Contrast Media Injection Protocols in CT Coronary Angiography

  • Casper Mihl
  • Madeleine Kok
  • Joachim E. Wildberger
  • Marco Das
Part of the Contemporary Medical Imaging book series (CMI)


Many parameters influence attenuation patterns and the overall image quality in CCTA. A thorough understanding of the underlying principles and their interaction is necessary to provide the full picture on the interplay of the various CM aspects, scanner-related factors as well as patient-related aspects. The ultimate goal is to create a personalized CM injection protocol, where all these parameters are tailored individually in order to provide adequate diagnostic attenuation values and image quality.


Contrast media Contrast material Iodine concentration Iodine delivery rate Computed tomography Cardiac imaging technique Body weight 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Isogai T, Jinzaki M, Tanami Y, Kusuzaki H, Yamada M, Kuribayashi S. Body weight-tailored contrast material injection protocol for 64-detector row computed tomography coronary angiography. Jpn J Radiol. 2011;29(1):33–8.CrossRefGoogle Scholar
  2. 2.
    Cademartiri F, Maffei E, Palumbo AA, Malago R, La Grutta L, Meiijboom WB, et al. Influence of intra-coronary enhancement on diagnostic accuracy with 64-slice CT coronary angiography. Eur Radiol. 2008;18(3):576–83.CrossRefGoogle Scholar
  3. 3.
    Fei X, Du X, Yang Q, Shen Y, Li P, Liao J, et al. 64-MDCT coronary angiography: phantom study of effects of vascular attenuation on detection of coronary stenosis. Am J Roentgenol. 2008;191(1):43–9.CrossRefGoogle Scholar
  4. 4.
    Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, et al. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter ACCURACY (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol. 2008;52(21):1724–32.CrossRefGoogle Scholar
  5. 5.
    Bae KT. Optimization of contrast enhancement in thoracic MDCT. Radiol Clin N Am. 2010;48(1):9–29.CrossRefGoogle Scholar
  6. 6.
    Kok M, Mihl C, Hendriks BM, Altintas S, Eijsvoogel NG, Kietselaer BL, et al. Patient comfort during contrast media injection in coronary computed tomographic angiography using varying contrast media concentrations and flow rates: results from the EICAR trial. Investig Radiol. 2016;51(12):810–5.CrossRefGoogle Scholar
  7. 7.
    Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256(1):32–61.CrossRefGoogle Scholar
  8. 8.
    Mihl C, Kok M, Altintas S, Kietselaer BL, Turek J, Wildberger JE, et al. Evaluation of individually body weight adapted contrast media injection in coronary CT-angiography. Eur J Radiol. 2016;85(4):830–6.CrossRefGoogle Scholar
  9. 9.
    Schoellnast H, Tillich M, Deutschmann HA, Deutschmann MJ, Fritz GA, Stessel U, et al. Abdominal multidetector row computed tomography: reduction of cost and contrast material dose using saline flush. J Comput Assist Tomogr. 2003;27(6):847–53.CrossRefGoogle Scholar
  10. 10.
    Kok M, Mihl C, Mingels AA, Kietselaer BL, Muhlenbruch G, Seehofnerova A, et al. Influence of contrast media viscosity and temperature on injection pressure in computed tomographic angiography: a phantom study. Investig Radiol. 2014;49(4):217–23.CrossRefGoogle Scholar
  11. 11.
    Halsell RD. Heating contrast media: role in contemporary angiography. Radiology. 1987;164(1):276–8.CrossRefGoogle Scholar
  12. 12.
    Halsell RD. Heating contrast media in a microwave oven. Radiology. 1987;163(1):279–80.CrossRefGoogle Scholar
  13. 13.
    Schwab SA, Kuefner MA, Anders K, Adamietz B, Heinrich MC, Baigger JF, et al. Peripheral intravenous power injection of iodinated contrast media: the impact of temperature on maximum injection pressures at different cannula sizes. Acad Radiol. 2009;16(12):1502–8.CrossRefGoogle Scholar
  14. 14.
    Bae KT, Tran HQ, Heiken JP. Uniform vascular contrast enhancement and reduced contrast medium volume achieved by using exponentially decelerated contrast material injection method. Radiology. 2004;231(3):732–6.CrossRefGoogle Scholar
  15. 15.
    Muhlenbruch G, Behrendt FF, Eddahabi MA, Knackstedt C, Stanzel S, Das M, et al. Which iodine concentration in chest CT? a prospective study in 300 patients. Eur Radiol. 2008;18(12):2826–32.CrossRefGoogle Scholar
  16. 16.
    Mihl C, Wildberger JE, Jurencak T, Yanniello MJ, Nijssen EC, Kalafut JF, et al. Intravascular enhancement with identical iodine delivery rate using different iodine contrast media in a circulation phantom. Investig Radiol. 2013;48(11):813–8.CrossRefGoogle Scholar
  17. 17.
    Mihl C, Kok M, Wildberger JE, Altintas S, Labus D, Nijssen EC, et al. Coronary CT angiography using low concentrated contrast media injected with high flow rates: feasible in clinical practice. Eur J Radiol. 2015;84(11):2155–60.CrossRefGoogle Scholar
  18. 18.
    Bae KT, Heiken JP, Brink JA. Aortic and hepatic contrast medium enhancement at CT. Part I. Prediction with a computer model. Radiology. 1998;207(3):647–55.CrossRefGoogle Scholar
  19. 19.
    Cademartiri F, van der Lugt A, Luccichenti G, Pavone P, Krestin GP. Parameters affecting bolus geometry in CTA: a review. J Comput Assist Tomogr. 2002;26(4):598–607.CrossRefGoogle Scholar
  20. 20.
    Fleischmann D, Rubin GD, Bankier AA, Hittmair K. Improved uniformity of aortic enhancement with customized contrast medium injection protocols at CT angiography. Radiology. 2000;214(2):363–71.CrossRefGoogle Scholar
  21. 21.
    Mahesh M. MDCT physics: the basics: technology, image quality and radiation dose. 1st ed. Philadelphia: Lippincott Williams and Wilkins; 2009.Google Scholar
  22. 22.
    Brooks RA. A quantitative theory of the Hounsfield unit and its application to dual energy scanning. J Comput Assist Tomogr. 1977;1(4):487–93.CrossRefGoogle Scholar
  23. 23.
    Renker M, Nance JW Jr, Schoepf UJ, O'Brien TX, Zwerner PL, Meyer M, et al. Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology. 2011;260(2):390–9.CrossRefGoogle Scholar
  24. 24.
    Wang R, Schoepf UJ, Wu R, Nance JW Jr, Lv B, Yang H, et al. Diagnostic accuracy of coronary CT angiography: comparison of filtered back projection and iterative reconstruction with different strengths. J Comput Assist Tomogr. 2014;38(2):179–84.CrossRefGoogle Scholar
  25. 25.
    Pontana F, Pagniez J, Duhamel A, Flohr T, Faivre JB, Murphy C, et al. Reduced-dose low-voltage chest CT angiography with sinogram-affirmed iterative reconstruction versus standard-dose filtered back projection. Radiology. 2013;267(2):609–18.CrossRefGoogle Scholar
  26. 26.
    Wang R, Schoepf UJ, Wu R, Reddy RP, Zhang C, Yu W, et al. Image quality and radiation dose of low dose coronary CT angiography in obese patients: sinogram affirmed iterative reconstruction versus filtered back projection. Eur J Radiol. 2012;81(11):3141–5.CrossRefGoogle Scholar
  27. 27.
    Seifarth H, Puesken M, Kalafut JF, Wienbeck S, Wessling J, Maintz D, et al. Introduction of an individually optimized protocol for the injection of contrast medium for coronary CT angiography. Eur Radiol. 2009;19(10):2373–82.CrossRefGoogle Scholar

Copyright information

© Humana Press 2019

Authors and Affiliations

  • Casper Mihl
    • 1
    • 2
  • Madeleine Kok
    • 1
    • 2
  • Joachim E. Wildberger
    • 1
    • 2
  • Marco Das
    • 1
    • 2
  1. 1.Department of Radiology and Nuclear MedicineMaastricht University Medical CenterMaastrichtThe Netherlands
  2. 2.CARIM School for Cardiovascular DiseasesMaastricht University Medical CenterMaastrichtThe Netherlands

Personalised recommendations