Chronic Chest Pain

  • Richard A. P. TakxEmail author
  • Csilla Celeng
Part of the Contemporary Medical Imaging book series (CMI)


Coronary computed tomography angiography (CTA) is increasingly applied for diagnosing coronary artery disease (CAD) in patients with chronic chest pain. Coronary CTA is a fast noninvasive test, which besides the detection of obstructive stenosis has the unique capability to identify also non-obstructive stenosis. Stable angina is typically characterized by episodes of myocardial ischemia due to a mismatch between oxygen demand and supply. The main causes of myocardial ischemia, which can be discerned, are CAD, microvascular disease, vasospasm, ischemic cardiomyopathy, and coronary anomaly. Beyond the identification of CAD, CTA enables myocardial perfusion imaging thus the detection of ischemic areas; furthermore by using prospectively ECG-triggered dual-step pulsing or retrospective gating, it allows to assess wall motion abnormalities. Recently two large randomized controlled trials, PROMISE and SCOT-HEART, reignited the discussion on the use of coronary CTA. In this chapter the role of coronary CTA for diagnosing, prognostication, and treatment will be discussed for patients with chronic chest pain.


Chest pain Multidetector computed tomography Coronary artery disease Microvascular angina Coronary vasospasm Myocardial ischemia Diabetes mellitus Renal insufficiency Chronic 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ladapo JA, Blecker S, Douglas PS. Physician decision making and trends in the use of cardiac stress testing in the United States: an analysis of repeated cross-sectional data. Ann Intern Med. 2014;161:482–90.CrossRefGoogle Scholar
  2. 2.
    Bradley SM, Spertus JA, Kennedy KF, et al. Patient selection for diagnostic coronary angiography and hospital-level percutaneous coronary intervention appropriateness: insights from the National Cardiovascular Data Registry. JAMA Intern Med. 2014;174:1630–9.CrossRefGoogle Scholar
  3. 3.
    National Institutes of Health NHL, and Blood Institute. Morbidity & mortality: 2012 chart book on cardiovascular, lung, and blood diseases. Bethesda: National Heart, Lung, and Blood Institute; 2012.Google Scholar
  4. 4.
    Task Force M, Montalescot G, Sechtem U, et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003.CrossRefGoogle Scholar
  5. 5.
    Crea F, Camici PG, Bairey Merz CN. Coronary microvascular dysfunction: an update. Eur Heart J. 2014;35:1101–11.CrossRefGoogle Scholar
  6. 6.
    Ong P, Athanasiadis A, Borgulya G, Mahrholdt H, Kaski JC, Sechtem U. High prevalence of a pathological response to acetylcholine testing in patients with stable angina pectoris and unobstructed coronary arteries. The ACOVA Study (Abnormal COronary VAsomotion in patients with stable angina and unobstructed coronary arteries). J Am Coll Cardiol. 2012;59:655–62.CrossRefGoogle Scholar
  7. 7.
    Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.CrossRefGoogle Scholar
  8. 8.
    Cai Q, Mukku VK, Ahmad M. Coronary artery disease in patients with chronic kidney disease: a clinical update. Curr Cardiol Rev. 2013;9:331–9.CrossRefGoogle Scholar
  9. 9.
    Mohlenkamp S, Hort W, Ge J, Erbel R. Update on myocardial bridging. Circulation. 2002;106:2616–22.CrossRefGoogle Scholar
  10. 10.
    Ishikawa Y, Kawawa Y, Kohda E, Shimada K, Ishii T. Significance of the anatomical properties of a myocardial bridge in coronary heart disease. Circ J. 2011;75:1559–66.CrossRefGoogle Scholar
  11. 11.
    Wirianta J, Mouden M, Ottervanger JP, et al. Prevalence and predictors of bridging of coronary arteries in a large Indonesian population, as detected by 64-slice computed tomography scan. Neth Heart J. 2012;20:396–401.CrossRefGoogle Scholar
  12. 12.
    Sanada S, Komuro I, Kitakaze M. Pathophysiology of myocardial reperfusion injury: preconditioning, postconditioning, and translational aspects of protective measures. Am J Physiol Heart Circ Physiol. 2011;301:H1723–41.CrossRefGoogle Scholar
  13. 13.
    Detry JM. The pathophysiology of myocardial ischaemia. Eur Heart J. 1996;17(Suppl G):48–52.CrossRefGoogle Scholar
  14. 14.
