Skip to main content

Part of the book series: Infectious Disease ((ID))

  • 1176 Accesses

Immune tolerance holds the key to controlling unwanted immunologic attacks on self and transplanted tissues. Alloreactive responses to transplanted tissues and organs have long been recognized as among the most powerful known in immunology, being at least 100-fold greater than those elicited by conventional antigens; such responses require potent, nonspecific immunosuppression to maintain organ allografts in clinical practice. In contrast, autoimmune diseases involve the loss of tolerance to self-antigens (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hackett, C. J., Rotrosen, D., Auchincloss, H., and Fauci, A. S. (2007) Immunology research: challenges in a time of budgetary constraints, Nat. Immunol. 8, 114–117.

    Google Scholar 

  2. Anderson, M. S., Venanzi, E., Chen, Z., Berzins, S., Benoist, C., and Mathis, D. (2005) The cellular mechanism of Aire control of T cell tolerance, Immunity, 23(2), 227–239.

    Google Scholar 

  3. Fontenot, J. D. and Rudensky, A. Y. (2005) A well-adapted regulatory contrivance: regulatory T cell development and the forkhead family transcription factor Foxp3, Nat. Immunol., 6, 331–337.

    Article  PubMed  CAS  Google Scholar 

  4. Liu, Y.-J. and Banchereau, J. (1996) The paths and molecular controls of peripheral B cell development, Immunologist, 4, 55–66.

    CAS  Google Scholar 

  5. Kee, B. L. and Murre, C. (2001) Transcription factor regulation of B lineage commitment, Curr. Opin. Immunol., 13(2), 180–185.

    Article  PubMed  CAS  Google Scholar 

  6. Hardy, R. R. and Hayakawa, K. (2001) B cell development pathways, Annu. Rev. Immunol., 19, 595–621.

    Article  PubMed  CAS  Google Scholar 

  7. Banchereau, J. and Rousset, F. (1992) Human B lymphocytes: phenotype, proliferation and differentiation, Adv. Immunol., 52, 125–262.

    Article  PubMed  CAS  Google Scholar 

  8. Hardin, J.A., Yamaguchi, K., and Sherr, D. H. (1995) The role of peritoneal stromal cells in the survival of sIgM+ peritoneal B lymphocyte populations, Cell. Immunol., 161(1), 50–60.

    Article  PubMed  CAS  Google Scholar 

  9. Pillai, S. (1999) The chosen few? Positive selection and the generation of naive B lymphocytes, Immunity, 10(5), 493–502.

    Article  PubMed  CAS  Google Scholar 

  10. Agenès, F., Rosado, M. M., and Freitas, A. A. (1997) Independent homeostatic regulation of B cell compartments, Eur. J. Immunol., 27(7), 1801–1807.

    Article  PubMed  Google Scholar 

  11. Benschop, R. J. and Cambier, J. C. (1999) B cell development: signal transduction by antigen receptors and their surrogates, Curr. Opin. Immunol., 11, 143–151.

    Article  PubMed  CAS  Google Scholar 

  12. Nemazee, D. (2000) Receptor selection in B and T lymphocytes, Annu. Rev. Immunol., 18, 19–51.

    Article  PubMed  CAS  Google Scholar 

  13. Rolink, A. G., Schaniel, C., Andersson, J., and Melchers. F. (2001) Selection events operating at various stages in B cell development, Curr. Opin. Immunol., 13, 202–207.

    Google Scholar 

  14. Rolink, A. G., Brocker, T., Bluethmann, H., Kosco–Vilbois, M.H., Andersson, J., and Melchers, F. (1999) Mutations affecting either generation or survival of cells influence the pool size of mature B cells, Immunity, 10, 619–628.

    Article  PubMed  CAS  Google Scholar 

  15. Ceredig, R., Rolink, A. G., Melchers, F., and Andersson, J. (2000) The B cell receptor, but not the pre-B cell receptor, mediates arrest of B cell differentiation, Eur. J. Immunol., 30(3), 759–767.

    Article  PubMed  CAS  Google Scholar 

  16. Hayakawa, K., Asano, M., Shinton, S. A., et al. (1999) Positive selection of natural autoreactive B cells, Science, 285(5424), 113–116.

    Article  PubMed  CAS  Google Scholar 

  17. Kouskoff, V., Lacaud, G., and Nemazee, D. (2000) T cell-independent rescue of B lymphocytes from peripheral immune tolerance, Science, 287, 2501–2503.

    Article  PubMed  CAS  Google Scholar 

  18. Grawunder, U., Leu, T. M., Schatz, D. G., et al. (1995) Down-regulation of RAG 1 and RAG2 gene expression in preB cells after functional immunoglobulin heavy chain rearrangement, Immunity, 3, 601–608.

    Article  PubMed  CAS  Google Scholar 

  19. Tarlinton, D. M. and Smith, G. C. (2000) Targeting plasma cells in autoimmune diseases, Immunol. Today, 21, 436–441.

    Article  PubMed  CAS  Google Scholar 

  20. Papavasiliou, F., Jankovic, M., Suh, H., and Nussenzweig, M. C. (1995) The cytoplasmic domains of immunoglobulin (Ig) α and Igβ can independently induce the precursor B cell transition and allelic exclusion, J. Exp. Med.. 182, 1389–1394.

    Google Scholar 

  21. Tiegs, S. L., Russell, D. M., and Nemazee, D. (1993) Receptor editing in self-reacting bone marrow B cells, J. Exp. Med., 177, 1009–1020.

    Article  PubMed  CAS  Google Scholar 

  22. Gay, D., Saunders, T., Camper, S., and Weigert, M. (1993) Receptor editing: an approach by autoreactive B cells to escape tolerance, J. Exp. Med., 177, 999–1008.

    Article  PubMed  CAS  Google Scholar 

  23. Retter, M. W. and Nemazee, D. (1998) Receptor editing occurs frequently during normal B cell development, J. Exp. Med., 188, 1231–1238.

    Article  PubMed  CAS  Google Scholar 

  24. Casellas, R., Sish, T. A., Kleinewietfeld, M., et al. (2001) Contribution of receptor editing to the antibody repertoire, Science, 291, 1541–1544.

    Article  PubMed  CAS  Google Scholar 

  25. Kouskoff, V. and Nemazee, D. (2001) Role of receptor and revision in shaping the B and T lymphocyte repertoire, Life Sci., 69, 1105–1113.

    Article  PubMed  CAS  Google Scholar 

  26. Meffre, E., Davis, E., Schiff, C., et al. (2000) Circulating human B cells that express surrogate light chains and edited receptors, Nat. Immunol., 1(3), 207–208.

    Article  PubMed  CAS  Google Scholar 

  27. Calame, K. L. (2001) Plasma cells: finding new light at the end of B cell development, Nat. Immunol., 2, 1103–1108.

    Article  PubMed  CAS  Google Scholar 

  28. Sanchez, M., Misulovin, Z., Burkhardt, A. L., et al. (1993) Signal transduction by immunoglobulin is mediated through Ig alpha and Ig beta, J. Exp. Med., 178, 1049–1055.

    Article  PubMed  CAS  Google Scholar 

  29. Tsubata, T. (1999) Co-receptors on B lymphocytes, Curr. Opin. Immunol., 11, 249–255.

    Article  PubMed  CAS  Google Scholar 

  30. Martensson, I.-L. and Ceredig, R. (2000) The pre-B cell receptor in mouse B cell development, Immunology, 101, 435–441.

    Article  PubMed  CAS  Google Scholar 

  31. Vilen, B., Nakamura, T., and Cambier, J. C. (1999) Antigen-stimulated dissociation of BCR mIg from Ig-α/Ig-$\upbeta$: implications for receptor desensitization, Immunity, 10, 239–248.

    Article  PubMed  CAS  Google Scholar 

  32. Pierce, S. K. (2002) Lipid rafts and B-cell activation, Nat. Rev. Immunol., 2, 96–105.

    Article  PubMed  CAS  Google Scholar 

  33. Cheng, P. C., Dykstra, M. L., Mitchell, R. N., and Pierce, S. K. (1999) A role for lipid rafts in B cell antigen receptor signaling and antigen targeting, J. Exp. Med., 190, 1549–1560.

    Article  PubMed  CAS  Google Scholar 

  34. Malapati, S. and Pierce, S. K. (2001) The influence of CD40 on the association of the B cell antigen receptor with lipid rafts in mature and immature cells, Eur. J. Immunol., 31(12), 3789–3797.

    Article  PubMed  CAS  Google Scholar 

  35. Kurosaki, T. (2002) Regulation of B-cell signal transduction by adaptor proteins, Nat. Rev. Immunol., 2, 354–363.

    Article  PubMed  CAS  Google Scholar 

  36. Fearon, D. T. and Carroll, M. C. (2000) Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex, Annu. Rev. Immunol., 18, 393–422.

    Article  PubMed  CAS  Google Scholar 

  37. Cherukuri, A., Cheng, P. C., Sohn, H. W., and Pierce, S. K. (2001) The CD19/CD21 complex functions to prolong B cell antigen receptor signaling from lipid rafts, Immunity, 14(2), 169–179.

    Article  PubMed  CAS  Google Scholar 

  38. Minskoff, S. A., Matter, K., and Mellman, I. (1998) Fc gamma RII-B1 regulates the presentation of B cell receptor-bound antigens, J. Immunol., 161, 2079–2083.

    PubMed  CAS  Google Scholar 

  39. Weintraub, R. C., Jun, J. E., Bishop, A. C., et al. (2000) Entry of B cell receptor into signaling domains is inhibited in tolerant B cells, J. Exp. Med., 191, 1443–1448.

    Article  PubMed  CAS  Google Scholar 

  40. Germain, R. N. (2002) T-cell development and the CD4-CD8 lineage decision, Nat. Rev. Immunol., 2, 309–322.

    Article  PubMed  CAS  Google Scholar 

  41. Carding, S. R. and Egan, P. J. (2002) Gamma delta T cells: functional plasticity and heterogeneity, Nat. Rev. Immunol., 2, 336–345.

    Article  PubMed  CAS  Google Scholar 

  42. Rosmalen, J. G. M., van Ewijk, W., and Leenen, P. J. M. (2002) T-cell education in autoimmune diabetes: teachers and students, Trends. Immunol., 23, 40–46.

    Article  PubMed  CAS  Google Scholar 

  43. Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., et al. (1992) RAG-1-deficient mice have no mature B and T lymphocytes, Cell, 68, 869–877.

    Article  PubMed  CAS  Google Scholar 

  44. Shinkai, Y., Koyasu S., Nakayama K.-I., et al. (1993) Restoration of T cell development in RAG-2 deficient mice by functional ICR transgenes, Science, 259, 822–825.

    Article  PubMed  CAS  Google Scholar 

  45. McGargill, M. A., Derbinski, J. M., and Hogquist, K. A. (2000) Receptor editing in developing T cells, Nat. Immunol., 1, 336–341.

    Article  PubMed  CAS  Google Scholar 

  46. Buch, T., Rieux-Laucat, F., Forster, I., and Rajewsky, K. (2002) Failure of HY- specific thymocytes to escape negative selection by receptor editing, Immunity, 16, 707–718.

    Article  PubMed  CAS  Google Scholar 

  47. Kurts, C., Miller, J. F., Subramaniam, R. M., Carbone, F. R., and Heath, W. R. (1998) Major histocompatibility complex class I-restricted cross-presentation is biased towards high dose antigens and those released during cellular destruction, J. Exp. Med., 188, 409–414.

    Article  PubMed  CAS  Google Scholar 

  48. Savino, W., Mendes-da-Cruz, D. A., Silva, J. S., Dardenne, M., and Cotta-de- Almeida, V. (2002) Intrathymic T-cell migration: a combinatorial interplay of extracellular matrix and chemokines, Trends Immunol., 23, 305–313.

    Article  PubMed  CAS  Google Scholar 

  49. Yagi, J. and Janeway, C. A., Jr. (1990) Ligand thresholds at different stages of T cell development, Int. Immunol., 2, 83–89.

    Article  PubMed  CAS  Google Scholar 

  50. Pircher, H., Rohrer, U. H., Moskophidis, D., Zinkernagel, R. M., and Hengartner, H. (1991) Low receptor avidity for thymic clonal deletion than for effector T-cell function, Nature, 351, 482–485.

    Article  PubMed  CAS  Google Scholar 

  51. Sebzda, E., Mariathasan, S., Ohteki, T., Jones, R., Bachmann, M. F., and Ohashi, P. S. (1999) Selection of the T cell repertoire, Annu. Rev. Immunol., 17, 829–874.

    Article  PubMed  CAS  Google Scholar 

  52. Mariathasan, S., Zakarian, A., Bouchard, D., et al. (2001) Duration and strength of extracellular signal-regulated kinase signals are altered during positive versus negative thymocyte selection, J. Immunol., 167,4966–4973.

    Google Scholar 

  53. Schild, H. J., Rötzschke, O., Kalbacher, H., Rammensee, H.-G. (1990) Limit of T cell tolerance to self proteins by peptide presentation, Science, 247, 1587–1589.

    Article  PubMed  CAS  Google Scholar 

  54. Lohmann, T., Leslie, R. D., and Londei, M. (1996) T cell clones to epitopes of glutamic acid decarboxylase 65 raised from normal subjects and patients with insulin-dependent diabetes, J. Autoimmun., 9, 385–389.

    Article  PubMed  CAS  Google Scholar 

  55. Semana, G., Gausling, R., Jackson, R. A., and Hafler, D. A. (1999) T cell autoreactivity to proinsulin epitopes in diabetic patients and healthy subjects, J. Autoimmun., 12, 259–267.

    Article  PubMed  CAS  Google Scholar 

  56. Walker, L. S. K. and Abbas, A. K. (2002) The enemy within: keeping self-reactive T cells at bay in the periphery, Nat. Rev. Immunol., 2, 11–19.

    Article  PubMed  CAS  Google Scholar 

  57. Garza, K. M., Chan, V. S. F., and Ohashi, P. S. (2000) T cell tolerance and autoimmunity, Rev. Immunogenet., 2, 217.

    Google Scholar 

  58. Lechner, O., Lauber, J., Franzke, A., Sarukhan, A., von Boehmer, H., and Buer, J. (2001) Fingerprints of anergic T cells, Curr. Biol., 11, 587–595.

    Article  PubMed  CAS  Google Scholar 

  59. Kearney, E. R., Pape, K. A., Loh, D. Y. et al. (1994) Visualization of peptide-specific T cell immunity and peripheral tolerance induction in vivo, Immunity, 1, 327–339.

    Article  PubMed  CAS  Google Scholar 

  60. Alferink, J., Tafuri, A., Vestweber, D., et al. (1998) Control of neonatal tolerance to tissue antigens by peripheral T cell trafficking, Science, 282, 1338–1341.

    Article  PubMed  CAS  Google Scholar 

  61. Bromley, S. K., Peterson, D. A., Gunn, M. D., and Dustin, M. L. (2000) Cutting edge: hierarchy of chemokine receptor and TCR signals regulating T cell migration and proliferation, J. Immunol., 165,15–19.

    Google Scholar 

  62. Maeda, Y., Noda, S., Tanaka, K., et al. (2001) The failure of oral tolerance induction is functionally coupled to the absence of T cells in Peyer’s patches under germfree conditions, Immunobiology, 204, 442–457.

    Article  PubMed  CAS  Google Scholar 

  63. Mackay, C. R. (2001) The chemokines: immunology’s high impact factors, Nat. Immunol., 2, 95–101.

    Article  PubMed  CAS  Google Scholar 

  64. Sharpe, A. H. and Freeman, G. J. (2002) The B7-CD28 superfamily, Nat. Rev. Immunol., 2, 116–126.

    Article  PubMed  CAS  Google Scholar 

  65. Linsley, P. S., Greene, J. L., Brady, W., Bajorath, J., Ledbetter, J. A., and Peach, R. (1994) Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors, Immunity, 1, 793–781.

    Article  PubMed  CAS  Google Scholar 

  66. Sansom, D.M. (2000) CD28, CTLA-4 and their ligands: who does what and to whom? Immunology, 101, 169–177.

    Article  PubMed  CAS  Google Scholar 

  67. Freeman, G. J., Gribben, J. G., Boussiotis, V. A., et al. (1993) Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation, Science, 262, 909–911.

    Article  PubMed  CAS  Google Scholar 

  68. Lenschow, D. J., Walunas, T. L., and Bluestone, J. A. (1996) CD28/B7 system of T cell costimulation, Annu. Rev. Immunol., 14, 233–258.

    Article  PubMed  CAS  Google Scholar 

  69. Thompson, C. B., Lindsten, T., Ledbetter, J. A., et al. (1989) CD28 activation pathway regulates the production of multiple T-cell-derived lymphokines/cytokines, Proc. Natl. Acad. Sci. U.S.A., 86, 1333–1337.

    Article  PubMed  CAS  Google Scholar 

  70. Sperling, A. I., Auger, J. A., Ehst, B. D., Rulifson, I. C., Thompson, C. B., and Bluestone. J. A. (1996) CD28/B7 interactions deliver a unique signal to naive T cells that regulates cell survival but not early proliferation, J. Immunol., 157, 3909–3917.

    PubMed  CAS  Google Scholar 

  71. Krummel, M. and Allison, J. (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation, J. Exp. Med., 182, 459–465.

    Article  PubMed  CAS  Google Scholar 

  72. Brunet, J. F., Denizot, F., Luciani, M. F., Roux-Dosseto, M., Suzan, M., Mattei, M. F., and Golstein, P. (1987) A new member of the immunoglobulin superfamily CTLA-4, Nature, 328, 267–270.

    Article  PubMed  CAS  Google Scholar 

  73. Linsley, P., Brady, W., Urnes, M., et al. (1991) CTLA-4 is a second receptor for the B cell activation antigen B7, J. Exp. Med., 174, 561–569.

    Article  PubMed  CAS  Google Scholar 

  74. Chambers, C. A., Kuhns, M. S., Egen, J. G., and Allison, J. P. (2001) CTLA-4- mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy, Annu. Rev. Immunol., 19, 565–594.

    Article  PubMed  CAS  Google Scholar 

  75. Hutloff, A., Dittrich, A. M., Beier, K. C., et al. (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28, Nature, 397,263–266.

    Google Scholar 

  76. Yoshinaga, S.K., Whoriskey, J. S., Khare, S. D., et al. (1999) T-cell co-stimulation through B7RP-1 and ICOS, Nature, 402, 827–832.

    Article  PubMed  CAS  Google Scholar 

  77. Beier, K. C., Hutloff, A., Dittrich, A. M., et al. (2000) Induction, binding specificity and function of human ICOS, Eur. J. Immunol., 30, 3707–3717.

    Article  PubMed  CAS  Google Scholar 

  78. Coyle, A. J., Lehar, S., Lloyd, C., et al. (2000) The CD28-related molecule ICOS is required for effective T cell-dependent immune responses, Immunity, 13, 95–105.

    Article  PubMed  CAS  Google Scholar 

  79. Aicher, A., Hayden-Ledbetter, M., Brady, W. A., et al. (2000) Characterization of human inducible costimulator ligand expression and function, J. Immunol., 164, 4689–4696.

    Google Scholar 

  80. Ling, V., Wu, P. W., Finnerty, H. F., Bean, K. M., Spaulding, V., et al. (2000) Cutting edge: identification of GL50, a novel B7-like protein that functionally binds to ICOS receptor, J. Immunol., 164, 1653–1657.

    Google Scholar 

  81. Agata, Y., Kawasaki, A., Nishimura, H., et al. (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes, Int. Immunol., 8(5), 765–772.

    Article  PubMed  CAS  Google Scholar 

  82. Latchman, Y., Wood, C. R., Chernova, T., et al. (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation, Nat. Immunol., 2, 261–268.

    Article  PubMed  CAS  Google Scholar 

  83. Freeman, G. J., Long, A., Iwai, Y., et al. (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation, J. Exp. Med., 192, 1–9.

    Article  Google Scholar 

  84. Chapoval, A., Ni, J., Lau, J. S., et al. (2001) B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production, Nat. Immunol., 2, 269–274.

    Article  PubMed  CAS  Google Scholar 

  85. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., and Toda, M. (1995) Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor α-chains, J. Immunol., 155, 1151–1164.

    PubMed  CAS  Google Scholar 

  86. Thornton, A. M. and Shevach, E. M. (2000) Suppressor effector function of CD4+CD25+ immunoregulatory T cells is antigen nonspecific, J. Immunol., 164, 183–190.

    PubMed  CAS  Google Scholar 

  87. Shevach, E.M. (2002) CD4+CD25+ suppressor T cells: more questions than answers, Nat. Rev. Immunol., 2, 389–400.

    PubMed  CAS  Google Scholar 

  88. Piccirillo, C. and Shevach, E. M. (2001) Cutting edge: control of CD8+ T cell activation by CD4+CD25+ immunoregulatory cells, J. Immunol., 167, 1137–1140.

    PubMed  CAS  Google Scholar 

  89. Thornton, A.M. and Shevach, E. M. (1998) CD4+CD25+ immunoregulatory T cells suppress polycolonal T-cell activation in vitro by inhibiting interlukin-2 production, J. Exp. Med., 188, 287–296.

    Article  PubMed  CAS  Google Scholar 

  90. Takahashi, T., Tagami, T., Yamazaki, S., Uede, T., Shimizu, J., Sakaguchi, N., et al. (2000) Immunologic self-tolerance maintained by CD25+CD4+ regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4, J. Exp. Med., 192, 303–310.

    Article  PubMed  CAS  Google Scholar 

  91. Nakamura, K., Kitani, A., and Strober, W. (2001) Cell contact-dependent immunosuppression by CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming growth factor beta, J. Exp. Med., 194, 629–644.

    Article  PubMed  CAS  Google Scholar 

  92. Suri-Payer, E. and Cantor, H. (2001) Differential cytokine requirements for regulation of autoimmune gastritis and colitis by CD4+CD25s+ T cells, J. Autoimmun., 16, 115–123.

    Article  PubMed  CAS  Google Scholar 

  93. Asano, M., Toda, M., Sakaguchi, N., and Sakaguchi, S. (1996) Autoimmune disease as a consequence of developmental abnormality of a T cell subpopulation, J. Exp. Med., 184, 387–396.

