Skip to main content

Dopamine Replacement Therapy in Parkinson’s Disease: Past, Present and Future

  • Chapter
  • First Online:
Cortico-Subcortical Dynamics in Parkinson's Disease

Part of the book series: Contemporary Neuroscience ((CNEURO))

Until the 1960s, the only available pharmacotherapy for Parkinson's disease (PD) consisted in anticholinergic drugs, whose positive symptomatic effects were discovered serendipitously [1]. This category of drugs is particularly effective in alleviating tremor, but also causes significant side effects due to the blockade of muscarinic receptors in the autonomic and central nervous system. The modern era of PD pharmacotherapy started about 50 years ago and was made possible by two scientific breakthroughs. Arvid Carlsson and collaborators discovered that dopamine (DA) was a centrally active neurotransmitter and that DA depletion by reserpine produced a syndrome very similar to parkinsonism in animals [2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lang AE, Lees A. Anticholinergic therapies in the treatment of Parkinson’s disease. Mov Disord 2002;17 (suppl 4):S7–S12.

    Google Scholar 

  2. Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 1957;180(4596):1200.

    Article  PubMed  CAS  Google Scholar 

  3. Hornykiewicz O. Die Topische Lokalisation und das Verhalten von Noradrenalin und Dopamin in der Substantia Nigra des normalen und Parkinsonkranken Menschen. Wien Klin Wochenschr 1963;75:309–12.

    PubMed  CAS  Google Scholar 

  4. Birkmayer W, Hornykiewicz O. Der L-Dioxyphenylalanin (=DOPA)-Effekt bei der Parkinson-akinase. Wien Klin Wschr 1961;73:787–8.

    PubMed  CAS  Google Scholar 

  5. Cotzias G, Van Woert M, Schiffer L. Aromatic amino acids and modification of parkinsonism. N Engl J Med 1967;276:374–9.

    Article  PubMed  CAS  Google Scholar 

  6. Calne DB, Reid JL, Vakil SD, Pallis C. Problems with L-dopa therapy. Clin Med 1971;78:21–3.

    Google Scholar 

  7. Cotzias G, Papavasiliou P, Gellene R. Modification of parkinsonism-chronic treatment with L-dopa. N Engl J Med 1969;280:337–45.

    Article  PubMed  CAS  Google Scholar 

  8. McDowell F, Lee J, Swift T, al. e. Treatment of Parkinson’s syndrome with dihydroxyphenylalanine (levodopa). Ann Intern Med 1970;72:29–35.

    PubMed  CAS  Google Scholar 

  9. Schwarz GA, Fahn S. Newer medical treatments in parkinsonism. Med Clin North Am 1970;54:773–85.

    PubMed  CAS  Google Scholar 

  10. Rascol O, Payoux P, Ory F, Ferreira JJ, Brefel-Courbon C, Montastruc JL. Limitations of current Parkinson’s disease therapy. Ann Neurol 2003;53 Suppl 3:S3–12; discussion S-5.

    Article  PubMed  CAS  Google Scholar 

  11. Nutt JG, Holford NH. The response to levodopa in Parkinson’s disease: imposing pharmacological law and order. Ann Neurol 1996;39(5):561–73.

    Article  PubMed  CAS  Google Scholar 

  12. Ahlskog JE, Muenter MD. Frequency of levodopa-related dyskinesias and motor fluctuations as estimated from the cumulative literature. Mov Disord 2001;16(3):448–58.

    Article  PubMed  CAS  Google Scholar 

  13. Manson A, Schrag A. Levodopa-induced dyskinesias, the Clinical Problem: Clinical Features, Incidence, Risk Factors, Management and Impact on Quality of Life. In: Bezard E, ed. Recent breakthroughs in Basal Ganglia Research. New York, NY: Nova Science Publishers Inc.; 2006:369–80.

    Google Scholar 

  14. Mazzella L, Yahr MD, Marinelli L, Huang N, Moshier E, Di Rocco A. Dyskinesias predict the onset of motor response fluctuations in patients with Parkinson’s disease on L-dopa monotherapy. Parkinsonism Relat Disord 2005;11(3):151–5.

    Article  PubMed  CAS  Google Scholar 

  15. Nutt JG. Dyskinesia induced by levodopa and dopamine agonists in patients with Parkinson’s disease. In: Lang AE, Weiner WJ, eds. Drug-induced movement disorders. Mount Kisko: Futura Publishing Co., Inc.; 1992:281–314.

    Google Scholar 

  16. Luquin MR, Scipioni O, Vaamonde J, Gershanik O, Obeso JA. Levodopa-induced dyskinesias in Parkinson’s disease: clinical and pharmacological classification. Mov Disord 1992;7(2):117–24.

    Article  PubMed  CAS  Google Scholar 

  17. Marsden CD, Parkes JD, Quinn N. Fluctuations in disability in Parkinson’s disease – clinical aspects. In: Marsden CD, Fahn S, eds. Movement Disorders. London: Butterworths; 1981:96–122.

    Google Scholar 

  18. Quinn NP. Classification of fluctuations in patients with Parkinson’s disease. Neurology 1998;51(2 Suppl 2):S25–9.

    PubMed  CAS  Google Scholar 

  19. Nyholm D, Lennernas H, Gomes-Trolin C, Aquilonius SM. Levodopa pharmacokinetics and motor performance during activities of daily living in patients with Parkinson’s disease on individual drug combinations. Clin Neuropharmacol 2002;25(2):89–96.

    Article  PubMed  CAS  Google Scholar 

  20. Gancher ST, Nutt JG, Woodward WR. Peripheral pharmacokinetics of levodopa in untreated, stable, and fluctuating parkinsonian patients. Neurology 1987;37(6):940–4.

    PubMed  CAS  Google Scholar 

  21. Cenci MA. Dopamine dysregulation of movement control in L-DOPA-induced dyskinesia. Trends Neurosci 2007;30(5):236–43.