    Narula J, Nakano M, Virmani R, et al. Histopathologic characteristics of atherosclerotic coronary disease and implications of the findings for the invasive and noninvasive detection of vulnerable plaques. J Am Coll Cardiol. 2013;61:1041–51.CrossRefGoogle Scholar
  15. 15.
    Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol. 2006;47:C13–8.CrossRefGoogle Scholar
  16. 16.
    Celeng C, Takx RA, Ferencik M, Maurovich-Horvat P. Non-invasive and invasive imaging of vulnerable coronary plaque. Trends Cardiovasc Med. 2016;26:538–47.CrossRefGoogle Scholar
  17. 17.
    Tarkin JM, Dweck MR, Evans NR, et al. Imaging atherosclerosis. Circ Res. 2016;118:750–69.CrossRefGoogle Scholar
  18. 18.
    Otsuka F, Finn AV, Virmani R. Do vulnerable and ruptured plaques hide in heavily calcified arteries? Atherosclerosis. 2013;229:34–7.CrossRefGoogle Scholar
  19. 19.
    Hoffmann U, Moselewski F, Nieman K, et al. Noninvasive assessment of plaque morphology and composition in culprit and stable lesions in acute coronary syndrome and stable lesions in stable angina by multidetector computed tomography. J Am Coll Cardiol. 2006;47:1655–62.CrossRefGoogle Scholar
  20. 20.
    Pflederer T, Marwan M, Schepis T, et al. Characterization of culprit lesions in acute coronary syndromes using coronary dual-source CT angiography. Atherosclerosis. 2010;211:437–44.CrossRefGoogle Scholar
  21. 21.
    Maseri A, Chierchia S. Coronary artery spasm: demonstration, definition, diagnosis, and consequences. Prog Cardiovasc Dis. 1982;25:169–92.CrossRefGoogle Scholar
  22. 22.
    Hao PP, Shang R, Liu YP, et al. Cardiogenic shock from acute ST-segment elevation myocardial infarction induced by severe multivessel coronary vasospasm. Eur Heart J. 2014;35:146.CrossRefGoogle Scholar
  23. 23.
    Amano M, Ito M, Kimura K, et al. Phosphorylation and activation of myosin by Rho-associated kinase (Rho-kinase). J Biol Chem. 1996;271:20246–9.CrossRefGoogle Scholar
  24. 24.
    Toyo-oka T, Aizawa T, Suzuki N, et al. Increased plasma level of endothelin-1 and coronary spasm induction in patients with vasospastic angina pectoris. Circulation. 1991;83:476–83.CrossRefGoogle Scholar
  25. 25.
    Shimokawa H, Nagasawa K, Irie T, et al. Clinical characteristics and long-term prognosis of patients with variant angina. A comparative study between western and Japanese populations. Int J Cardiol. 1988;18:331–49.CrossRefGoogle Scholar
  26. 26.
    Kang EJ, Kim MH, De Jin C, et al. Noninvasive detection of coronary vasospastic angina using a double-acquisition coronary CT angiography protocol in the presence and absence of an intravenous nitrate: a pilot study. Eur Radiol. 2016.
  27. 27.
    Lanza GA. Cardiac syndrome X: a critical overview and future perspectives. Heart. 2007;93:159–66.CrossRefGoogle Scholar
  28. 28.
    Casino PR, Kilcoyne CM, Quyyumi AA, Hoeg JM, Panza JA. The role of nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients. Circulation. 1993;88:2541–7.CrossRefGoogle Scholar
  29. 29.
    Collins P, Rosano GM, Sarrel PM, et al. 17 beta-estradiol attenuates acetylcholine-induced coronary arterial constriction in women but not men with coronary heart disease. Circulation. 1995;92:24–30.CrossRefGoogle Scholar
  30. 30.
    Pepine CJ, Anderson RD, Sharaf BL, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the National Heart, Lung and Blood Institute WISE (Women’s Ischemia Syndrome Evaluation) study. J Am Coll Cardiol. 2010;55:2825–32.CrossRefGoogle Scholar
  31. 31.
    de Roos A. Myocardial perfusion imaging with multidetector CT: beyond lumenography. Radiology. 2010;254:321–3.CrossRefGoogle Scholar
  32. 32.
    Felker GM, Shaw LK, O’Connor CM. A standardized definition of ischemic cardiomyopathy for use in clinical research. J Am Coll Cardiol. 2002;39:210–8.CrossRefGoogle Scholar
  33. 33.
    Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation. 1985;72:V123–35.CrossRefGoogle Scholar
  34. 34.
    Rahimtoola SH. The hibernating myocardium. Am Heart J. 1989;117:211–21.CrossRefGoogle Scholar
  35. 35.
    Poole-Wilson PA, Holmberg SR, Williams AJ. A possible molecular mechanism for ‘stunning’ of the myocardium. Eur Heart J. 1991;12(Suppl F):25–9.CrossRefGoogle Scholar
  36. 36.
    Lardo AC, Cordeiro MA, Silva C, et al. Contrast-enhanced multidetector computed tomography viability imaging after myocardial infarction: characterization of myocyte death, microvascular obstruction, and chronic scar. Circulation. 2006;113:394–404.CrossRefGoogle Scholar
  37. 37.
    De Giorgio F, Grassi VM, Polacco M, Pascali VL, d’Aloja E, Arena V. Myocardial bridging and sudden cardiac death: is the actual classification exhaustive? Int J Cardiol. 2014;172:e383–4.CrossRefGoogle Scholar
  38. 38.
    Loukas M, Curry B, Bowers M, et al. The relationship of myocardial bridges to coronary artery dominance in the adult human heart. J Anat. 2006;209:43–50.CrossRefGoogle Scholar
  39. 39.
    Yamada R, Tremmel JA, Tanaka S, et al. Functional versus anatomic assessment of myocardial bridging by intravascular ultrasound: impact of arterial compression on proximal atherosclerotic plaque. J Am Heart Assoc. 2016;5:e001735.CrossRefGoogle Scholar
  40. 40.
    Corban MT, Hung OY, Eshtehardi P, et al. Myocardial bridging: contemporary understanding of pathophysiology with implications for diagnostic and therapeutic strategies. J Am Coll Cardiol. 2014;63:2346–55.CrossRefGoogle Scholar
  41. 41.
    Fihn SD, Gardin JM, Abrams J, et al. 2012 ACCF/AHA/ACP/AATS/PCNA/SCAI/STS Guideline for the diagnosis and management of patients with stable ischemic heart disease: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines, and the American College of Physicians, American Association for Thoracic Surgery, Preventive Cardiovascular Nurses Association, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. J Am Coll Cardiol. 2012;60:e44–e164.CrossRefGoogle Scholar
  42. 42.
    Diamond GA, Forrester JS. Analysis of probability as an aid in the clinical diagnosis of coronary-artery disease. N Engl J Med. 1979;300:1350–8.CrossRefGoogle Scholar
  43. 43.
    Morise AP, Diamond GA. Comparison of the sensitivity and specificity of exercise electrocardiography in biased and unbiased populations of men and women. Am Heart J. 1995;130:741–7.CrossRefGoogle Scholar
  44. 44.
    Froelicher VF, Lehmann KG, Thomas R, et al. The electrocardiographic exercise test in a population with reduced workup bias: diagnostic performance, computerized interpretation, and multivariable prediction. Veterans Affairs Cooperative Study in Health Services #016 (QUEXTA) Study Group. Quantitative exercise testing and angiography. Ann Intern Med. 1998;128:965–74.CrossRefGoogle Scholar
  45. 45.
    Takx RA, Blomberg BA, El Aidi H, et al. Diagnostic accuracy of stress myocardial perfusion imaging compared to invasive coronary angiography with fractional flow reserve meta-analysis. Circ Cardiovasc Imaging. 2015;8(1). pii: e002666.Google Scholar
  46. 46.
    Morton G, Chiribiri A, Ishida M, et al. Quantification of absolute myocardial perfusion in patients with coronary artery disease: comparison between cardiovascular magnetic resonance and positron emission tomography. J Am Coll Cardiol. 2012;60:1546–55.CrossRefGoogle Scholar
  47. 47.
    Feuchtner G, Goetti R, Plass A, et al. Adenosine stress high-pitch 128-slice dual-source myocardial computed tomography perfusion for imaging of reversible myocardial ischemia: comparison with magnetic resonance imaging. Circ Cardiovasc Imaging. 2011;4:540–9.CrossRefGoogle Scholar
  48. 48.
    De Cecco CN, Harris BS, Schoepf UJ, et al. Incremental value of pharmacological stress cardiac dual-energy CT over coronary CT angiography alone for the assessment of coronary artery disease in a high-risk population. AJR Am J Roentgenol. 2014;203:W70–7.CrossRefGoogle Scholar
  49. 49.
    Takx RA, Moscariello A, Schoepf UJ, et al. Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol. 2012;81:e598–604.CrossRefGoogle Scholar
  50. 50.
    Takx RA, Sucha D, Park J, Leiner T, Hoffmann U. Sublingual nitroglycerin administration in coronary computed tomography angiography: a systematic review. Eur Radiol. 2015;25:3536–42.CrossRefGoogle Scholar
  51. 51.
    Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990;15:827–32.CrossRefGoogle Scholar
  52. 52.
    Criqui MH, Denenberg JO, Ix JH, et al. Calcium density of coronary artery plaque and risk of incident cardiovascular events. JAMA. 2014;311:271–8.CrossRefGoogle Scholar
  53. 53.
    Akram K, O’Donnell RE, King S, Superko HR, Agatston A, Voros S. Influence of symptomatic status on the prevalence of obstructive coronary artery disease in patients with zero calcium score. Atherosclerosis. 2009;203:533–7.CrossRefGoogle Scholar
  54. 54.
    Ebersberger U, Eilot D, Goldenberg R, et al. Fully automated derivation of coronary artery calcium scores and cardiovascular risk assessment from contrast medium-enhanced coronary CT angiography studies. Eur Radiol. 2013;23:650–7.CrossRefGoogle Scholar
  55. 55.
    Schuhbaeck A, Otaki Y, Achenbach S, et al. Coronary calcium scoring from contrast coronary CT angiography using a semiautomated standardized method. J Cardiovasc Comput Tomogr. 2015;9:446–53.CrossRefGoogle Scholar
  56. 56.
    Westwood ME, Raatz HD, Misso K, et al. Systematic review of the accuracy of dual-source cardiac CT for detection of arterial stenosis in difficult to image patient groups. Radiology. 2013;267:387–95.CrossRefGoogle Scholar
  57. 57.
    Menke J, Kowalski J. Diagnostic accuracy and utility of coronary CT angiography with consideration of unevaluable results: a systematic review and multivariate Bayesian random-effects meta-analysis with intention to diagnose. Eur Radiol. 2016;26:451–8.CrossRefGoogle Scholar
  58. 58.
    Tobis J, Azarbal B, Slavin L. Assessment of intermediate severity coronary lesions in the catheterization laboratory. J Am Coll Cardiol. 2007;49:839–48.CrossRefGoogle Scholar
  59. 59.
    Johnson NP, Toth GG, Lai D, et al. Prognostic value of fractional flow reserve: linking physiologic severity to clinical outcomes. J Am Coll Cardiol. 2014;64:1641–54.CrossRefGoogle Scholar
  60. 60.
    Celeng C, Leiner T, Maurovich-Horvat P, et al. Anatomical and functional computed tomography for diagnosing hemodynamically significant coronary artery disease. J Am Coll Cardiol Img. 2018:S1936-878X(18)30681–8.Google Scholar
  61. 61.
    Taylor CA, Fonte TA, Min JK. Computational fluid dynamics applied to cardiac computed tomography for noninvasive quantification of fractional flow reserve: scientific basis. J Am Coll Cardiol. 2013;61:2233–41.CrossRefGoogle Scholar
  62. 62.
    Bamberg F, Sommer WH, Hoffmann V, et al. Meta-analysis and systematic review of the long-term predictive value of assessment of coronary atherosclerosis by contrast-enhanced coronary computed tomography angiography. J Am Coll Cardiol. 2011;57:2426–36.CrossRefGoogle Scholar
  63. 63.
    Celeng C, Maurovich-Horvat P, Ghoshhajra BB, Merkely B, Leiner T, Takx RA. Prognostic value of coronary computed tomography angiography in patients with diabetes: a meta-analysis. Diabetes Care. 2016;39:1274–80.CrossRefGoogle Scholar
  64. 64.
    Yiu KH, de Graaf FR, Schuijf JD, et al. Prognostic value of renal dysfunction for the prediction of outcome versus results of computed tomographic coronary angiography. Am J Cardiol. 2011;108:968–72.CrossRefGoogle Scholar
  65. 65.
    Douglas PS, Hoffmann U, Patel MR, et al. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291–300.CrossRefGoogle Scholar
  66. 66.
    investigators S-H. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385:2383–91.CrossRefGoogle Scholar
  67. 67.
    Gupta A, Wang Y, Spertus JA, et al. Trends in acute myocardial infarction in young patients and differences by sex and race, 2001 to 2010. J Am Coll Cardiol. 2014;64:337–45.CrossRefGoogle Scholar
  68. 68.
    Bugiardini R. Women, ‘non-specific’ chest pain, and normal or near-normal coronary angiograms are not synonymous with favourable outcome. Eur Heart J. 2006;27:1387–9.CrossRefGoogle Scholar
  69. 69.
    Cheng VY, Berman DS, Rozanski A, et al. Performance of the traditional age, sex, and angina typicality-based approach for estimating pretest probability of angiographically significant coronary artery disease in patients undergoing coronary computed tomographic angiography: results from the multinational coronary CT angiography evaluation for clinical outcomes: an international multicenter registry (CONFIRM). Circulation. 2011;124:2423–32. 2421-2428CrossRefGoogle Scholar
  70. 70.
    Pepine CJ, Ferdinand KC, Shaw LJ, et al. Emergence of nonobstructive coronary artery disease: a woman’s problem and need for change in definition on angiography. J Am Coll Cardiol. 2015;66:1918–33.CrossRefGoogle Scholar
  71. 71.
    Bairey Merz CN, Shaw LJ, Reis SE, et al. Insights from the NHLBI-sponsored Women’s Ischemia Syndrome Evaluation (WISE) study: Part II: gender differences in presentation, diagnosis, and outcome with regard to gender-based pathophysiology of atherosclerosis and macrovascular and microvascular coronary disease. J Am Coll Cardiol. 2006;47:S21–9.CrossRefGoogle Scholar
  72. 72.
    Shaw LJ, Min JK, Narula J, et al. Sex differences in mortality associated with computed tomographic angiographic measurements of obstructive and nonobstructive coronary artery disease: an exploratory analysis. Circ Cardiovasc Imaging. 2010;3:473–81.CrossRefGoogle Scholar
  73. 73.
    Pagidipati NJ, Hemal K, Coles A, et al. Sex differences in functional and CT angiography testing in patients with suspected coronary artery disease. J Am Coll Cardiol. 2016;67:2607–16.CrossRefGoogle Scholar
  74. 74.
    Schulman-Marcus J, ó Hartaigh B, Gransar H, et al. Sex-specific associations between coronary artery plaque extent and risk of major adverse cardiovascular events: the CONFIRM long-term registry. JACC Cardiovasc Imaging. 2016;9:364–72.CrossRefGoogle Scholar
  75. 75.
    Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.CrossRefGoogle Scholar
  76. 76.
    Deb S, Wijeysundera HC, Ko DT, Tsubota H, Hill S, Fremes SE. Coronary artery bypass graft surgery vs percutaneous interventions in coronary revascularization: a systematic review. JAMA. 2013;310:2086–95.CrossRefGoogle Scholar
  77. 77.
    Group BDS, Frye RL, August P, et al. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360:2503–15.CrossRefGoogle Scholar
  78. 78.
    Zeb I, Li D, Nasir K, et al. Effect of statin treatment on coronary plaque progression – a serial coronary CT angiography study. Atherosclerosis. 2013;231:198–204.CrossRefGoogle Scholar
  79. 79.
    Bittencourt MS, Hulten E, Ghoshhajra B, et al. Prognostic value of nonobstructive and obstructive coronary artery disease detected by coronary computed tomography angiography to identify cardiovascular events. Circ Cardiovasc Imaging. 2014;7:282–91.CrossRefGoogle Scholar
  80. 80.
    Yamamoto H, Kitagawa T, Ohashi N, et al. Noncalcified atherosclerotic lesions with vulnerable characteristics detected by coronary CT angiography and future coronary events. J Cardiovasc Comput Tomogr. 2013;7:192–9.CrossRefGoogle Scholar
  81. 81.
    Genders TS, Steyerberg EW, Alkadhi H, et al. A clinical prediction rule for the diagnosis of coronary artery disease: validation, updating, and extension. Eur Heart J. 2011;32:1316–30.CrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  1. 1.Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
  2. 2.Department of Radiology, Heart and Vascular CenterSemmelweis UniversityBudapestHungary

Personalised recommendations