    Article  PubMed  CAS  Google Scholar 

  94. Takahashi, T., Kuniyasu, Y., Toda, M., et al. (1998) Immunologic self-tolerance maintained by CD4+CD25+ naturally anergic and suppressive T cells, Int. Immunol., 10, 1969–1980.

    Article  PubMed  CAS  Google Scholar 

  95. Papiernik, M., Leite de Moraes, M., Ponteux, C., Vasseur, F., and Pénit, C. (1998) Regulatory CD4 T cells: expression of IL-2Rα chain, resistance to clonal deletion and IL-2 dependency, Int. Immunol., 10, 371–378.

    Article  PubMed  CAS  Google Scholar 

  96. Groux, H., O’Garra, A., Rouleau, M., et al. (1997) A CD4+ T-cell inhibits antigen- specific T-cell responses and prevents colitis, Nature, 389, 737–742.

    Article  PubMed  CAS  Google Scholar 

  97. Jonuleit, H., Schmitt, E., Schuler, G., Knop, J., and Enk, A. H. (2000) Induction of interleukin 10-producing, nonproliferating CD4+ T cells with regulatory properties by repetitive stimulation with allogeneic immature human dendritic cells, J. Exp. Med., 192, 1213–1222.

    Article  PubMed  CAS  Google Scholar 

  98. Kurts, C., Heath, W. R., Carbone, F. R., Allison, J., Miller, J. F., and Kosaka, H. (1996) Constitutive class I-restricted exogenous presentation of self antigens in vivo, J. Exp. Med., 184, 923–930.

    Article  PubMed  CAS  Google Scholar 

  99. Adler, A. J., Marsh, D. W., Yochum, G. S., et al. (1998) CD4+ T cell tolerance to parenchymal self-antigens requires presentation by bone marrow-derived antigen- presenting cells, J. Exp. Med., 187, 1555–1564.

    Google Scholar 

  100. Banchereau, J. and Steinman, R. M. (1998) Dendritic cells and the control of immunity (review), Nature, 392, 245–252.

    Article  PubMed  CAS  Google Scholar 

  101. Huang, F. P., Platt, N., Wykes, M., Major, J. R., Powell, T. J., Jenkins, C. D., and MacPherson, G. G. (2000) A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T cell areas of mesenteric lymph nodes, J. Exp. Med., 191, 435–444.

    Article  PubMed  CAS  Google Scholar 

  102. Dhodapkar, M.V., Steinman, R. M., Krasovsky, J., Munz, C., and Bhardwaj, N. (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells, J. Exp. Med., 193, 233–238.

    Article  PubMed  CAS  Google Scholar 

  103. Steinman, R. M. and Nussenzweig, M. C. (2002) Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance, Proc. Natl. Acad. Sci. U.S.A., 99, 351–358.

    Google Scholar 

  104. Janeway, C. A., Jr. (1992) The immune system evolved to discriminate infectious nonself from noninfectious self, Immunol. Today, 13, 11–16.

    Article  PubMed  CAS  Google Scholar 

  105. Medzhitov, R., Preston-Hurlburt, P., and Janeway, C. A., Jr. (1997) A human homologue of the Drosophila Toll protein signals activation of adaptive immunity, Nature, 388, 394–397.

    CAS  Google Scholar 

  106. Aderem, A. and Ulevitch, R. J. (2000) Toll-like receptors in the induction of the innate immune response, Nature, 406, 782–787.

    Article  PubMed  CAS  Google Scholar 

  107. Basu, S., Binder, R. J., Suto, R., Anderson, K. M., and Srivastava, P. K. (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-ҝB pathway, Int. Immunol., 12, 1539–1546.

    Article  PubMed  CAS  Google Scholar 

  108. Larsson, M., Fonteneau, J. F., and Bhardwaj, N. (2001) Dendritic cells resurrect antigens from dead cells, Trends Immunol., 22, 141–148.

    Article  PubMed  CAS  Google Scholar 

  109. Haynes, B. F. and Fauci, A. S. (2005) Chapter 295: Introduction to the immune system. Immune tolerance and autoimmunity. In: Harrison’s Internal Medicine, 16th ed., (Kasper, D. L., Braunwald, E., Fauci, A. S., Hauser, S. L., Longo, D. L., Jameson, J. L., and Isselbacher, K. J., eds.) (http://www.accessmedicine.com/content.aspx?aID=93538).

  110. Mackay, I. R. (2001) Tolerance and autoimmunity, West J. Med., 174(2), 118–123.

    Article  Google Scholar 

  111. Jacobson, D. L., Gange, S. J., Rose, N. R., and Graham, N. M. H. (1997) Epidemiology and estimated population burden of selected autoimmune diseases in the United States, Clin. Immunol. Immunopathol., 84, 223–243.

    Article  PubMed  CAS  Google Scholar 

  112. Rotrosen D., Matthews, J. B., and Bluestone, J. A. (2002) The immune tolerance network: a new paradigm for developing tolerance-inducing therapies, J. Allergy Clin. Immunol., 110(1), 17–23.

    Article  PubMed  CAS  Google Scholar 

  113. Van Parijs, L. and Abbas, A. K. (1998) Homeostasis and self-tolerance in the immune system: turning lymphocytes off, Science, 280, 243–248.

    Article  PubMed  Google Scholar 

  114. Goodnow, C. (1996) Balancing immunity and tolerance: deleting and tuning lymphocyte repertoires, Proc. Natl. Acad. Sci. U.S.A., 93, 2264–2271.

    Article  PubMed  CAS  Google Scholar 

  115. Stockinger, B. (1999) T lymphocyte tolerance: from thymic deletion to peripheral control mechanisms, Adv. Immunol., 71, 229–265.

    Article  PubMed  CAS  Google Scholar 

  116. Tarlinton, D. (1997) Germinal centers: a second childhood for lymphocytes, Curr. Biol., 7, R155–R159.

    Article  PubMed  CAS  Google Scholar 

  117. Nepom, G. T. (1998) Major histocompatibility complex-directed susceptibility to rheumatoid arthritis, Adv. Immunol., 68, 325–332.

    Google Scholar 

  118. Mackay, C. R. (1993) Homing of naive, memory and effector lymphocytes, Curr. Opin. Immunol., 5, 423–427.

    Article  PubMed  CAS  Google Scholar 

  119. Quill, H. (1996) Anergy as a mechanism of peripheral T cell tolerance, J. Immunol., 156, 1325–1327.

    PubMed  CAS  Google Scholar 

  120. Greenfield, E. A., Nguyen, K. A., and Kuchroo, V. K. (1998) CD28/B7 costimulation: a review, Crit. Rev. Immunol., 18, 389–418.

    PubMed  CAS  Google Scholar 

  121. Marelli-Berg, F. M, and Lechler, R. I. (1999) Antigen presentation by parenchymal cells: a route to peripheral tolerance? Immunol. Rev., 172, 297–314.

    Article  PubMed  CAS  Google Scholar 

  122. Seddon, B. and Mason, D. (2000) The third function of the thymus, Immunol. Today, 21, 95–99.

    Article  PubMed  CAS  Google Scholar 

  123. Granville, D. J., Carthy, C. M., Hunt, D. W.E., and McManus, B. M. (1998) Apoptosis: molecular aspects of cell death and disease, Lab. Invest., 78, 893–913.

    PubMed  CAS  Google Scholar 

  124. Korb, L. C. and Ahearn, J. M. (1997) C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited, J. Immunol., 158, 4525–4528.

    PubMed  CAS  Google Scholar 

  125. Vaishnaw, A. K., Toubi, E., Ohsako, S., et al. (1999) The spectrum of apoptotic defects and clinical manifestations, including systemic lupus erythematosus, in humans with CD95 (Fas/APO-1) mutations, Arthritis Rheum., 42, 1833–1842.

    Article  PubMed  CAS  Google Scholar 

  126. Rizzi, M., Ferrera, M., Filaci, G., and Indiveri, F. (2006) Disruption of immunological tolerance: role of AIRE gene in autoimmunity, Autoimmune Rev., 5(2), 145–147.

    Article  CAS  Google Scholar 

  127. Nagamine, K., Peterson, P., Scott, K. S., Kudoh, J., Minoshima, S., et al. (1997) Positional cloning of the APECED gene, Nat. Genet., 17(4), 393–398.

    Article  PubMed  CAS  Google Scholar 

  128. T.F.-G.A. Consortium (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring the PHD-type zinc-finger domains, Nat. Genet., 17(4), 399–403.

    Google Scholar 

  129. Uchida, D., Hatakeyama, S., Matsushima, A., Han, H., Ishido, S., Hotta, H., et al. (2004) AIRE functions as an E3 ubiquitin ligase, J. Exp. Med., 199(2), 167–172.

    Article  PubMed  CAS  Google Scholar 

  130. Kogawa, K., Nagafuchi, S., Katsuta, H., Kudoh, J., et al. (2002) Expression of AIRE gene in peripheral monocyte/dendritic cell lineage, Immunol. Lett., 80, 195–198.

    Article  PubMed  CAS  Google Scholar 

  131. Kuroda, N., Mitani, T., Takeda, N., Ishimaru, N., Arakaki, R., Hayashi, Y., et al. (2005) Development of autoimmunity against transcriptionally unrepressed target antigen in the thymus of Aire-deficient mice, J. Immunol., 174 (4), 1862–1870.

    PubMed  CAS  Google Scholar 

  132. Anderson, M. S., Venanzi, E. S., Klein, L., Chen, Z., Berzins, S. P., et al. (2002) Projection of an immunological self shadow within the thymus by the AIRE protein, Science, 298, 1395–1401.

    Article  PubMed  CAS  Google Scholar 

  133. Liston, A., Gray, D. H., Lesage, S., Fletcher, A. L., Wilson, J., et al. (2004) Gene dosage-limiting role of Aire in thymic expression, clonal deletion, and organ- specific autoimmunity, J. Exp. Med., 200 (8), 1015–1026.

    Article  PubMed  CAS  Google Scholar 

  134. Tait, K. F. and Gough, S. C. (2003) The genetics of autoimmune endocrine disease, Clin. Endocrinol. (Oxford), 59 (1), 1–11.

    Google Scholar 

  135. Torok, H. P., Tonenchi, L., Glas, J., Schiemann, U., and Folwaczny, C. (2004) No significant association between mutations in exons 6 and 8 of the autoimmune regulator (AIRE) gene and inflammatory bowel disease, Eur. J. Immunogenet., 31(2), 83–86.

    Article  PubMed  Google Scholar 

  136. Cavadini, P., Vermi, W., Facchetti, F., Fontana, S., Nagafuchi, S., et al. (2005) AIRE deficiency in thymus of 2 patients with Omenn syndrome, J. Clin. Invest., 115(3), 728–732.

    PubMed  CAS  Google Scholar 

  137. Tazi-Ahnini, R., Cork, M. J., Gawkrodger, D. J., Birch, M. P., Wengraf, D., et al. (2002) Role of the autoimmune regulator (AIRE) gene in alopecia areata: strong association of a potentially functional AIRE polymorphism with alopecia universalis, Tissue Antigens, 60(6), 489–495.

    Article  PubMed  CAS  Google Scholar 

  138. Fuchtenbusch, M., Vogel, A., Achenbach, P., Gummer, M., Ziegler, A. G., et al. (2003) Lupus-like panniculitis in a patient with autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED), Exp. Clin. Endocrinol. Diabetes, 111(5), 288–293.

    Article  PubMed  CAS  Google Scholar 

  139. Kawai, T., Cosimi, A. B., Spitzer, T. R., et al. (2008) HLA-mismatched renal transplantation without maintenance immunosuppression, N. Engl. J. Med., 358(4), 353–361.

    Article  PubMed  CAS  Google Scholar 

  140. Alexander, S. I., Smith, N., Hu, M., et al. (2008) Chimerism and tolerance in a recipient of a deceased-donor liver transplant, N. Engl. J. Med., 358(4), 369–374.

    Article  PubMed  CAS  Google Scholar 

  141. Scandling, J. D., Busque, S., Dejbakhsh-Jones, S., et al., (2008) Tolerance and chimerism after renal and hematopoietic-cell transplantation, N. Engl. J. Med., 358(4), 362–368.

    Article  PubMed  CAS  Google Scholar 

  142. Nicholas, M. W., Dooley, M. A., Hogan, S. L., et al. (2008) A novel subset of memory B cells is enriched in autoreactivity and correlates with adverse outcomes in SLE, Clin. Immunol., 126, 189–201.

    Article  PubMed  CAS  Google Scholar 

  143. Li, X., Xiao, B.-G., Xi, J-Y., Lu, C.-Z., and Lu, J.-H. (2008) Decrease of CD4+CD25high Foxp3+ regulatory T cells and elevation of CD19+BAFF-R+ B cells and soluble ICAM-1 in myasthenia gravis, Clin. Immunol., 126, 180–188.

    Article  PubMed  CAS  Google Scholar 

  144. Lim, D. G., Joe, I. Y., Park, Y. H., et al. (2007) Effect of immunosuppressants on the expansion and function of naturally occurring regulatory T cells, Transplant Immunol., 18, 94–100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassil St. Georgiev PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Georgiev, V.S. (2009). Immune Tolerance. In: Georgiev, V.S. (eds) National Institute of Allergy and Infectious Diseases, NIH. Infectious Disease. Humana Press. https://doi.org/10.1007/978-1-60327-297-1_40

Download citation

Publish with us

Policies and ethics