-dihydroxycholecalciferol treatment. J Cin Invest 52(3):543–548CrossRefGoogle Scholar
  333. 333.
    Stumpf WE, Sar M, Reid FA et al (1979) Target cells for 1,25-dihydroxyvitamin D3 in intestinal tract, stomach kidney, skin, pituitary, and parathyroid. Science 206:1188–1190PubMedCrossRefGoogle Scholar
  334. 334.
    Stumpf WE, Sar M, Narbaitz R et al (1980) Cellular and subcellular localization of 1,25-(OH)2 Vitamin D3 in rat kidney – Comparison with localization of parathyroid-hormone and estradiol. Proc Natl Acad Sci USA 77(2):1149–1153PubMedCrossRefGoogle Scholar
  335. 335.
    Stumpf WE, Sar M, Reid FA et al (1981) Autoradiographic studies with [3H]-1,25-(OH)2 vitamin D3 and [3H]-25-OH-vitamin D3 in rat parathyroid glands. Cell Tissue Res 221(2):333–338PubMedCrossRefGoogle Scholar
  336. 336.
    Stumpf WE, Sar M, Clark SA et al (1982) Brain target sites for 1,25-dihydroxyvitamin D3. Science 215(4538):1403–1405PubMedCrossRefGoogle Scholar
  337. 337.
    Stumpf WE, Narbaitz R, Huang S et al (1983) Autoradiographic localization of 1,25-dihydroxyvitamin D3 in rat placenta and yolk sac. Horm Res 18:215–220PubMedCrossRefGoogle Scholar
  338. 338.
    Sar M, Stumpf WE, DeLuca HF (1980) Thyrotropes in the pituitary are target cells for 1,25 dihydroxy vitamin D3. Cell Tissue Res 209:161–166PubMedCrossRefGoogle Scholar
  339. 339.
    Simpson RU, DeLuca HF (1980) Characterization of a receptor-like protein for 1,25-dihydroxyvitamin D3 in rat skin. Proc Natl Acad Sci USA 77(10):5822–5826PubMedCrossRefGoogle Scholar
  340. 340.
    Clark SA, Stumpf WE, Sar M (1980) Target cells for 1,25-dihydroxyvitamin D3 in the pancreas. Cell Tissue Res 209(3):515–520PubMedCrossRefGoogle Scholar
  341. 341.
    Clark SA, Dame MC, Kim YS et al (1985) 1,25-Dihydroxyvitamin D3 in teeth of rats and humans: receptors and nuclear localization. Anat Rec 212(3):250–254PubMedCrossRefGoogle Scholar
  342. 342.
    Narbaitz R, Stumpf W, Sar M (1981) The role of autoradiographic and immunocytochemical techniques in the clarification of sites of metabolism and action of vitamin D. J Histochem Cytochem 29(1):91–100PubMedCrossRefGoogle Scholar
  343. 343.
    Rhoten WB, Christakos S (1981) Immunocytochemical localization of vitamin D-dependent calcium binding protein in mammalian nephron. Endocrinology 109(3):981–983PubMedCrossRefGoogle Scholar
  344. 344.
    Gascon-Barré M, Huet PM (1982) Role of the liver in the homeostasis of calciferol metabolism in the dog. Endocrinology 110(2):563–570PubMedCrossRefGoogle Scholar
  345. 345.
    Merke J, Kreusser W, Bier B (1983) Demonstration and characterization of a testicular receptor for 1,25-dihydroxycholecalciferol in the rat. Eur J Biochem 130(2):303–308PubMedCrossRefGoogle Scholar
  346. 346.
    Levy FO, Eikvar L, Jutte NHPM (1985) Appearance of the rat testicular receptor for calcitriol (1,25-dihydroxyvitamin D3) during development. J Steroid Biochem 23(1):51–56PubMedCrossRefGoogle Scholar
  347. 347.
    Stumpf WE, O’Brien LP (1987) 1,25 (OH)2 vitamin D3 sites of action in the brain. An autoradiographic study. Histochemistry 87(5):393–406PubMedCrossRefGoogle Scholar
  348. 348.
    Narbaitz R, Stumpf WE, Sar M et al (1983) Autoradiographic localization of target cells for 1,25-dihydroxyvitamin D3 in bones from fetal rats. Calcif Tissue Int 35(2):177–182PubMedCrossRefGoogle Scholar
  349. 349.
    Mawer EB, Lumb GA, Stanbury SW (1969) Long biological half-life of vitamin D3 and its polar metabolites in human serum. Nature 222:482–483PubMedCrossRefGoogle Scholar
  350. 350.
    Smith JE, Goodman D (1971) The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J Clin Invest 50:2159–2167PubMedCrossRefGoogle Scholar
  351. 351.
    Ponchon G, DeLuca HF (1969) Ethanol-induced artifacts in the metabolism of [3H]-vitamin D3. Proc Soc Exp Biol Med 131:727–731PubMedGoogle Scholar
  352. 352.
    Brouwer DA, van Beek J, Ferwerda H et al (1998) Rat adipose tissue rapidly accumulates and slowly releases an orally-administered high vitamin D dose. Br J Nutr 79(6):527–532PubMedCrossRefGoogle Scholar
  353. 353.
    Bec P, Bayard F, Louvet JP (1972) 25-Hydroxycholecalciferol dynamics in human plasma. Rev Europ Etudes Clin Et Biol XVII:793–796Google Scholar
  354. 354.
    Batchelor AJ, Compston JE (1983) Reduced plasma half-life of radio-labeled 25-hydroxyvitamin D3 in subjects receiving a high-fibre diet. Br J Nutr 49:213–216PubMedCrossRefGoogle Scholar
  355. 355.
    Davie MW, Lawson DEM, Emberson C (1982) Vitamin D from skin: contribution to vitamin D status compared with oral vitamin D in normal and anticonvulsant-treated subjects. Clin Sci 63:461–472PubMedGoogle Scholar
  356. 356.
    Clements MR, Davies M, Hayes ME (1991) The role of 1,25-dihydroxyvitamin D in the mechanism of acquired vitamin D deficiency. Clin Endocrinol 37(1):17–27CrossRefGoogle Scholar
  357. 357.
    Vicchio D, Yergey A, O’Brien K (1993) Quantification and kinetics of 25-hydroxyvitamin D3 by isotope dilution liquid chromatography/thermospray mass spectrometry. Biol Mass Spectrometry 22:53–58CrossRefGoogle Scholar
  358. 358.
    Haddad JG Jr, Rojanasathit S (1976) Acute administration of 25-hydroxycholecalciferol in man. J Clin Endocrinol Metab 42:284–290PubMedCrossRefGoogle Scholar
  359. 359.
    Salusky IB, Goodman WG, Horst R (1990) Pharmacokinetics of calcitriol in continuous ambulatory and cycling peritoneal dialysis patients. Am J Kidney Dis XVI(2):126–132Google Scholar
  360. 360.
    Vieth R, Kooh SW, Balfe JW (1990) Tracer kinetics and actions of oral and intraperitoneal 1,25-dihydroxyvitamin D3 administration in rats. Kidney Int 38:857–861PubMedCrossRefGoogle Scholar
  361. 361.
    Mawer EB, Backhouse J, Davies M et al (1971) Metabolic fate of administered 1,25-dihydroxycholecalciferol in controls and in patients with hypoparathyroidism. Lancet i:1203–1206Google Scholar
  362. 362.
    Salusky I, Goodman WG, Horst R et al (1988) Plasma kinetics of intravenous calcitriol in normal and dialysed subjects and acute effect on serum PTH levels. In: Norman A, Schaefer K, Grigoleti HG, Herrath DV (eds) Vitamin D: molecular, cellular, and clinical endocrinology (Proceedings of the seventh workshop on vitamin D). De Gruyter, New York, pp 781–782Google Scholar
  363. 363.
    Levine BS, Song M (1996) Pharmacokinetics and efficacy of pulse oral versus intravenous calcitriol in hemodialysis patients. J Am Soc Nephrol 7:488–496PubMedGoogle Scholar
  364. 364.
    Torregrosa JV, Campistol JM, Más M et al (1996) Usefulness and pharmacokinetics of subcutaneous calcitriol in the treatment of secondary hyperparathyroidism. Nehrol Dial Transplant 11(3):54–57Google Scholar
  365. 365.
    Bianchi ML, Ardissino GL, Schmitt CP et al (1999) No difference in intestinal strontium absorption after an oral or an intravenous 1,25(OH)2D3 bolus in normal subjects. J Bone Miner Res 14:1789–1795PubMedCrossRefGoogle Scholar
  366. 366.
    Brandi L, Egfjord M, Olgaard K (2002) Pharmacokinetics of 1,25(OH)2D3 and 1α(OH)D3 in normal and uraemic men. Nephrol Dial Transplant 17(5):829–842PubMedCrossRefGoogle Scholar
  367. 367.
    Fakih MG, Trump D, Muindi JR (2007) A phase I pharmacokinetic and pharmacodynamic study of intravenous calcitriol in combination with oral Gefitinib in patients with advanced solid tumors. Clin Cancer Res 13(4):1216–1223PubMedCrossRefGoogle Scholar
  368. 368.
    Frolik CA, DeLuca HF (1972) Metabolism of 1,25-dihydroxycholecalciferol in the rat. J Clin Invest 51(11):2900–2906PubMedCrossRefGoogle Scholar
  369. 369.
    Mason RS, Lissner D, Posen S (1980) Blood concentrations of dihydroxylated vitamin D metabolites after an oral dose. Br Med J 280:449–450PubMedCrossRefGoogle Scholar
  370. 370.
    Ohno J, Kubota M, Hirasawa Y et al (1982) Clinical evaluation of 1α-hydroxycholecalciferol and 1α,25-dihydroxycholecalciferol in the treatment of renal osteodystrophy. In: Norman A, Schaefer K, Herrath DV, Grigoleit HG (eds) Vitamin D, chemical, biochemical and clinical endocrinology of calcium metabolism. W. De Gruyter, New York, pp 847–852Google Scholar
  371. 371.
    Levine BS, Singer FR, Bryce GF et al (1985) Pharmacokinetics and biologic effects of calcitriol in normal humans. J Lab Clin Med 105:349–357Google Scholar
  372. 372.
    Seino Y, Tanaka H, Yamaoka K et al (1987) Circulating 1α,25-dihydroxyvitamin D levels after a single dose of 1α,25-dihydroxyvitamin D3 or 1α-hydroxyvitamin D3 in normal men. Bone Miner 2:469–485Google Scholar
  373. 373.
    Kimura Y, Nakayama M, Kuriyama S et al (1991) Pharmacokinetics of active vitamin D3, 1α-hydroxyvitamin D3 and 1α,25-dihydroxyvitamin D3 in patients on chronic hemodialysis. Clin Nephrol 35(2):72–77PubMedGoogle Scholar
  374. 374.
    Dechant KL, Goa KL (1994) Calcitriol. A review of its use in the treatment of postmenopausal osteoporosis and its potential in corticosteroid-induced osteoporosis. Drugs Aging 5(4):300–312PubMedCrossRefGoogle Scholar
  375. 375.
    Beer TM, Munar M, Henner WD (2001) A phase I trial of pulse calcitriol in patients with refractory malignancies. Pulse dosing permits substantial dose escalation. Cancer 91(12):2431–2439PubMedCrossRefGoogle Scholar
  376. 376.
    Muindi JR, Peng Y, Potter DM et al (2002) Pharmacokinetics of high-dose oral calcitriol: Results from a phase 1 trial of calcitriol and paclitaxel. Clin Pharmacol Ther 72:648–659PubMedCrossRefGoogle Scholar
  377. 377.
    Selgas R, Martinez M-E, Miranda B et al (1993) The pharmacokinetics of a single dose of calcitriol administered subcutaneously in continuous ambulatory peritoneal dialysis patients. Perit Dial Int 13:122–125PubMedGoogle Scholar
  378. 378.
    Smith DC, Johnson CS, Freeman CC et al (1999) A Phase I trial of calcitriol (1,25-dihydroxycholecalciferol) in patients with advanced malignancy. Clin Cancer Res 5:1339–1345PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of BiochemistryUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations