Skip to main content

CT of Cardiac Function and Wall Motion

  • Chapter
  • First Online:
CT of the Heart

Part of the book series: Contemporary Medical Imaging ((CMI))

  • 2848 Accesses

Abstract

Functional evaluation is an important component of cardiovascular imaging, contributing to diagnosis, management, and prognosis. Echocardiography and cardiovascular magnetic resonance (CMR) are the most commonly used techniques for cardiac functional evaluation. Cardiac CT, which is primarily used in the evaluation of coronary arteries, is a reliable alternative in the evaluation of cardiac function, particularly in circumstances where echocardiography does not provide adequate information or CMR cannot be performed due to contraindications or artifacts. Functional evaluation with cardiac CT requires retrospective ECG gating, which allows reconstruction of multiple phases of the cardiac cycle. Cine images can then be reconstructed in multiple planes which are used for qualitative assessment of global and regional cardiac function. Quantification of ventricular volumes, mass, and function can be obtained by either drawing endocardial and epicardial contours or using threshold-based segmentation technique in end-diastolic and end-systolic phases. Global and regional ventricular functional abnormalities are seen in a variety of cardiomyopathies, including ischemic heart disease, nonischemic cardiomyopathies, pulmonary embolism, and congenital heart diseases. CT quantification of the left atrial volumes and function can also be performed in atrial fibrillation and mitral disease. In this chapter, we review the role and technique of CT in the evaluation of ventricular and atrial function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hammermeister KE, DeRouen TA, Dodge HT. Variables predictive of survival in patients with coronary disease. Selection by univariate and multivariate analyses from the clinical, electrocardiographic, exercise, arteriographic, and quantitative angiographic evaluations. Circulation. 1979;59(3):421–30.

    Article  CAS  PubMed  Google Scholar 

  2. Mock MB, Ringquist I, Fisher LD, et al. Survival of medically treated patients in the coronary artery surgery study (CASS) registry. Circulation. 1982;66:562–8.

    Article  CAS  PubMed  Google Scholar 

  3. Sayyed SH, Cassidy MM, Hadi MA. Use of multidetector computed tomography for evaluation of global and regional left ventricular function. J Cardiovasc Comput Tomogr. 2009;3(S1):S23–34.

    Article  PubMed  Google Scholar 

  4. Setser RM, Eischer SE, Lorenz CH. Quantification of left ventricular function with magnetic resonance images acquired in real time. J Magn Reson Imaging. 2000;12:430–8.

    Article  CAS  PubMed  Google Scholar 

  5. de Geus-Oei LF, Mavinkurve-Groothuis AM, Bellerson L, et al. Scintigraphic techniques for early detection of cancer treatment-induced cardiotoxicity. J Nucl Med. 2011;52(4):560–71.

    PubMed  Google Scholar 

  6. Slart RH, Bax JJ, de Jong RM, et al. Comparison of gated PET with MRI for evaluation of left ventricular function in patients with coronary artery disease. J Nucl Med. 2004;45(2):176–82.

    PubMed  Google Scholar 

  7. Bavelaar-Croon CD, Kayser HW, van der Wall EE, et al. Left ventricular function: correlation of quantitative gated SPECT and MR imaging over a wide range of values. Radiology. 2000;217(2):572–5.

    Article  CAS  PubMed  Google Scholar 

  8. Bodenheimer MMBV, Fooshee CM, Hermann GA, et al. Comparison of wall motion and regional ejection fraction at rest and during isometric exercise: concise communication. J Nucl Med. 1979;20:724–32.

    CAS  PubMed  Google Scholar 

  9. Stollfuss JC, Haas F, Matsunari I, et al. Regional myocardial wall thickening and global ejection fraction in patients with low angiographic left ventricular ejection fraction assessed by visual and quantitative resting ECG-gated 99mTc-tetrofosmin single-photon emission tomography and magnetic resonance imaging. Eur J Nucl Med. 1998;25(5):522–30.

    Article  CAS  PubMed  Google Scholar 

  10. Taylor AJ, Cerqueira M, Hodgson JM, et al. ACCF/SCCT/ACR/AHA/ASE/ASNC/SCAI/SCMR 2010 appropriate use criteria for cardiac computed tomography. J Am Coll Cardiol. 2010;56(22):1864–94.

    Article  PubMed  Google Scholar 

  11. Savino G, Zwerner P, Herzog C, et al. CT of cardiac function. J Thorac Imaging. 2007;22:86–100.

    Article  PubMed  Google Scholar 

  12. Ritchie C, Godwin J, Crawford C, et al. Minimum scan speeds for suppression of motion artifacts in CT. Radiology. 1992;185:37–42.

    Article  CAS  PubMed  Google Scholar 

  13. Port S, Cobb FR, Jones RH. Effects of propranolol on left ventricular function in normal men. Circulation. 1989;61(12):358–66.

    Google Scholar 

  14. Mo YH, Jaw FS, Wang YC, et al. Effects of propranolol on the left ventricular volume of normal subjects during CT coronary angiography. Korean J Radiol. 2011;12(3):319.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dell'Italia LJ, Walsh RA. Effect of intravenous metoprolol on left ventricular performance in Q-wave acute myocardial infarction. Am J Cardiol. 1989;63(3):166–71.

    Article  CAS  PubMed  Google Scholar 

  16. Jensen CJ, Jochims M, Hunold P, et al. Assessment of left ventricular function and mass in dual-source computed tomography coronary angiography: influence of beta-blockers on left ventricular function: comparison to magnetic resonance imaging. Eur J Radiol. 2010;74(3):484–91.

    Article  PubMed  Google Scholar 

  17. Lee H, Kim SY, Gebregziabher M, et al. Impact of ventricular contrast medium attenuation on the accuracy of left and right ventricular function analysis at cardiac multi detector-row CT compared with cardiac MRI. Acad Radiol. 2012;19(4):395–405.

    Article  PubMed  Google Scholar 

  18. Gao Y, Du X, Liang L, et al. Evaluation of right ventricular function by 64-row CT in patients with chronic obstructive pulmonary disease and cor pulmonale. Eur J Radiol. 2012;81(2):345–53.

    Article  PubMed  Google Scholar 

  19. Cademartiri F, Nieman K, van der Lugt A, et al. Intravenous contrast material administration at 16-detector row helical CT coronary angiography: test bolus versus bolus-tracking technique. Radiology. 2004;233(3):817–23.

    Article  PubMed  Google Scholar 

  20. Rizvi A, Deano RC, Bachman DP, et al. Analysis of ventricular function by computed tomography. J Cardiovasc Comput Tomogr. 2015;9(1):1–12.

    Article  PubMed  Google Scholar 

  21. Takx RAP, Moscariello A, Schoepf UJ, et al. Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol. 2012;81(4):e598–604.

    Article  PubMed  Google Scholar 

  22. Hausleiter J, Meyer T, Hadamitzky M, et al. Radiation dose estimates from cardiac multislice computed tomography in daily practice. Circulation. 2006;113:1305–10.

    Article  PubMed  Google Scholar 

  23. Hausleiter J, et al. A new algorithm for ECG-based tube current modulation (“MinDose”) reduces radiation dose estimates in cardiac dual source CT angiography. Circulation. 2007;116(Suppl 16):II-575.

    Google Scholar 

  24. Feuchtner G, Goetti R, Plass A, et al. Dual-step prospective ECG-triggered 128-slice dual source CT for evaluation of coronary arteries and cardiac function without heart rate control a technical note. Eur Radiol. 2010;20:2092–9.

    Article  PubMed  Google Scholar 

  25. Ko YJ, Kim SS, Park WJ, et al. Comparison of global left ventricular function using 20 phases with 10-phase reconstructions in multidetector-row computed tomography. Int J Cardiovasc Imaging. 2012;28(3):603–11.

    Article  PubMed  Google Scholar 

  26. Puesken M, Fischbach R, Wenker M, et al. Global left-ventricular function assessment using dual-source multidetector CT: effect of improved temporal resolution on ventricular volume measurement. Eur Radiol. 2008;18(10):2087–94.

    Article  PubMed  Google Scholar 

  27. Wai B, Thai WE, Brown H, et al. Novel phase-based noise reduction strategy for quantification of left ventricular function and mass assessment by cardiac CT: comparison with cardiac magnetic resonance. Eur J Radiol. 2013;82:e337–41.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lessick J, Ghersin E, Abadi S, Yalonetsky S. Accuracy of the long-axis area-length method for the measurement of left ventricular volumes and ejection fraction using multidetector computed tomograph. Can J Cardiol. 2008;24(9):685–9.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Greupner J, Zimmermann E, Hamm B, Dewey M. Automatic versus semiautomatic global cardiac function assessment using 64-row computed tomography. Br J Radiol. 2012;85(1015):e243–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Juergens KU, Seifarth H, Range F, et al. Automated threshold-based 3D segmentation versus short-axis planimetry for assessment of global left ventricular function with dual-source MDCT. Am J Roentgenol. 2008;190(2):308–14.

    Article  Google Scholar 

  31. Plumhans C, Keil S, Ocklenburg C, et al. Comparison of manual, semi- and fully automated heart segmentation for assessing global left ventricular function in multidetector computed tomography. Investig Radiol. 2009;44(8):476–82.

    Article  Google Scholar 

  32. van Ooijen PM, de Jonge GJ, Oudkerk M. Informatics in radiology: Postprocessing pitfalls in using CT for automatic and semiautomatic determination of global left ventricular function. Radiographics. 2012;32(2):589–99.

    Article  PubMed  Google Scholar 

  33. de Jonge GJ, can der Vleuten PA, Overbosch J, et al. Semiautomatic measurement of left ventricular function on dual source computed tomography using five different software tools in comparison with magnetic resonance imaging. Eur J Radiol. 2011;80(3):755–66.

    Article  PubMed  Google Scholar 

  34. Mao SS, Li D, Rosenthal DG, et al. Dual-standard reference values of left ventricular volumetric parameters by multidetector CT angiography. J Cardiovasc Comput Tomogr. 2013;7:234–40.

    Article  PubMed  Google Scholar 

  35. Juergens UK, Fischbach R. Left ventricular function studied with MDCT. Eur Radiol. 2006;16:342–57.

    Article  PubMed  Google Scholar 

  36. Alfakih K, Plein S, Thiele H, et al. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady state free precession imaging sequences. J Magn Reson Imaging. 2003;17:323–9.

    Article  PubMed  Google Scholar 

  37. Sandstede J, Lipke C, Beer M, et al. Age and gender specific differences in left and right ventricular cardiac function and mass determined by cine magnetic resonance imaging. Eur Radiol. 2000;10:438–42.

    Article  CAS  PubMed  Google Scholar 

  38. Boogers MJ, van Werkhoven JM, Shuijf JD, et al. Feasibility of diastolic functional assessment with cardiac CT: feasibility study in comparison with tissue Doppler imaging. JACC Cardiovasc Imaging. 2011;4:246–56.

    Article  PubMed  Google Scholar 

  39. Lin FY, et al. Cardiac chamber volumes, function, and mass as determined by 64-multidetector row computed tomography: mean values among healthy adults free of hypertension and obesity. JACC Cardiovasc Imaging. 2008;1(6):782–6.

    Article  PubMed  Google Scholar 

  40. Nevsky G, Jacobs JE, Lim RP, et al. Sex-specific normalized reference values of heart and great vessel dimensions in cardiac CT angiography. Am J Roentgenol. 2011;196:788–94.

    Article  Google Scholar 

  41. Juergens KU, Grude M, Maintz D, et al. Multi-detector row CT of left ventricular function with dedicated analysis software versus MR imaging: initial experience. Radiology. 2004;230:403–10.

    Article  PubMed  Google Scholar 

  42. Mahnken AH, Speuntrup E, Neithammer M, et al. Quantitative and qualitative assessment of left ventricular volume with ECG-gated multislice spiral CT: value of different image reconstruction algorithms in comparison to MRI. Acta Radiol. 2003;44(6):604–11.

    Article  CAS  PubMed  Google Scholar 

  43. van der Vleuten PA, Willems TP, Gotte MJ, et al. Quantification of global left ventricular function: comparison of multidetector computed tomography and magnetic resonance imaging. A meta-analysis and review of the current literature. Acta Radiol. 2006;47(10):1049–57.

    Article  PubMed  Google Scholar 

  44. Grude M, Juegens KU, Wichter T, et al. Evaluation of global left ventricular myocardial function with electrocardiogram gated multidetector computed tomography. Comparison with magnetic resonance imaging. Investig Radiol. 2003;38:653–61.

    Article  Google Scholar 

  45. Asferg C, Usinger L, Kristensen TS, et al. Accuracy of multi-slice computed tomography for measurement of left ventricular ejection fraction compared with cardiac magnetic resonance imaging and two-dimensional transthoracic echocardiography: a systematic review and metaanalysis. Eur J Radiol. 2011;81:e756–62.

    Google Scholar 

  46. Dewey M, Muller M, Eddicks S, et al. Evaluation of global and regional left ventricular function with 16-slice computed tomography, biplane cineventriculography and two-dimensional transthoracic echocardiography: comparison with magnetic resonance imaging. J Am Coll Cardiol. 2006;48:2034.

    Article  PubMed  Google Scholar 

  47. Mahias-Narvarte AHKF, Willis PW. Evolution of regional left ventricular wall motion abnormalities in acute Q and non-Q wave myocardial infarction. American Heart Journal. 1987;113:1369–75.

    Article  CAS  PubMed  Google Scholar 

  48. Sarwar A, Shapiro MD, Nasir K, et al. Evaluating global and regional left ventricular function in patients with reperfused acute myocardial infarction by 64-slice multidetector CT: a comparison to magnetic resonance imaging. J Cardiovasc Comput Tomogr. 2009;3(3):170–7.

    Article  PubMed  Google Scholar 

  49. Seneviratne SK, Troung QA, Bamberg F, et al. Incremental diagnostic value of regional left ventricular function over coronary assessment by cardiac computed tomography for the detection of acute coronary syndrome in patients with acute chest pain: from the ROMICAT trial. Circ Cardiovasc Imaging. 2010;3(8):375–83.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Bezerra HG, Loureiro R, Irlbeck T, et al. Incremental value of myocardial perfusion over regional left ventricular function and coronary stenosis by cardiac CT for detection of acute coronary syndromes in high risk patients: a subgroup analysis of the ROMICAT trial. J Cardiovasc Comput Tomogr. 2011;5:382–91.

    Article  PubMed  Google Scholar 

  51. Candell-Riera JLJ, Santana C, Castell J, et al. Prognostic assessment of uncomplicated first myocardial infarction by exercise echocardiography and Tc-99m tetrofosmin gated SPECT. J Nucl Cardiol. 2001;81:122–8.

    Article  Google Scholar 

  52. Antonini-Canterin FNG. Valutazione eoardiografica dei volume e della funzione sistolica globale del ventricolo sinistro. Ital Heart J. 2000;1:1261–72.

    CAS  Google Scholar 

  53. Arsanjani R, Berman DS, Gransar H, et al. Left ventricular function and volume with coronary CT angiography improves risk stratification and identification of patients at risk for incident mortality: results from 7758 patients in the prospective multinational CONFIRM observational cohort study. Radiology. 2014;273(1):70–7

    Article  PubMed  Google Scholar 

  54. Mastrobuoni S, Dell’aquila AM, Arraiza M, et al. Allograft morphology and function in heart transplant recipients surviving more than 15 years by magnetic resonance imaging and dual-source computed tomography. Eur J Cardiothorac Surg. 2011;40(1):e62–6.

    Article  PubMed  Google Scholar 

  55. Bastarrika G, Arraiza M, DeCecco CN, et al. Quantification of left ventricular function and mass in heart transplant recipients using dual-source CT and MRI: initial clinical experience. Eur Radiol. 2008;18(9):1784–90.

    Article  PubMed  Google Scholar 

  56. Taylor DO, Edwards LB, Aurora P, et al. Registry of the International Society for Heart and Lung Transplantation: twenty-fifth official adult heart transplant report—2008. J Heart Lung Transplant. 2008;27(9):943–56.

    Article  PubMed  Google Scholar 

  57. Acharya D, Singh S, Tallaj JA, et al. Use of gated cardiac computed tomography angiography in the assessment of left ventricular assist device dysfunction. ASAIO J. 2011;57:32–7.

    Article  PubMed  Google Scholar 

  58. Geva T. Is MRI the preferred method for evaluating right ventricular size and function in patients with congenital heart disease? Circ Cardiovasc Imaging. 2014;7:190–7.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Raman SV, Shah M, McCarthy B, et al. Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J. 2006;151:736–44.

    Article  PubMed  Google Scholar 

  60. Guo YK, Gao HL, Zhang XC, et al. Accuracy and reproducibility of assessing right ventricular function with 64-section multi-detector row CT: comparison with magnetic resonance imaging. Int J Cardiol. 2010;139:254–62.

    Article  PubMed  Google Scholar 

  61. Kang DK, Thilo C, Schoepf UJ, et al. CT signs of right ventricular dysfunction. J Am Coll Cardiol Img. 2011;4(8):841–9.

    Article  Google Scholar 

  62. Quiroz R, Kucher N, Schoepf UJ, et al. Right ventricular enlargement on chest computed tomography: prognostic role in acute pulmonary embolism. Circulation. 2004;109(20):2401–4.

    Article  PubMed  Google Scholar 

  63. Staskiewicz G, Czekajska-Chehab E, Przegalinski J, et al. Widening of coronary sinus in CT pulmonary angiography indicates right ventricular dysfunction in patients with acute pulmonary embolism. Eur Radiol. 2010;20:1615–20.

    Article  PubMed  Google Scholar 

  64. Burgess MI, Mogulkoc N, Bright-Thomas RJ, et al. Comparison of echocardiographic markers of right ventricular function in determining prognosis in chronic pulmonary disease. J Am Soc Echocardiogr. 2002;15:633–9.

    Article  PubMed  Google Scholar 

  65. Dupont MVM, Dragean CA, Coche EE. Right ventricle function assessment by MDCT. Am J Roentgenol. 2011;196(1):77–86.

    Article  Google Scholar 

  66. Therrien J, Provost Y, Merchant N, et al. Optimal timing for pulmonary valve replacement in adults after tetralogy of Fallot repair. Am J Cardiol. 2005;95:779–82.

    Article  PubMed  Google Scholar 

  67. Lee C, Kim YM, Lee CH, et al. Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement. J Am Coll Cardiol. 2012;60:1005–14.

    Article  PubMed  Google Scholar 

  68. Marcus F, McKenna WJ, Sherrill D, et al. Diagnosis of arrhythmogenic right ventricular cardiomyopathy/dysplasia: proposed modification of the task force criteria. Eur Heart J. 2010;31(7):806–14.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Nakajima T, Kimura F, Kajimoto K, et al. Utility of ECG-gated MDCT to differentiate patients with ARVC/D from patients with ventricular tachyarrhythmias. J Cardiovasc Comput Tomogr. 2013;7:223–33.

    Article  PubMed  Google Scholar 

  70. Stojanovska J, Cronin P, Patel S, et al. Reference normal absolute and indexed values from ECG-gated MDCT: left atrial volume, function, and diameter. Am J Roentgenol. 2011;197(3):631–7.

    Article  Google Scholar 

  71. Melenovsky V, Borlaug B, Rosen, et al. Cardiovascular features of heart failure with preserved ejection fraction versus non-failing hypertensive left ventricular hypertrophy in the urban Baltimore community. J Am Coll Cardiol. 2007;49:198.

    Article  PubMed  Google Scholar 

  72. Avelar E, Durst R, Rosito GA, et al. Comparison of the accuracy of multidetector computed tomography versus two-dimensional echocardiography to measure left atrial volume. Am J Cardiol. 2010;106(1):104–9.

    Article  PubMed  Google Scholar 

  73. Rodevan O, Bjornerheim R, Ljosland M, et al. Left atrial volumes assessed by three- and two-dimensional echocardiography compared to MRI estimates. Int J Card Imaging. 1999;15:397–410.

    Article  CAS  PubMed  Google Scholar 

  74. Christiaens L, Lequeux B, Ardilouze P, et al. A new method for measurement of LA volumes using 64-slice spiral CT: comparison with 2DE techniques. Int J Cardiol. 2009;131:217–24.

    Article  PubMed  Google Scholar 

  75. Kircher B, Abbott JA, Paul S, et al. Left atrial volume determination by biplane two-dimensional echocardiography: validation by cine CT. Am Heart J. 1991;121:864–71.

    Article  CAS  PubMed  Google Scholar 

  76. Wen Z, Zhang Z, Yu W, et al. Assessing the left atrial phase volume and function with dual-source CT: comparison with 3T MRI. Int J Cardiovasc Imaging. 2010;26:88–92.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhny Abbara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Humana Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rajiah, P., Abbara, S. (2019). CT of Cardiac Function and Wall Motion. In: Schoepf, U. (eds) CT of the Heart. Contemporary Medical Imaging. Humana, Totowa, NJ. https://doi.org/10.1007/978-1-60327-237-7_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-60327-237-7_35

  • Published:

  • Publisher Name: Humana, Totowa, NJ

  • Print ISBN: 978-1-60327-236-0

  • Online ISBN: 978-1-60327-237-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics