Skip to main content

Regulation of G-Protein-Coupled Receptor (GPCR) Trafficking in the Striatum in Parkinson’s Disease

  • Chapter
  • First Online:
Cortico-Subcortical Dynamics in Parkinson's Disease

Part of the book series: Contemporary Neuroscience ((CNEURO))

  • 731 Accesses

The striatum is a key element of basal ganglia involved in motor activity and cognitive function [1]. Dysregulation of its activity and/or physiology is involved in neurodegenerative diseases such as Parkinson’s and Huntington’s diseases and behavioural abnormalities such as addiction. Striatum is under the control of cortical, thalamic and nigral inputs and locally released neurotransmitter, i.e. GABA, acetylcholine, substance P enkephalins [2, 3]. Among many others, two key parameters that control neuronal activity and responsiveness are the abundance of neurotransmitter in the local environment and the density and availability of the receptors at the plasma membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

GABA::

gamma-aminobutyric acid

GPCR::

G-protein-coupled receptor

GRK::

G-protein-linked receptor kinase

MAPK::

mitogen-activated protein kinase

D1R::

dopamine receptor 1

DR5::

dopamine receptor 5

D2R::

dopamine receptor 2

D3R::

dopamine receptor 3

D4R::

dopamine receptor 4

cAMP::

adenosine 3',5'-cyclic monophosphate

PD::

Parkinson’s disease

6-OH-DA::

6-hydroxydopamine

LID::

levodopa-induced dyskinesia

MPTP::

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine

DA::

dopamine

NMDAR::

N-methyl-d-aspartate receptor

NR1::

NMDA receptor subunit 1

NR2A::

NMDA receptor subunit 2A

NR2B::

NMDA receptor subunit 2B

DARPP32::

dopamine- and cAMP-regulated phosphoprotein 32 kDa

PSD95::

postsynaptic density protein-95

PSD::

postsynaptic density

References

  1. Graybiel AM. Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 1990;13(7):244–54.

    Article  PubMed  CAS  Google Scholar 

  2. Alexander GE, Crutcher MD. Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 1990;13 (7):266–71.

    Article  PubMed  CAS  Google Scholar 

  3. Parent A. Extrinsic connections of the basal ganglia. Trends Neurosci 1990;13 (7):254–8.

    Article  PubMed  CAS  Google Scholar 

  4. Koenig JA, Edwardson JM. Kinetic analysis of the trafficking of muscarinic acetylcholine receptors between the plasma membrane and intracellular compartments. J Biol Chem 1994;269 (25):17174–82.

    PubMed  CAS  Google Scholar 

  5. Mukherjee S, Ghosh RN, Maxfield FR. Endocytosis. Physiol Rev 1997;77 (3):759–803.

    PubMed  CAS  Google Scholar 

  6. Koenig JA, Edwardson JM. Endocytosis and recycling of G protein-coupled receptors. Trends Pharmacol Sci 1997;18 (8):276–87.

    Article  PubMed  CAS  Google Scholar 

  7. Barton AC, Sibley DR. Agonist-induced desensitization of D1-dopamine receptors linked to adenylyl cyclase activity in cultured NS20Y neuroblastoma cells. Mol Pharmacol 1990;38 (4):531–41.

    PubMed  CAS  Google Scholar 

  8. von Zastrow M, Kobilka BK. Ligand-regulated internalization and recycling of human beta 2- adrenergic receptors between the plasma membrane and endosomes containing transferrin receptors. J Biol Chem 1992;267 (5):3530–8.

    Google Scholar 

  9. Mantyh PW, DeMaster E, Malhotra A, et al. Receptor endocytosis and dendrite reshaping in spinal neurons after somatosensory stimulation. Science 1995;268 (5217):1629–32.

    Article  PubMed  CAS  Google Scholar 

  10. Fonseca MI, Button DC, Brown RD. Agonist regulation of alpha 1B-adrenergic receptor subcellular distribution and function. J Biol Chem 1995;270 (15):8902–9.

    Article  PubMed  CAS  Google Scholar 

  11. Ng GY, Trogadis J, Stevens J, Bouvier M, O'Dowd BF, George SR. Agonist-induced desensitization of dopamine D1 receptor-stimulated adenylyl cyclase activity is temporally and biochemically separated from D1 receptor internalization. Proc Natl Acad Sci U S A 1995;92 (22):10157–61.

    Article  PubMed  CAS  Google Scholar 

  12. Roettger BF, Rentsch RU, Pinon D, et al. Dual pathways of internalization of the cholecystokinin receptor. J Cell Biol 1995;128 (6):1029–41.

    Article  PubMed  CAS  Google Scholar 

  13. Krueger KM, Daaka Y, Pitcher JA, Lefkowitz RJ. The role of sequestration in G protein-coupled receptor resensitization. Regulation of beta2-adrenergic receptor dephosphorylation by vesicular acidification. J Biol Chem 1997;272 (1):5–8.

    Article  PubMed  CAS  Google Scholar 

  14. Bernard V, Laribi O, Levey AI, Bloch B. Subcellular redistribution of m2 muscarinic acetylcholine receptors in striatal interneurons in vivo after acute cholinergic stimulation. J Neurosci 1998;18 (23):10207–18.

    PubMed  CAS  Google Scholar 

  15. Dumartin B, Caille I, Gonon F, Bloch B. Internalization of D1 dopamine receptor in striatal neurons in vivo as evidence of activation by dopamine agonists. J Neurosci 1998;18 (5):1650–61.

    PubMed  CAS  Google Scholar 

  16. Vickery RG, von Zastrow M. Distinct dynamin-dependent and -independent mechanisms target structurally homologous dopamine receptors to different endocytic membranes. J Cell Biol 1999;144 (1):31–43.

    Article  PubMed  CAS  Google Scholar 

  17. Fourgeaud L, Bessis AS, Rossignol F, Pin JP, Olivo-Marin JC, Hemar A. The metabotropic glutamate receptor mGluR5 is endocytosed by a clathrin-independent pathway. J Biol Chem 2003;278(14):12222–30.

    Article  PubMed  CAS  Google Scholar 

  18. Martin-Negrier ML, Charron G, Bloch B. Receptor recycling mediates plasma membrane recovery of dopamine D1 receptors in dendrites and axons after agonist-induced endocytosis in primary cultures of striatal neurons. Synapse 2006;60 (3):194–204.

    Article  PubMed  CAS  Google Scholar 

  19. Chu P, Murray S, Lissin D, von Zastrow M. Delta and kappa opioid receptors are differentially regulated by dynamin-dependent endocytosis when activated by the same alkaloid agonist. J Biol Chem 1997;272(43):27124–30.

    Article  PubMed  CAS  Google Scholar 

  20. Dumartin B, Jaber M, Gonon F, Caron MG, Giros B, Bloch B. Dopamine tone regulates D1 receptor trafficking and delivery in striatal neurons in dopamine transporter-deficient mice. Proc Natl Acad Sci U S A 2000;97(4):1879–84.

    Article  PubMed  CAS  Google Scholar 

  21. Lavezzari G, McCallum J, Dewey CM, Roche KW. Subunit-specific regulation of NMDA receptor endocytosis. J Neurosci 2004;24(28):6383–91.

    Article  PubMed  CAS  Google Scholar 

  22. Martin S, Henley JM. Activity-dependent endocytic sorting of kainate receptors to recycling or degradation pathways. Embo J 2004;23(24):4749–59.

    Article  PubMed  CAS  Google Scholar 

  23. Bernard V, Decossas M, Liste I, Bloch B. Intraneuronal trafficking of G-protein-coupled receptors in vivo. Trends Neurosci 2006;29(3):140–7.

    Article  PubMed  CAS  Google Scholar 

  24. Ryman-Rasmussen JP, Griffith A, Oloff S, et al. Functional selectivity of dopamine D1 receptor agonists in regulating the fate of internalized receptors. Neuropharmacology 2007;52 (2):562–75.

    Article  PubMed  CAS  Google Scholar 

  25. Ferguson SS, Caron MG. G protein-coupled receptor adaptation mechanisms. Semin Cell Dev Biol 1998;9 (2):119–27.

    Article  PubMed  CAS  Google Scholar 

  26. Claing A, Laporte SA, Caron MG, Lefkowitz RJ. Endocytosis of G protein-coupled receptors: roles of G protein-coupled receptor kinases and beta-arrestin proteins. Prog Neurobiol 2002;66(2):61–79.

    Article  PubMed  CAS  Google Scholar 

  27. Ahn S, Nelson CD, Garrison TR, Miller WE, Lefkowitz RJ. Desensitization, internalization, and signaling functions of beta-arrestins demonstrated by RNA interference. Proc Natl Acad Sci U S A 2003;100(4):1740–4.

    Article  PubMed  CAS  Google Scholar 

  28. Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG. An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 2005;122(2):261–73.

    Article  PubMed  CAS  Google Scholar 

  29. Bezard E, Gross CE, Qin L, Gurevich VV, Benovic JL, Gurevich EV. l-DOPA reverses the MPTP-induced elevation of the arrestin2 and GRK6 expression and enhanced ERK activation in monkey brain. Neurobiol Dis 2005;18 (2):323–35.

    Article  PubMed  CAS  Google Scholar 

  30. Missale C, Nash SR, Robinson SW, Jaber M, Caron MG. Dopamine receptors: from structure to function. Physiol Rev 1998;78 (1):189–225.

    PubMed  CAS  Google Scholar 

  31. Le Moine C, Bloch B. D1 and D2 dopamine receptor gene expression in the rat striatum: sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAs in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 1995;355 (3):418–26.

    Article  PubMed  Google Scholar 

  32. Caille I, Dumartin B, Bloch B. Ultrastructural localization of D1 dopamine receptor immunoreactivity in rat striatonigral neurons and its relation with dopaminergic innervation. Brain Res 1996;730(1–2):17–31.

    PubMed  CAS  Google Scholar 

  33. Yung KK, Bolam JP, Smith AD, Hersch SM, Ciliax BJ, Levey AI. Immunocytochemical localization of D1 and D2 dopamine receptors in the basal ganglia of the rat: light and electron microscopy. Neuroscience 1995;65(3):709–30.

    Article  PubMed  CAS  Google Scholar 

  34. Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990;250(4986):1429–32.

    Article  PubMed  CAS  Google Scholar 

  35. Hersch SM, Ciliax BJ, Gutekunst CA, et al. Electron microscopic analysis of D1 and D2 dopamine receptor proteins in the dorsal striatum and their synaptic relationships with motor corticostriatal afferents. J Neurosci 1995;15 (7 Pt 2):5222–37.

    PubMed  CAS  Google Scholar 

  36. Wang H, Pickel VM. Dopamine D2 receptors are present in prefrontal cortical afferents and their targets in patches of the rat caudate-putamen nucleus. J Comp Neurol 2002;442 (4):392–404.

    Article  PubMed  CAS  Google Scholar 

  37. Guigoni C, Doudnikoff E, Li Q, Bloch B, Bezard E. Altered D(1) dopamine receptor trafficking in parkinsonian and dyskinetic non-human primates. Neurobiol Dis 2007;26 (2):452–63.

    Article  PubMed  CAS  Google Scholar 

  38. Paspalas CD, Rakic P, Goldman-Rakic PS. Internalization of D2 dopamine receptors is clathrin-dependent and select to dendro-axonic appositions in primate prefrontal cortex. Eur J Neurosci 2006;24 (5):1395–403.

    Article  PubMed  Google Scholar 

  39. Guigoni C, Aubert I, Li Q, et al. Pathogenesis of levodopa-induced dyskinesia: focus on D1 and D3 dopamine receptors. Parkinsonism Relat Disord 2005;11 Suppl 1:S25–9.

    Article  Google Scholar 

  40. Martin-Negrier M, Charron G, Bloch B. Agonist stimulation provokes dendritic and axonal dopamine D(1) receptor redistribution in primary cultures of striatal neurons. Neuroscience 2000;99 (2):257–66.

    Article  PubMed  CAS  Google Scholar 

  41. Muriel MP, Bernard V, Levey AI, et al. Levodopa induces a cytoplasmic localization of D1 dopamine receptors in striatal neurons in Parkinson's disease. Ann Neurol 1999;46 (1):103–11.

    Article  PubMed  CAS  Google Scholar 

  42. Gurevich EV, Benovic JL, Gurevich VV. Arrestin2 and arrestin3 are differentially expressed in the rat brain during postnatal development. Neuroscience 2002;109 (3):421–36.

    Article  PubMed  CAS  Google Scholar 

  43. Gurevich EV, Benovic JL, Gurevich VV. Arrestin2 expression selectively increases during neural differentiation. J Neurochem 2004;91 (6):1404–16.

    Article  PubMed  CAS  Google Scholar 

  44. Arriza JL, Dawson TM, Simerly RB, et al. The G-protein-coupled receptor kinases beta ARK1 and beta ARK2 are widely distributed at synapses in rat brain. J Neurosci 1992;12 (10):4045–55.

    PubMed  CAS  Google Scholar 

  45. Benovic JL, Gomez J. Molecular cloning and expression of GRK6. A new member of the G protein-coupled receptor kinase family. J Biol Chem 1993;268 (26):19521–7.

    PubMed  CAS  Google Scholar 

  46. Premont RT, Koch WJ, Inglese J, Lefkowitz RJ. Identification, purification, and characterization of GRK5, a member of the family of G protein-coupled receptor kinases. J Biol Chem 1994;269(9):6832–41.

    PubMed  CAS  Google Scholar 

  47. Ahmed MR, Bychkov E, Gurevich VV, Benovic JL, Gurevich EV. Altered expression and subcellular distribution of GRK subtypes in the dopamine-depleted rat basal ganglia is not normalized by l-DOPA treatment. J Neurochem 2008;104 (6):1622–36.

    Article  PubMed  CAS  Google Scholar 

  48. Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 1990;13(7):259–65.

    Article  PubMed  CAS  Google Scholar 

  49. Standaert DG, Testa CM, Young AB, Penney JB, Jr. Organization of N-methyl-d-aspartate glutamate receptor gene expression in the basal ganglia of the rat. J Comp Neurol 1994;343 (1):1–16.

    Article  PubMed  CAS  Google Scholar 

  50. Dunah AW, Sirianni AC, Fienberg AA, Bastia E, Schwarzschild MA, Standaert DG. Dopamine D1-dependent trafficking of striatal N-methyl-d-aspartate glutamate receptors requires Fyn protein tyrosine kinase but not DARPP-32. Mol Pharmacol 2004;65 (1):121–9.

    Article  PubMed  CAS  Google Scholar 

  51. Dunah AW, Standaert DG. Dopamine D1 receptor-dependent trafficking of striatal NMDA glutamate receptors to the postsynaptic membrane. J Neurosci 2001;21 (15):5546–58.

    PubMed  CAS  Google Scholar 

  52. Hallett PJ, Spoelgen R, Hyman BT, Standaert DG, Dunah AW. Dopamine D1 activation potentiates striatal NMDA receptors by tyrosine phosphorylation-dependent subunit trafficking. J Neurosci 2006;26 (17):4690–700.

    Article  PubMed  CAS  Google Scholar 

  53. Gardoni F, Picconi B, Ghiglieri V, et al. A critical interaction between NR2B and MAGUK in l-DOPA induced dyskinesia. J Neurosci 2006; 26 (11):2914–22.

    Article  PubMed  CAS  Google Scholar 

  54. Prybylowski K, Wenthold RJ. N-Methyl-d-aspartate receptors: subunit assembly and trafficking to the synapse. J Biol Chem 2004;279 (11):9673–6.

    Article  PubMed  CAS  Google Scholar 

  55. Hallett PJ, Dunah AW, Ravenscroft P, et al. Alterations of striatal NMDA receptor subunits associated with the development of dyskinesia in the MPTP-lesioned primate model of Parkinson's disease. Neuropharmacology 2005;48 (4):503–16.

    Article  PubMed  CAS  Google Scholar 

  56. Dunah AW, Wang Y, Yasuda RP, et al. Alterations in subunit expression, composition, and phosphorylation of striatal N-methyl-d-aspartate glutamate receptors in a rat 6-hydroxydopamine model of Parkinson's disease. Mol Pharmacol 2000;57 (2):342–52.

    PubMed  CAS  Google Scholar 

  57. Scott L, Kruse MS, Forssberg H, Brismar H, Greengard P, Aperia A. Selective up-regulation of dopamine D1 receptors in dendritic spines by NMDA receptor activation. Proc Natl Acad Sci U S A 2002;99 (3):1661–4.

    Article  PubMed  CAS  Google Scholar 

  58. Scott L, Zelenin S, Malmersjo S, et al. Allosteric changes of the NMDA receptor trap diffusible dopamine 1 receptors in spines. Proc Natl Acad Sci U S A 2006;103 (3):762–7.

    Article  PubMed  CAS  Google Scholar 

  59. Lee FJ, Xue S, Pei L, et al. Dual regulation of NMDA receptor functions by direct protein-protein interactions with the dopamine D1 receptor. Cell 2002;111 (2):219–30.

    Article  PubMed  CAS  Google Scholar 

  60. Fiorentini C, Gardoni F, Spano P, Di Luca M, Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-d-aspartate receptors. J Biol Chem 2003;278 (22):20196–202.

    Article  PubMed  CAS  Google Scholar 

  61. Fiorentini C, Rizzetti MC, Busi C, et al. Loss of synaptic D1 dopamine/N-methyl-d-aspartate glutamate receptor complexes in l-DOPA-induced dyskinesia in the rat. Mol Pharmacol 2006;69 (3):805–12.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwan Bézard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Martin-Negrier, ML., Guigoni, C., Bloch, B., Bézard, E. (2009). Regulation of G-Protein-Coupled Receptor (GPCR) Trafficking in the Striatum in Parkinson’s Disease. In: Tseng, KY. (eds) Cortico-Subcortical Dynamics in Parkinson's Disease. Contemporary Neuroscience. Humana Press. https://doi.org/10.1007/978-1-60327-252-0_17

Download citation

Publish with us

Policies and ethics