    Article  PubMed  CAS  Google Scholar 

  22. Cenci MA, Lindgren HS. Advances in understanding L-DOPA-induced dyskinesia. Curr Opin Neurobiol 2007;17(6):665–71.

    Article  PubMed  CAS  Google Scholar 

  23. Calabresi P, Giacomini P, Centonze D, Bernardi G. Levodopa-induced dyskinesia: a pathological form of striatal synaptic plasticity? Ann Neurol 2000;47(4 Suppl 1):S60–8; discussion S8–9.

    CAS  Google Scholar 

  24. Linazasoro G. New ideas on the origin of L-dopa-induced dyskinesias: age, genes and neural plasticity. Trends Pharmacol Sci 2005;26(8):391–7.

    Article  PubMed  CAS  Google Scholar 

  25. Schrag A. Psychiatric aspects of Parkinson’s disease--an update. J Neurol 2004;251(7):795–804.

    Article  PubMed  Google Scholar 

  26. Schapira AH, Olanow CW. Neuroprotection in Parkinson disease: mysteries, myths, and misconceptions. Jama 2004;291(3):358–64.

    Article  PubMed  CAS  Google Scholar 

  27. Mercuri NB, Bernardi G. The ‘magic’ of L-dopa: why is it the gold standard Parkinson’s disease therapy? Trends Pharmacol Sci 2005;26(7):341–4.

    CAS  Google Scholar 

  28. Rivera-Calimlim L, Dujovne CA, Morgan JP, Lasagna L, Bianchine JR. Absorption and metabolism of L-dopa by the human stomach. Eur J Clin Invest 1971;1(5):313–20.

    Article  PubMed  CAS  Google Scholar 

  29. Bianchine JR, Calimlim LR, Morgan JP, Dujuvne CA, Lasagna L. Metabolism and absorption of L-3,4 dihydroxyphenylalanine in patients with Parkinson’s disease. Ann N Y Acad Sci 1971;179:126–40.

    Article  PubMed  CAS  Google Scholar 

  30. Cedarbaum JM. Clinical pharmacokinetics of anti-parkinsonian drugs. Clin Pharmacokinet 1987;13(3):141–78.

    Article  PubMed  CAS  Google Scholar 

  31. Calne DB, Reid JL, Vakil SD, et al. Idiopathic Parkinsonism treated with an extracerebral decarboxylase inhibitor in combination with levodopa. Br Med J 1971;3(5777):729–32.

    Article  PubMed  CAS  Google Scholar 

  32. Mouradian MM, Heuser IJ, Baronti F, Fabbrini G, Juncos JL, Chase TN. Pathogenesis of dyskinesias in Parkinson’s disease. Ann Neurol 1989;25(5):523–6.

    Article  PubMed  CAS  Google Scholar 

  33. Chapuis S, Ouchchane L, Metz O, Gerbaud L, Durif F. Impact of the motor complications of Parkinson’s disease on the quality of life. Mov Disord 2005;20(2):224–30.

    Article  PubMed  Google Scholar 

  34. Schwab RS, Amador LV, Lettvin JY. Apomorphine in Parkinson’s disease. Trans Am Neurol Assoc 1951;56:251–3.

    PubMed  CAS  Google Scholar 

  35. Corsini GU, Del Zompo M, Gessa GL, Mangoni A. Therapeutic efficacy of apomorphine combined with an extracerebral inhibitor of dopamine receptors in Parkinson’s disease. Lancet 1979;1(8123):954–6.

    Article  PubMed  CAS  Google Scholar 

  36. Frankel JP, Lees AJ, Kempster PA, Stern GM. Subcutaneous apomorphine in the treatment of Parkinson’s disease. J Neurol Neurosurg Psychiatry 1990;53(2):96–101.

    Article  PubMed  CAS  Google Scholar 

  37. Stibe C, Lees A, Stern G. Subcutaneous infusion of apomorphine and lisuride in the treatment of parkinsonian on-off fluctuations. Lancet 1987;1(8537):871.

    Article  PubMed  CAS  Google Scholar 

  38. Gancher S. Pharmacokinetics of apomorphine in Parkinson’s disease. J Neural Transm Suppl 1995;45:137–41.

    PubMed  CAS  Google Scholar 

  39. Hagell P, Odin P. Apomorphine in the treatment of Parkinson’s disease. J Neurosci Nurs 2001;33(1):21–34, 7–8.

    Article  PubMed  CAS  Google Scholar 

  40. O’Sullivan JD, Lees AJ. Use of apomorphine in Parkinson’s disease. Hosp Med 1999;60(11):816–20.

    PubMed  Google Scholar 

  41. Pollak P, Champay AS, Gaio JM, Hommel M, Benabid AL, Perret J. [Subcutaneous administration of apomorphine in motor fluctuations in Parkinson’s disease]. Rev Neurol (Paris) 1990;146(2):116–22.

    CAS  Google Scholar 

  42. Hagell P, Odin P, Shing M. In: Hagell P, Odin P, Shing M, eds. Apomorphine in Parkinson’s Disease. Bremen, Germany: Uni-Med Verlag AG; 2005:369–80.

    Google Scholar 

  43. Chaudhuri KR, Critchley P, Abbott RJ, Pye IF, Millac PA. Subcutaneous apomorphine for on-off oscillations in Parkinson’s disease. Lancet 1988;2(8622):1260.

    Article  PubMed  CAS  Google Scholar 

  44. Hughes AJ, Bishop S, Kleedorfer B, et al. Subcutaneous apomorphine in Parkinson’s disease: response to chronic administration for up to five years. Mov Disord 1993;8(2):165–70.

    Article  PubMed  CAS  Google Scholar 

  45. Kanovsky P, Kubova D, Bares M, et al. Levodopa-induced dyskinesias and continuous subcutaneous infusions of apomorphine: results of a two-year, prospective follow-up. Mov Disord 2002;17(1):188–91.

    Article  PubMed  Google Scholar 

  46. Morgante L, Basile G, Epifanio A, et al. Continuous apomorphine infusion (CAI) and neuropsychiatric disorders in patients with advanced Parkinson’s disease: a follow-up of two years. Arch Gerontol Geriatr Suppl 2004(9):291–6.

    Google Scholar 

  47. Pietz K, Hagell P, Odin P. Subcutaneous apomorphine in late stage Parkinson’s disease: a long term follow up. J Neurol Neurosurg Psychiatry 1998;65(5):709–16.

    Article  PubMed  CAS  Google Scholar 

  48. Stocchi F, Bramante L, Monge A, et al. Apomorphine and lisuride infusion. A comparative chronic study. Adv Neurol 1993;60:653–5.

    PubMed  CAS  Google Scholar 

  49. Katzenschlager R, Hughes A, Evans A, et al. Continuous subcutaneous apomorphine therapy improves dyskinesias in Parkinson’s disease: a prospective study using single-dose challenges. Mov Disord 2005;20(2):151–7.

    Article  PubMed  Google Scholar 

  50. Manson AJ, Turner K, Lees AJ. Apomorphine monotherapy in the treatment of refractory motor complications of Parkinson’s disease: long-term follow-up study of 64 patients. Mov Disord 2002;17(6):1235–41.

    Article  PubMed  Google Scholar 

  51. Kolls BJ, Stacy M. Apomorphine: a rapid rescue agent for the management of motor fluctuations in advanced Parkinson disease. Clin Neuropharmacol 2006;29(5):292–301.

    Article  PubMed  CAS  Google Scholar 

  52. Stowe R, Ives N, Clarke C, et al. Dopamine agonist therapy in early Parkinson’s disease. Cochrane Database Syst Rev 2008(2):CD006564.

    Google Scholar 

  53. Guttman M. Double-blind comparison of pramipexole and bromocriptine treatment with placebo in advanced Parkinson’s disease. International Pramipexole-Bromocriptine Study Group. Neurology 1997;49(4):1060–5.

    PubMed  CAS  Google Scholar 

  54. Lieberman A, Olanow CW, Sethi K, et al. A multicenter trial of ropinirole as adjunct treatment for Parkinson’s disease. Ropinirole Study Group. Neurology 1998;51(4):1057–62.

    PubMed  CAS  Google Scholar 

  55. Potenza MN, Voon V, Weintraub D. Drug Insight: impulse control disorders and dopamine therapies in Parkinson’s disease. Nat Clin Pract Neurol 2007;3(12):664–72.

    Article  PubMed  CAS  Google Scholar 

  56. Shill H, Stacy M. Respiratory function in Parkinson’s disease. Clin Neurosci 1998;5(2):131–5.

    PubMed  CAS  Google Scholar 

  57. Schade R, Andersohn F, Suissa S, Haverkamp W, Garbe E. Dopamine agonists and the risk of cardiac-valve regurgitation. N Engl J Med 2007;356(1):29–38.

    Article  PubMed  CAS  Google Scholar 

  58. Zanettini R, Antonini A, Gatto G, Gentile R, Tesei S, Pezzoli G. Valvular heart disease and the use of dopamine agonists for Parkinson’s disease. N Engl J Med 2007;356(1):39–46.

    Article  PubMed  CAS  Google Scholar 

  59. Fitzgerald LW, Burn TC, Brown BS, et al. Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine. Mol Pharmacol 2000;57(1):75–81.

    PubMed  CAS  Google Scholar 

  60. Rothman RB, Baumann MH, Savage JE, et al. Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications. Circulation 2000;102(23):2836–41.

    PubMed  CAS  Google Scholar 

  61. Fernandez HH, Chen JJ. Monoamine oxidase-B inhibition in the treatment of Parkinson’s disease. Pharmacotherapy 2007;27(12 Pt 2):174S-85S.

    Article  PubMed  CAS  Google Scholar 

  62. Bonifacio MJ, Palma PN, Almeida L, Soares-da-Silva P. Catechol-O-methyltransferase and its inhibitors in Parkinson’s disease. CNS Drug Rev 2007;13(3):352–79.

    Article  PubMed  CAS  Google Scholar 

  63. Rascol O, Brooks DJ, Melamed E, et al. Rasagiline as an adjunct to levodopa in patients with Parkinson’s disease and motor fluctuations (LARGO, Lasting effect in Adjunct therapy with Rasagiline Given Once daily, study): a randomised, double-blind, parallel-group trial. Lancet 2005;365(9463):947–54.

    Article  PubMed  CAS  Google Scholar 

  64. Sagi Y, Mandel S, Amit T, Youdim MB. Activation of tyrosine kinase receptor signaling pathway by rasagiline facilitates neurorescue and restoration of nigrostriatal dopamine neurons in post-MPTP-induced parkinsonism. Neurobiol Dis 2007;25(1):35–44.

    Article  PubMed  CAS  Google Scholar 

  65. Youdim MB, Bakhle YS. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 2006;147 Suppl 1:S287–96.

    PubMed  CAS  Google Scholar 

  66. Misu Y, Goshima Y, Miyamae T. Is DOPA a neurotransmitter? Trends Pharmacol Sci 2002;23(6):262–8.

    Article  CAS  Google Scholar 

  67. Nedergaard S, Flatman JA, Engberg I. Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol 1993;466:727–47.

    PubMed  CAS  Google Scholar 

  68. Schultz W. Behavioral dopamine signals. Trends Neurosci 2007;30(5):203–10.

    Article  PubMed  CAS  Google Scholar 

  69. Cragg SJ, Rice ME. DAncing past the DAT at a DA synapse. Trends Neurosci 2004;27(5):270–7.

    Article  PubMed  CAS  Google Scholar 

  70. Chase TN. Levodopa therapy: consequences of the nonphysiologic replacement of dopamine. Neurology 1998;50(5 Suppl 5):S17–25.

    PubMed  CAS  Google Scholar 

  71. Nyholm D. The rationale for continuous dopaminergic stimulation in advanced Parkinson’s disease. Parkinsonism Relat Disord 2007;13 Suppl:S13–7.

    Article  PubMed  Google Scholar 

  72. Olanow CW, Agid Y, Mizuno Y, et al. Levodopa in the treatment of Parkinson’s disease: current controversies. Mov Disord 2004;19(9):997–1005.

    Article  PubMed  Google Scholar 

  73. Engber TM, Susel Z, Kuo S, Gerfen CR, Chase TN. Levodopa replacement therapy alters enzyme activities in striatum and neuropeptide content in striatal output regions of 6-hydroxydopamine lesioned rats. Brain Res 1991;552(1):113–8.

    Article  PubMed  CAS  Google Scholar 

  74. Juncos JL, Engber TM, Raisman R, et al. Continuous and intermittent levodopa differentially affect basal ganglia function. Ann Neurol 1989;25(5):473–8.

    Article  PubMed  CAS  Google Scholar 

  75. Engber TM, Susel Z, Kuo S, Chase TN. Chronic levodopa treatment alters basal and dopamine agonist-stimulated cerebral glucose utilization. J Neurosci 1990;10(12):3889–95.

    PubMed  CAS  Google Scholar 

  76. Engber TM, Susel Z, Juncos JL, Chase TN. Continuous and intermittent levodopa differentially affect rotation induced by D-1 and D-2 dopamine agonists. Eur J Pharmacol 1989;168(3):291–8.

    Article  PubMed  CAS  Google Scholar 

  77. de la Fuente-Fernandez R, Sossi V, Huang Z, et al. Levodopa-induced changes in synaptic dopamine levels increase with progression of Parkinson’s disease: implications for dyskinesias. Brain 2004;127(Pt 12):2747–54.

    Article  PubMed  Google Scholar 

  78. Pavese N, Evans AH, Tai YF, et al. Clinical correlates of levodopa-induced dopamine release in Parkinson disease: a PET study. Neurology 2006;67(9):1612–7.

    Article  PubMed  CAS  Google Scholar 

  79. Blanchet PJ, Calon F, Martel JC, et al. Continuous administration decreases and pulsatile administration increases behavioral sensitivity to a novel dopamine D2 agonist (U-91356A) in MPTP-exposed monkeys. J Pharmacol Exp Ther 1995;272(2):854–9.

    PubMed  CAS  Google Scholar 

  80. Shoulson I, Glaubiger GA, Chase TN. On-off response. Clinical and biochemical correlations during oral and intravenous levodopa administration in parkinsonian patients. Neurology 1975;25(12):1144–8.

    PubMed  CAS  Google Scholar 

  81. Quinn N, Marsden CD, Parkes JD. Complicated response fluctuations in Parkinson’s disease: response to intravenous infusion of levodopa. Lancet 1982;2(8295):412–5.

    Article  PubMed  CAS  Google Scholar 

  82. Kurlan R, Rubin AJ, Miller C, Rivera-Calimlim L, Clarke A, Shoulson I. Duodenal delivery of levodopa for on-off fluctuations in parkinsonism: preliminary observations. Ann Neurol 1986;20(2):262–5.

    Article  PubMed  CAS  Google Scholar 

  83. Nyholm D, Aquilonius SM. Levodopa infusion therapy in Parkinson disease: state of the art in 2004. Clin Neuropharmacol 2004;27(5):245–56.

    Article  PubMed  CAS  Google Scholar 

  84. Nyholm D, Nilsson Remahl AI, Dizdar N, et al. Duodenal levodopa infusion monotherapy vs oral polypharmacy in advanced Parkinson disease. Neurology 2005;64(2):216–23.

    Article  PubMed  CAS  Google Scholar 

  85. Eggert K, Schrader C, Hahn M, et al. Continuous jejunal levodopa infusion in patients with advanced Parkinson’s disease: Practical aspects and outcome of motor and non-motor complications. Clin Neuropharmacol 2008;in press.

    Google Scholar 

  86. Antonini A, Isaias IU, Canesi M, et al. Duodenal levodopa infusion for advanced Parkinson’s disease: 12-month treatment outcome. Mov Disord 2007;22(8):1145–9.

    Article  PubMed  Google Scholar 

  87. Antonini A, Mancini F, Canesi M, et al. Duodenal levodopa infusion improves quality of life in advanced Parkinson’s disease. Neurodegener Dis 2008;5(3–4):244–6.

    Article  PubMed  CAS  Google Scholar 

  88. Nyholm D, Jansson R, Willows T, Remahl IN. Long-term 24-hour duodenal infusion of levodopa: outcome and dose requirements. Neurology 2005;65(9):1506–7.

    Article  PubMed  Google Scholar 

  89. Baldwin CM, Keating GM. Rotigotine transdermal patch: a review of its use in the management of Parkinson’s disease. CNS Drugs 2007;21(12):1039–55.

    Article  PubMed  CAS  Google Scholar 

  90. Steiger M. Constant dopaminergic stimulation by transdermal delivery of dopaminergic drugs: a new treatment paradigm in Parkinson’s disease. Eur J Neurol 2008;15(1):6–15.

    PubMed  CAS  Google Scholar 

  91. Priano L, Albani G, Calderoni S, et al. Controlled-release transdermal apomorphine treatment for motor fluctuations in Parkinson’s disease. Neurol Sci 2002;23 Suppl 2:S99–100.

    Article  PubMed  Google Scholar 

  92. Woitalla D, Muller T, Benz S, Horowski R, Przuntek H. Transdermal lisuride delivery in the treatment of Parkinson’s disease. J Neural Transm Suppl 2004(68):89–95.

    Google Scholar 

  93. Carlsson T, Bjorklund T, Kirik D. Restoration of the striatal dopamine synthesis for Parkinson’s disease: viral vector-mediated enzyme replacement strategy. Curr Gene Ther 2007;7(2):109–20.

    Article  PubMed  CAS  Google Scholar 

  94. Cenci MA, Lundblad M. Post- versus presynaptic plasticity in L-DOPA-induced dyskinesia. J Neurochem 2006;99(2):381–92.

    Article  PubMed  CAS  Google Scholar 

  95. Kirik D, Georgievska B, Burger C, et al. Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of L-dopa using rAAV-mediated gene transfer. Proc Natl Acad Sci U S A 2002;99(7):4708–13.

    Article  PubMed  CAS  Google Scholar 

  96. Palfi S. Towards gene therapy for Parkinson’s disease. Lancet Neurol 2008;7(5):375–6.

    Article  PubMed  Google Scholar 

  97. Carlsson T, Winkler C, Burger C, et al. Reversal of dyskinesias in an animal model of Parkinson’s disease by continuous L-DOPA delivery using rAAV vectors. Brain 2005;128(Pt 3):559–69.

    Article  PubMed  Google Scholar 

  98. Bankiewicz KS, Eberling JL, Kohutnicka M, et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 2000;164(1):2–14.

    Article  PubMed  CAS  Google Scholar 

  99. Eberling JL, Jagust WJ, Christine CW, et al. Results from a phase I safety trial of hAADC gene therapy for Parkinson disease. Neurology 2008.

    Google Scholar 

  100. Cenci MA, Kalen P, Duan WM, Bjorklund A. Transmitter release from transplants of fetal ventral mesencephalon or locus coeruleus in the rat frontal cortex and nucleus accumbens: effects of pharmacological and behaviorally activating stimuli. Brain Res 1994;641(2):225–48.

    Article  PubMed  CAS  Google Scholar 

  101. Cragg SJ, Clarke DJ, Greenfield SA. Real-time dynamics of dopamine released from neuronal transplants in experimental Parkinson’s disease. Exp Neurol 2000;164(1):145–53.

    Article  PubMed  CAS  Google Scholar 

  102. Strecker RE, Sharp T, Brundin P, Zetterstrom T, Ungerstedt U, Bjorklund A. Autoregulation of dopamine release and metabolism by intrastriatal nigral grafts as revealed by intracerebral dialysis. Neuroscience 1987;22(1):169–78.

    Article  PubMed  CAS  Google Scholar 

  103. Lee CS, Cenci MA, Schulzer M, Bjorklund A. Embryonic ventral mesencephalic grafts improve levodopa-induced dyskinesia in a rat model of Parkinson’s disease. Brain 2000;123 ( Pt 7):1365–79.

    Article  PubMed  Google Scholar 

  104. Chritin M, Savasta M, Mennicken F, et al. Intrastriatal Dopamine-rich Implants Reverse the Increase of Dopamine D2 Receptor mRNA Levels Caused by Lesion of the Nigrostriatal Pathway: A Quantitative In Situ Hybridization Study. Eur J Neurosci 1992;4(7):663–72.

    Article  PubMed  Google Scholar 

  105. Cenci MA, Hagell P. Dyskinesia and neural grafting in Parkinson’s disease. In: Brundin P, Olanow W, eds. Movement Disorders. New York, NY: Kluwer Academic/Plenum Publishers; 2006:184–224.

    Google Scholar 

  106. Carlsson T, Winkler C, Lundblad M, Cenci MA, Bjorklund A, Kirik D. Graft placement and uneven pattern of reinnervation in the striatum is important for development of graft-induced dyskinesia. Neurobiol Dis 2006;21(3):657–68.

    Article  PubMed  CAS  Google Scholar 

  107. Lane EL, Winkler C, Brundin P, Cenci MA. The impact of graft size on the development of dyskinesia following intrastriatal grafting of embryonic dopamine neurons in the rat. Neurobiol Dis 2006;22(2):334–45.

    Article  PubMed  CAS  Google Scholar 

  108. Maries E, Kordower JH, Chu Y, Collier TJ, Sortwell CE, Olaru E, Shannon K, Steece-Collier K. Focal not widespread grafts induce novel dyskinetic behavior in parkinsonian rats. Neurobiol Dis 2006;21(1):165–180.

    Google Scholar 

  109. Brotchie JM. Nondopaminergic mechanisms in levodopa-induced dyskinesia. Mov Disord 2005;20(8):919–31.

    Article  PubMed  Google Scholar 

  110. Schapira AH, Bezard E, Brotchie J, et al. Novel pharmacological targets for the treatment of Parkinson’s disease. Nat Rev Drug Discov 2006;5(10):845–54.

    Article  PubMed  CAS  Google Scholar 

  111. Jenner P. Molecular mechanisms of L-DOPA-induced dyskinesia. Nat Rev Neurosci 2008;9(9):665–677.

    Google Scholar 

  112. Papa SM, Chase TN. Levodopa-induced dyskinesias improved by a glutamate antagonist in Parkinsonian monkeys. Ann Neurol 1996;39(5):574–8.

    Article  PubMed  CAS  Google Scholar 

  113. Konitsiotis S, Blanchet PJ, Verhagen Metman L, Lamers E, Chase TN. AMPA receptor blockade improves levodopa-induced dyskinesia in MPTP monkeys. Neurology 2000;54:1589–95.

    PubMed  CAS  Google Scholar 

  114. Chase TN, Oh JD, Konitsiotis S. Antiparkinsonian and antidyskinetic activity of drugs targeting central glutamatergic mechanisms. J Neurol 2000;247(Suppl 2):1136–42.

    Google Scholar 

  115. Verhagen Metman L, Blanchet PJ, van den Munckhof P, Del Dotto P, Natte R, Chase TN. A trial of dextromethorphan in parkinsonian patients with motor response complications. Mov Disord 1998;13(3):414–7.

    Article  PubMed  CAS  Google Scholar 

  116. Verhagen Metman L, Del Dotto P, Natte R, van den Munckhof P, Chase TN. Dextromethorphan improves levodopa-induced dyskinesias in Parkinson’s disease. Neurology 1998;51(1):203–6.

    PubMed  CAS  Google Scholar 

  117. Kornhuber J, Weller M, Schoppmeyer K, Riederer P. Amantadine and memantine are NMDA receptor antagonists with neuroprotective properties. J Neural Transm Suppl 1994;43:91–104.

    PubMed  CAS  Google Scholar 

  118. Metman LV, Del Dotto P, LePoole K, Konitsiotis S, Fang J, Chase TN. Amantadine for levodopa-induced dyskinesias: a 1-year follow-up study. Arch Neurol 1999;56(11):1383–6.

    Article  PubMed  CAS  Google Scholar 

  119. Luginger E, Wenning GK, Bosch S, Poewe W. Beneficial effects of amantadine on L-dopa-induced dyskinesias in Parkinson’s disease. Mov Disord 2000;15(5):873–8.

    Article  PubMed  CAS  Google Scholar 

  120. Del Dotto P, Pavese N, Gambaccini G, et al. Intravenous amantadine improves levadopa-induced dyskinesias: an acute double-blind placebo-controlled study. Mov Disord 2001;16(3):515–20.

    Article  PubMed  CAS  Google Scholar 

  121. Blanchet PJ, Metman LV, Chase TN. Renaissance of amantadine in the treatment of Parkinson’s disease. Adv Neurol 2003;91:251–7.

    PubMed  CAS  Google Scholar 

  122. Hadj Tahar A, Gregoire L, Darre A, Belanger N, Meltzer L, Bedard PJ. Effect of a selective glutamate antagonist on L-dopa-induced dyskinesias in drug-naive parkinsonian monkeys. Neurobiol Dis 2004;15(2):171–6.

    Article  PubMed  CAS  Google Scholar 

  123. Konradi C, Westin JE, Carta M, et al. Transcriptome analysis in a rat model of L-DOPA-induced dyskinesia. Neurobiol Dis 2004;17(2):219–36.

    Article  PubMed  CAS  Google Scholar 

  124. Samadi P, Gregoire L, Morissette M, et al. mGluR5 metabotropic glutamate receptors and dyskinesias in MPTP monkeys. Neurobiol Aging 2007.

    Google Scholar 

  125. Mela F, Marti M, Dekundy A, Danysz W, Morari M, Cenci MA. Antagonism of metabotropic glutamate receptor type 5 attenuates l-DOPA-induced dyskinesia and its molecular and neurochemical correlates in a rat model of Parkinson’s disease. J Neurochem 2007;101(2):483–97.

    Article  PubMed  CAS  Google Scholar 

  126. Levandis G, Bazzini E, Armentero MT, Nappi G, Blandini F. Systemic administration of an mGluR5 antagonist, but not unilateral subthalamic lesion, counteracts l-DOPA-induced dyskinesias in a rodent model of Parkinson’s disease. Neurobiol Dis 2007.

    Google Scholar 

  127. Svenningsson P, Tzavara ET, Liu F, Fienberg AA, Nomikos GG, Greengard P. DARPP-32 mediates serotonergic neurotransmission in the forebrain. Proc Natl Acad Sci U S A 2002;99(5):3188–93.

    Article  PubMed  CAS  Google Scholar 

  128. Zhang X, Andren PE, Greengard P, Svenningsson P. Evidence for a role of the 5-HT1B receptor and its adaptor protein, p11, in L-DOPA treatment of an animal model of Parkinsonism. Proc Natl Acad Sci U S A 2008;105(6):2163–8.

    Article  PubMed  CAS  Google Scholar 

  129. Carta M, Carlsson, T., Kirik, D., Bjorklund, A. Dopamine released from 5-HT terminals is the cause of L-DOPA-induced dyskinesia in Parkinsonian rats. Brain 2007;130:1819–33.

    Article  PubMed  Google Scholar 

  130. Kannari K, Yamato H, Shen H, Tomiyama M, Suda T, Matsunaga M. Activation of 5-HT (1A) but not 5-HT (1B) receptors attenuates an increase in extracellular dopamine derived from exogenously administered L-DOPA in the striatum with nigrostriatal denervation. J Neurochem 2001;76(5):1346–53.

    Article  PubMed  CAS  Google Scholar 

  131. Bishop C, Taylor JL, Kuhn DM, Eskow KL, Park JY, Walker PD. MDMA and fenfluramine reduce L-DOPA-induced dyskinesia via indirect 5-HT1A receptor stimulation. Eur J Neurosci 2006;23(10):2669–76.

    Article  PubMed  Google Scholar 

  132. Dekundy A, Lundblad M, Danysz W, Cenci MA. Modulation of L-DOPA-induced abnormal involuntary movements by clinically tested compounds: further validation of the rat dyskinesia model. Behav Brain Res 2007;179(1):76–89.

    Article  PubMed  CAS  Google Scholar 

  133. Eskow KL, Gupta V, Alam S, Park JY, Bishop C. The partial 5-HT (1A) agonist buspirone reduces the expression and development of l-DOPA-induced dyskinesia in rats and improves l-DOPA efficacy. Pharmacol Biochem Behav 2007;87(3):306-14.

    Article  PubMed  CAS  Google Scholar 

  134. Bonifati V, Fabrizio E, Cipriani R, Vanacore N, Meco G. Buspirone in levodopa-induced dyskinesias. Clin Neuropharmacol 1994;17(1):73–82.

    Article  PubMed  CAS  Google Scholar 

  135. Goetz CG, Damier P, Hicking C, et al. Sarizotan as a treatment for dyskinesias in Parkinson’s disease: a double-blind placebo-controlled trial. Mov Disord 2007;22(2):179–86.

    Article  PubMed  Google Scholar 

  136. Olanow CW, Damier P, Goetz CG, et al. Multicenter, open-label, trial of sarizotan in Parkinson disease patients with levodopa-induced dyskinesias (the SPLENDID Study). Clin Neuropharmacol 2004;27(2):58–62.

    Article  PubMed  CAS  Google Scholar 

  137. Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 2006;5(3):235–45.

    Article  PubMed  Google Scholar 

  138. Marras C, McDermott MP, Rochon PA, Tanner CM, Naglie G, Lang AE. Predictors of deterioration in health-related quality of life in Parkinson’s disease: results from the DATATOP trial. Mov Disord 2008;23(5):653–9; quiz 776.

    Article  PubMed  Google Scholar 

  139. Schrag A, Jahanshahi M, Quinn N. What contributes to quality of life in patients with Parkinson’s disease? J Neurol Neurosurg Psychiatry 2000;69(3):308–12.

    CAS  Google Scholar 

  140. Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24(2):197–211.

    Article  PubMed  Google Scholar 

  141. Brooks DJ, Piccini P. Imaging in Parkinson’s disease: the role of monoamines in behavior. Biol Psychiatry 2006;59(10):908–18.

    Article  PubMed  CAS  Google Scholar 

  142. Schrag A. Quality of life and depression in Parkinson’s disease. J Neurol Sci 2006;248(1–2):151–7.

    Article  PubMed  Google Scholar 

  143. Owen AM, Iddon JL, Hodges JR, Summers BA, Robbins TW. Spatial and non-spatial working memory at different stages of Parkinson’s disease. Neuropsychologia 1997;35(4):519–32.

    Article  PubMed  CAS  Google Scholar 

  144. Pillon B, Ertle S, Deweer B, Bonnet AM, Vidailhet M, Dubois B. Memory for spatial location in ’de novo’ parkinsonian patients. Neuropsychologia 1997;35(3):221–8.

    Article  PubMed  CAS  Google Scholar 

  145. Lewis SJ, Dove A, Robbins TW, Barker RA, Owen AM. Cognitive impairments in early Parkinson’s disease are accompanied by reductions in activity in frontostriatal neural circuitry. J Neurosci 2003;23(15):6351–6.

    PubMed  CAS  Google Scholar 

  146. Lewis SJ, Slabosz A, Robbins TW, Barker RA, Owen AM. Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia 2005;43(6):823–32.

    Article  PubMed  Google Scholar 

  147. Cools R, Lewis SJ, Clark L, Barker RA, Robbins TW. L-DOPA disrupts activity in the nucleus accumbens during reversal learning in Parkinson’s disease. Neuropsychopharmacology 2007;32(1):180–9.

    Article  PubMed  CAS  Google Scholar 

  148. Funkiewiez A, Ardouin C, Cools R, et al. Effects of levodopa and subthalamic nucleus stimulation on cognitive and affective functioning in Parkinson’s disease. Mov Disord 2006;21(10):1656–62.

    Article  PubMed  Google Scholar 

  149. Frank MJ, Seeberger LC, O’Reilly R C. By carrot or by stick: cognitive reinforcement learning in parkinsonism. Science 2004;306(5703):1940–3.

    Article  PubMed  CAS  Google Scholar 

  150. Dodd ML, Klos KJ, Bower JH, Geda YE, Josephs KA, Ahlskog JE. Pathological gambling caused by drugs used to treat Parkinson disease. Arch Neurol 2005;62(9):1377–81.

    Article  PubMed  Google Scholar 

  151. Frank MJ, Samanta J, Moustafa AA, Sherman SJ. Hold your horses: impulsivity, deep brain stimulation, and medication in parkinsonism. Science 2007;318(5854):1309–12.

    Article  PubMed  CAS  Google Scholar 

  152. Buter TC, van den Hout A, Matthews FE, Larsen JP, Brayne C, Aarsland D. Dementia and survival in Parkinson disease: a 12-year population study. Neurology 2008;70(13):1017–22.

    Article  PubMed  CAS  Google Scholar 

  153. Evans AH, Lees AJ. Dopamine dysregulation syndrome in Parkinson’s disease. Curr Opin Neurol 2004;17(4):393–8.

    Article  PubMed  Google Scholar 

  154. Giovannoni G, O’Sullivan JD, Turner K, Manson AJ, Lees AJ. Hedonistic homeostatic dysregulation in patients with Parkinson’s disease on dopamine replacement therapies. J Neurol Neurosurg Psychiatry 2000;68(4):423–8.

    Article  PubMed  CAS  Google Scholar 

  155. Stamey W, Jankovic J. Impulse control disorders and pathological gambling in patients with Parkinson disease. Neurologist 2008;14(2):89–99.

    Article  PubMed  Google Scholar 

  156. Voon V, Hassan K, Zurowski M, et al. Prevalence of repetitive and reward-seeking behaviors in Parkinson disease. Neurology 2006;67(7):1254–7.

    Article  PubMed  CAS  Google Scholar 

  157. Althaus A, Becker OA, Spottke A, et al. Frequency and treatment of depressive symptoms in a Parkinson’s disease registry. Parkinsonism Relat Disord 2008.

    Google Scholar 

  158. Lieberman A. Depression in Parkinson’s disease – a review. Acta Neurol Scand 2006;113(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  159. Reijnders JS, Ehrt U, Weber WE, Aarsland D, Leentjens AF. A systematic review of prevalence studies of depression in Parkinson’s disease. Mov Disord 2008;23(2):183–9; quiz 313.

    Article  PubMed  Google Scholar 

  160. Raudino F. Non motor off in Parkinson’s disease. Acta Neurol Scand 2001;104(5):312–5.

    Article  PubMed  CAS  Google Scholar 

  161. Comella CL. Sleep disorders in Parkinson’s disease: an overview. Mov Disord 2007;22 Suppl 17:S367–73.

    Article  PubMed  Google Scholar 

  162. Dhawan V, Healy DG, Pal S, Chaudhuri KR. Sleep-related problems of Parkinson’s disease. Age Ageing 2006;35(3):220–8.

    Article  PubMed  CAS  Google Scholar 

  163. Gjerstad MD, Wentzel-Larsen T, Aarsland D, Larsen JP. Insomnia in Parkinson’s disease: frequency and progression over time. J Neurol Neurosurg Psychiatry 2007;78(5):476–9.

    Article  PubMed  CAS  Google Scholar 

  164. Truong DD, Bhidayasiri R, Wolters E. Management of non-motor symptoms in advanced Parkinson disease. J Neurol Sci 2008;266(1–2):216–28.

    Article  PubMed  Google Scholar 

  165. Verbaan D, Marinus J, Visser M, van Rooden SM, Stiggelbout AM, van Hilten JJ. Patient-reported autonomic symptoms in Parkinson disease. Neurology 2007;69(4):333–41.

    Article  PubMed  CAS  Google Scholar 

  166. Emre M, Aarsland D, Albanese A, et al. Rivastigmine for dementia associated with Parkinson’s disease. N Engl J Med 2004;351(24):2509–18.

    Article  PubMed  CAS  Google Scholar 

  167. Poewe W, Wolters E, Emre M, et al. Long-term benefits of rivastigmine in dementia associated with Parkinson’s disease: an active treatment extension study. Mov Disord 2006;21(4):456–61.

    Article  PubMed  Google Scholar 

  168. Mercier F, Lefevre G, Huang HL, Schmidli H, Amzal B, Appel-Dingemanse S. Rivastigmine exposure provided by a transdermal patch versus capsules. Curr Med Res Opin 2007;23(12):3199–204.

    Article  PubMed  CAS  Google Scholar 

  169. Mamikonyan E, Siderowf AD, Duda JE, et al. Long-term follow-up of impulse control disorders in Parkinson’s disease. Mov Disord 2008;23(1):75–80.

    Article  PubMed  Google Scholar 

  170. Klein C, Gordon J, Pollak L, Rabey JM. Clozapine in Parkinson’s disease psychosis: 5-year follow-up review. Clin Neuropharmacol 2003;26(1):8–11.

    Article  PubMed  CAS  Google Scholar 

  171. Chung TH, Deane KH, Ghazi-Noori S, Rickards H, Clarke CE. Systematic review of antidepressant therapies in Parkinson’s disease. Parkinsonism Relat Disord 2003;10(2):59–65.

    Article  PubMed  CAS  Google Scholar 

  172. Shabnam GN, Th C, Kho D, H R, Ce C. Therapies for depression in Parkinson’s disease. Cochrane Database Syst Rev 2003(3):CD003465.

    Google Scholar 

  173. Remy P, Doder M, Lees A, Turjanski N, Brooks D. Depression in Parkinson’s disease: loss of dopamine and noradrenaline innervation in the limbic system. Brain 2005;128(Pt 6):1314–22.

    Article  PubMed  Google Scholar 

  174. Devos D, Dujardin K, Poirot I, et al. Comparison of desipramine and citalopram treatments for depression in Parkinson’s disease: a double-blind, randomized, placebo-controlled study. Mov Disord 2008;23(6):850–7.

    Article  PubMed  Google Scholar 

  175. Dalery J, Aubin V. [Comparative study of paroxetine and mianserin in depression in elderly patients: efficacy, tolerance, serotonin dependence]. Encephale 2001;27(1):71–81.

    PubMed  CAS  Google Scholar 

  176. Tuya AC. The management of insomnia in the older adult. Med Health R I 2007;90(6):195–6.

    PubMed  Google Scholar 

  177. Larsen JP, Tandberg E. Sleep disorders in patients with Parkinson’s disease: epidemiology and management. CNS Drugs 2001;15(4):267–75.

    Article  PubMed  CAS  Google Scholar 

  178. Hussain IF, Brady CM, Swinn MJ, Mathias CJ, Fowler CJ. Treatment of erectile dysfunction with sildenafil citrate (Viagra) in parkinsonism due to Parkinson’s disease or multiple system atrophy with observations on orthostatic hypotension. J Neurol Neurosurg Psychiatry 2001;71(3):371–4.

    Article  PubMed  CAS  Google Scholar 

  179. Zangaglia R, Martignoni E, Glorioso M, et al. Macrogol for the treatment of constipation in Parkinson’s disease. A randomized placebo-controlled study. Mov Disord 2007;22(9):1239–44.

    Article  PubMed  Google Scholar 

  180. Jobges EM, Spittler-Schneiders H, Renner CI, Hummelsheim H. Clinical relevance of rehabilitation programs for patients with idiopathic Parkinson syndrome. II: Symptom-specific therapeutic approaches. Parkinsonism Relat Disord 2007;13(4):203–13.

    Article  PubMed  Google Scholar 

  181. Jobges M, Heuschkel G, Pretzel C, Illhardt C, Renner C, Hummelsheim H. Repetitive training of compensatory steps: a therapeutic approach for postural instability in Parkinson’s disease. J Neurol Neurosurg Psychiatry 2004;75(12):1682–7.

    Article  PubMed  CAS  Google Scholar 

  182. Stefani A, Lozano AM, Peppe A, et al. Bilateral deep brain stimulation of the pedunculopontine and subthalamic nuclei in severe Parkinson’s disease. Brain 2007;130(Pt 6):1596–607.

    Article  PubMed  Google Scholar 

  183. Fabbrini G, Brotchie JM, Grandas F, Nomoto M, Goetz CG. Levodopa-induced dyskinesias. Mov Disord 2007;22(10):1379–89; quiz 523.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are board members of the Swedish Movement Disorders Society (SWEMODIS) and the Swedish Parkinson Disease Foundation (Svenska Parkinsonförbundet). PO is chairman of the Scandinavian Movement Disorder Society (ScandMODIS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Cenci .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cenci, M.A., Odin, P. (2009). Dopamine Replacement Therapy in Parkinson’s Disease: Past, Present and Future. In: Tseng, KY. (eds) Cortico-Subcortical Dynamics in Parkinson's Disease. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-252-0_20

Download citation

Publish with us

Policies and ethics