Skip to main content

Genome-Wide Analysis of Translational Control

  • Chapter
  • First Online:

Part of the book series: Cancer Drug Discovery and Development ((CDD&D))

Abstract

The importance of translational deregulation of specific transcripts in cancer has emerged during the last decade. For a more complete understanding of translational control in cancer, genome-wide studies of translational control are essential. In this chapter we describe methods that make such analysis possible and identify several key aspects of experimental design and data analysis which are essential for an informative study. We further review several studies that have used such approaches to gain insights in genome-wide translational control in cancer models with particular focus on genome-wide translational deregulation downstream of eIF4E. Finally we introduce “integrative translatomics” as a means to link genome-wide translational patterns to molecular mechanisms originating from the RNA sequences. This information may prove to be essential for a comprehensive understanding of how pathological translational control mediates the acquisition of a malignant phenotype.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Larsson O, Wennmalm K, Sandberg R (2006) Comparative microarray analysis. Omics 10:381–397

    Article  PubMed  CAS  Google Scholar 

  2. Bertone P, Stolc V, Royce TE et al (2004) Global identification of human transcribed sequences with genome tiling arrays. Science 306:2242–2246

    Article  PubMed  CAS  Google Scholar 

  3. Kapranov P, Cawley SE, Drenkow J et al (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296:916–919

    Article  PubMed  CAS  Google Scholar 

  4. Clark TA, Schweitzer AC, Chen TX et al (2007) Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol 8:R64

    Article  PubMed  Google Scholar 

  5. Keene JD, Komisarow JM, Friedersdorf MB (2006) RIP-Chip: the isolation and identification of mRNAs, microRNAs and protein components of ribonucleoprotein complexes from cell extracts. Nat Protoc 1:302–307

    Article  PubMed  CAS  Google Scholar 

  6. Raghavan A, Ogilvie RL, Reilly C et al (2002) Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Res 30:5529–5538

    Article  PubMed  CAS  Google Scholar 

  7. Vlasova IA, McNabb J, Raghavan A et al (2005) Coordinate stabilization of growth-regulatory transcripts in T cell malignancies. Genomics 86:159–171

    Article  PubMed  CAS  Google Scholar 

  8. Mathews M, Sonenberg N, Hershey JBW (2007) Translational control in biology and medicine. CSHL Press, New York, NY

    Google Scholar 

  9. Arava Y, Wang Y, Storey JD, Liu CL, Brown PO, Herschlag D (2003) Genome-wide analysis of mRNA translation profiles in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 100:3889–3894

    Article  PubMed  CAS  Google Scholar 

  10. Melamed D, Arava Y (2007) Genome-wide analysis of mRNA polysomal profiles with spotted DNA microarrays. Meth Enzymol 431:177–201

    Article  PubMed  CAS  Google Scholar 

  11. Wang Y, Ringquist S, Cho AH, Rondeau G, Welsh J (2004) High-throughput polyribosome fractionation. Nucleic Acids Res 32:e79

    Article  PubMed  Google Scholar 

  12. MacManus JP, Graber T, Luebbert C et al (2004) Translation-state analysis of gene expression in mouse brain after focal ischemia. J Cereb Blood Flow Metab 24:657–667

    Article  PubMed  CAS  Google Scholar 

  13. Reiter AK, Crozier SJ, Kimball SR, Jefferson LS (2005) Meal feeding alters translational control of gene expression in rat liver. J Nutr 135:367–375

    PubMed  CAS  Google Scholar 

  14. Larsson O, Diebold D, Fan D et al (2008) Fibrotic myofibroblasts manifest genome-wide derangements of translational control. PLoS ONE 3:e3220

    Google Scholar 

  15. Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA 98:5116–5121

    Article  PubMed  CAS  Google Scholar 

  16. Pawitan Y, Murthy KR, Michiels S, Ploner A (2005) Bias in the estimation of false discovery rate in microarray studies. Bioinformatics 21:3865–3872

    Article  PubMed  CAS  Google Scholar 

  17. Lazaris-Karatzas A, Montine KS, Sonenberg N (1990) Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5 cap. Nature 345:544–547

    Article  PubMed  CAS  Google Scholar 

  18. Koromilas AE, Lazaris-Karatzas A, Sonenberg N (1992) mRNAs containing extensive secondary structure in their 5 non-coding region translate efficiently in cells overexpressing initiation factor eIF-4E. EMBO J 11:4153–4158

    PubMed  CAS  Google Scholar 

  19. De Benedetti A, Harris AL (1999) eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 31:59–72

    Article  PubMed  Google Scholar 

  20. Larsson O, Perlman DM, Fan D et al (2006) Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res 34:4375–4386

    Article  PubMed  CAS  Google Scholar 

  21. Mamane Y, Petroulakis E, Martineau Y et al (2007) Epigenetic Activation of a Subset of mRNAs by eIF4E Explains Its Effects on Cell Proliferation. PLoS One 2:e242

    Article  PubMed  Google Scholar 

  22. Larsson O, Li S, Issaenko OA et al (2007) Eukaryotic translation initiation factor 4E induced progression of primary human mammary epithelial cells along the cancer pathway is associated with targeted translational deregulation of oncogenic drivers and inhibitors. Cancer Res 67:6814–6824

    Article  PubMed  CAS  Google Scholar 

  23. Mathonnet G, Fabian MR, Svitkin YV et al (2007) MicroRNA inhibition of translation initiation in vitro by targeting the cap-binding complex eIF4F. Science 317:1764–1767

    Article  PubMed  CAS  Google Scholar 

  24. Chang TC, Yu D, Lee YS et al (2008) Widespread microRNA repression by Myc contributes to tumorigenesis. Nat Genet 40:43–50

    Article  PubMed  CAS  Google Scholar 

  25. Polunovsky VA, Rosenwald IB, Tan AT et al (1996) Translational control of programmed cell death: eukaryotic translation initiation factor 4E blocks apoptosis in growth-factor-restricted fibroblasts with physiologically expressed or deregulated Myc. Mol Cell Biol 16: 6573–6581

    PubMed  CAS  Google Scholar 

  26. Ruggero D, Montanaro L, Ma L et al (2004) The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10:484–486

    Article  PubMed  CAS  Google Scholar 

  27. Li S, Takasu T, Perlman DM et al (2003) Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J Biol Chem 278:3015–3022

    Article  PubMed  CAS  Google Scholar 

  28. Tan A, Bitterman P, Sonenberg N, Peterson M, Polunovsky V (2000) Inhibition of Myc-dependent apoptosis by eukaryotic translation initiation factor 4E requires cyclin D1. Oncogene 19:1437–1447

    Article  PubMed  CAS  Google Scholar 

  29. Lazaris-Karatzas A, Sonenberg N (1992) The mRNA 5 cap-binding protein, eIF-4E, cooperates with v-myc or E1A in the transformation of primary rodent fibroblasts. Mol Cell Biol 12:1234–1238

    PubMed  CAS  Google Scholar 

  30. Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC (2003) Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell 12:889–901

    Article  PubMed  CAS  Google Scholar 

  31. Spence J, Duggan BM, Eckhardt C, McClelland M, Mercola D (2006) Messenger RNAs under differential translational control in Ki-ras-transformed cells. Mol Cancer Res 4:47–60

    Article  PubMed  CAS  Google Scholar 

  32. Bilanges B, Argonza-Barrett R, Kolesnichenko M et al (2007) Tuberous sclerosis complex proteins 1 and 2 control serum-dependent translation in a TOP-dependent and -independent manner. Mol Cell Biol 27:5746–5764

    Article  PubMed  CAS  Google Scholar 

  33. Grolleau A, Bowman J, Pradet-Balade B et al (2002) Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J Biol Chem 277: 22175–22184

    Article  PubMed  CAS  Google Scholar 

  34. Jechlinger M, Grunert S, Tamir IH et al (2003) Expression profiling of epithelial plasticity in tumor progression. Oncogene 22:7155–7169

    Article  PubMed  CAS  Google Scholar 

  35. Provenzani A, Fronza R, Loreni F, Pascale A, Amadio M, Quattrone A (2006) Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis. Carcinogenesis 27:1323–1333

    Article  PubMed  CAS  Google Scholar 

  36. Lu X, de la Pena L, Barker C, Camphausen K, Tofilon PJ (2006) Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes. Cancer Res 66:1052–1061

    Article  PubMed  Google Scholar 

  37. Blais JD, Filipenko V, Bi M et al (2004) Activating transcription factor 4 is translationally regulated by hypoxic stress. Mol Cell Biol 24:7469–7482

    Article  PubMed  CAS  Google Scholar 

  38. Blais JD, Addison CL, Edge R et al (2006) Perk-dependent translational regulation promotes tumor cell adaptation and angiogenesis in response to hypoxic stress. Mol Cell Biol 26: 9517–9532

    Article  PubMed  CAS  Google Scholar 

  39. Brown V, Jin P, Ceman S et al (2001) Microarray identification of FMRP-associated brain mRNAs and altered mRNA translational profiles in fragile X syndrome. Cell 107:477–487

    Article  PubMed  CAS  Google Scholar 

  40. Kawai T, Fan J, Mazan-Mamczarz K, Gorospe M (2004) Global mRNA stabilization preferentially linked to translational repression during the endoplasmic reticulum stress response. Mol Cell Biol 24:6773–6787

    Article  PubMed  CAS  Google Scholar 

  41. Kitamura H, Nakagawa T, Takayama M, Kimura Y, Hijikata A, Ohara O (2004) Post-transcriptional effects of phorbol 12-myristate 13-acetate on transcriptome of U937 cells. FEBS Lett 578:180–184

    Article  PubMed  CAS  Google Scholar 

  42. Qin X, Ahn S, Speed TP, Rubin GM (2007) Global analyses of mRNA translational control during early Drosophila embryogenesis. Genome Biol 8:R63

    Article  PubMed  Google Scholar 

  43. Iguchi N, Tobias JW, Hecht NB (2006) Expression profiling reveals meiotic male germ cell mRNAs that are translationally up- and down-regulated. Proc Natl Acad Sci USA 103: 7712–7717

    Article  PubMed  CAS  Google Scholar 

  44. Qin X, Sarnow P (2004) Preferential translation of internal ribosome entry site-containing mRNAs during the mitotic cycle in mammalian cells. J Biol Chem 279:13721–13728

    Article  PubMed  CAS  Google Scholar 

  45. Johannes G, Carter MS, Eisen MB, Brown PO, Sarnow P (1999) Identification of eukaryotic mRNAs that are translated at reduced cap binding complex eIF4F concentrations using a cDNA microarray. Proc Natl Acad Sci USA 96:13118–13123

    Article  PubMed  CAS  Google Scholar 

  46. Zong Q, Schummer M, Hood L, Morris DR (1999) Messenger RNA translation state: the second dimension of high-throughput expression screening. Proc Natl Acad Sci USA 96:10632–10636

    Article  PubMed  CAS  Google Scholar 

  47. Preiss T, Baron-Benhamou J, Ansorge W, Hentze MW (2003) Homodirectional changes in transcriptome composition and mRNA translation induced by rapamycin and heat shock. Nat Struct Biol 10:1039–1047

    Article  PubMed  CAS  Google Scholar 

  48. Larsson O, Nadon R (2008) Gene expression – time to change point of view? Biotechnol Genet Eng Rev 25:77–92

    Article  PubMed  CAS  Google Scholar 

  49. Rubinstein R, Simon I (2005) MILANO –custom annotation of microarray results using automatic literature searches. BMC Bioinformatics 6:12

    Article  PubMed  Google Scholar 

  50. Khatri P, Draghici S (2005) Ontological analysis of gene expression data: current tools, limitations, and open problems. Bioinformatics 21:3587–3595

    Article  PubMed  CAS  Google Scholar 

  51. Subramanian A, Tamayo P, Mootha VK et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102:15545–15550

    Article  PubMed  CAS  Google Scholar 

  52. Wennmalm K, Wahlestedt C, Larsson O (2005) The expression signature of in vitro senescence resembles mouse but not human aging. Genome Biol 6:R109

    Article  PubMed  Google Scholar 

  53. Larsson O, Sandberg R (2006) Lack of correct data format and comparability limits future integrative microarray research. Nat Biotechnol 24:1322–1323

    Article  PubMed  CAS  Google Scholar 

  54. Keene JD (2007) RNA regulons: coordination of post-transcriptional events. Nat Rev Genet 8:533–543

    Article  PubMed  CAS  Google Scholar 

  55. Liu X, Brutlag DL, Liu JS (2001) BioProspector: discovering conserved DNA motifs in upstream regulatory regions of co-expressed genes. Pac Symp Biocomput 127–138

    Google Scholar 

  56. Xie X, Lu J, Kulbokas EJ et al (2005) Systematic discovery of regulatory motifs in human promoters and 3 UTRs by comparison of several mammals. Nature 434:338–345

    Article  PubMed  CAS  Google Scholar 

  57. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65

    Article  PubMed  CAS  Google Scholar 

  58. Gerber AP, Herschlag D, Brown PO (2004) Extensive association of functionally and cytotopically related mRNAs with Puf family RNA-binding proteins in yeast. PLoS Biol 2:E79

    Article  PubMed  Google Scholar 

  59. Vlasova IA, Tahoe NM, Fan D et al (2008) Conserved GU-rich elements mediate mRNA decay by binding to CUG-binding protein 1. Mol Cell 29:263–270

    Article  PubMed  CAS  Google Scholar 

  60. Fan D, Bitterman PB, Larsson O (2009) Regulatory element identification in subsets of transcripts: comparison and integration of current computational methods. RNA 15:1469–1482

    Google Scholar 

  61. Mehta A, Trotta CR, Peltz SW (2006) Derepression of the Her-2 uORF is mediated by a novel post-transcriptional control mechanism in cancer cells. Genes Dev 20:939–953

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

O.L. is supported by a fellowship from the Knut and Alice Wallenberg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ola Larsson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Larsson, O., Bitterman, P.B. (2009). Genome-Wide Analysis of Translational Control. In: Polunovsky, V., Houghton, P. (eds) mTOR Pathway and mTOR Inhibitors in Cancer Therapy. Cancer Drug Discovery and Development. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-271-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-271-1_11

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60327-270-4

  • Online ISBN: 978-1-60327-271-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics