Skip to main content

FRET and Its Biological Application as a Molecular Ruler

  • Chapter
  • First Online:

Part of the book series: Handbook of Modern Biophysics ((HBBT,volume 3))

Abstract

Fluorescence resonance energy transfer (FRET) is a well-studied physical process in which two fluorescent molecules in close proximity interact with each other. During this interaction, energy is passed from one fluorophore (the donor) to the other fluorophore (the acceptor). This simple physical phenomenon can be found in many natural biological systems. For example, the luminescence of the green light-emitting Northwest Pacific jellyfish Aequorea victoriainvolves two proteins: aequorin and green fluorescent protein (GFP). The chemiluminescent aequorin emits a blue light by itself [1], but can pass its energy to GFP in the light organs of the jellyfish [2,3]. It is the fluorescence emission of GFP that yields the characteristic green light of the jellyfish.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   179.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Study

References

  1. Shimomura O. 1995. A short story of aequorin. Biol Bull 189(1):1-5.

    Article  CAS  PubMed  Google Scholar 

  2. Shimomura O, Johnson FH, Saiga Y. 1962. Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol 59:223-239.

    Article  CAS  Google Scholar 

  3. Morin JG, Hastings JW. 1971. Energy transfer in a bioluminescent system. J Cell Physiol 77(3):313-318.

    Article  CAS  PubMed  Google Scholar 

  4. Foster T. 1948. Intermolecular energy migration and fluorescence. Ann Phys 2:55-75. [English translation in Biological Physics: Key Papers in Physics. Ed EV Mielczarek, E Greenbaum, RS Knox. 1993. New York: American Institute of Physics.]

    Article  Google Scholar 

  5. Lakowicz J. 2006. Principles of fluorescence spectroscopy, 3rd ed. New York: Plenum.

    Book  Google Scholar 

  6. Tsien RY. 1998. The green fluorescent protein. Annu Rev Biochem 67:509-544.

    Article  CAS  PubMed  Google Scholar 

  7. Giraldez T, Hughes TE, Sigworth FJ. 2005. Generation of functional fluorescent BK channels by random insertion of GFP variants. J Gen Physiol 126(5):429-438.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Guerrero G, Siegel MS, Roska B, Loots E, Isacoff EY. 2002. Tuning FlaSh: redesign of the dynamics voltage range, and color of the genetically encoded optical sensor of membrane potential. Biophys J 83(6):3607-3618.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Stryer L, Haugland RP. 1967. Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58(2):719-726.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Stryer L. 1978. Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819-46.

    Article  CAS  PubMed  Google Scholar 

  11. Taraska, J.W. and W.N. Zagotta. 2007. Structural dynamics in the gating ring of cyclic nucleotide-gated ion channels. Nat Struct Mol Biol, 14(9):854-860.

    Article  CAS  PubMed  Google Scholar 

  12. Chanda B, Blunck R, Faria LC, Schweizer FE, Mody I, Bezanilla F. 2005. A hybrid approach to measuring elec- trical activity in genetically specified neurons. Nat Neurosci 8(11):1619-1626.

    Article  CAS  PubMed  Google Scholar 

  13. Takanishi CL, Bykova E, Cheng W, Zheng J. 2006. GFP-based FRET analysis in live cells. Brain Res 1091(2):132-139.

    Article  CAS  PubMed  Google Scholar 

  14. Amiri H, Schultz G, Schaefer M. 2003. FRET-based analysis of TRPC subunit stoichiometry. Cell Calcium 33(5-6):463-470.

    Article  CAS  PubMed  Google Scholar 

  15. Riven I, Iwanir S, Reuveny E. 2006. GIRK channel activation involves a local rearrangement of a preformed G protein channel complex. Neuron 51(5):561-573.

    Article  CAS  PubMed  Google Scholar 

  16. Riven I, Kalmanzon E, Segev L, Reuveny E. 2003. Conformational rearrangements associated with the gating of the G protein-coupled potassium channel revealed by FRET microscopy. Neuron 38(2):225-235.

    Article  CAS  PubMed  Google Scholar 

  17. Leuranguer V, Papadopoulos S, Beam KG. 2006. Organization of calcium channel beta1a subunits in triad junc- tions in skeletal muscle. J Biol Chem 281(6):3521-3527.

    Article  CAS  PubMed  Google Scholar 

  18. Corry B, Rigby P, Liu ZW, Martinac B. 2005. Conformational changes involved in MscL channel gating measured using FRET spectroscopy. Biophys J 89(6):L49-L51.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Gordon GW, Berry G, Liang XH, Levine B, Herman B. 1998. Quantitative fluorescence resonance energy transfer measurements using fluorescence microscopy. Biophys J 74(5):2702-2713.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Xia Z, Liu Y. 2001. Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81(4):2395-23402.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Erickson MG, Alseikhan BA, Peterson BZ, Yue DT. 2001. Preassociation of calmodulin with voltage-gated Ca(2+) channels revealed by FRET in single living cells. Neuron 31(6):973-985.

    Article  CAS  PubMed  Google Scholar 

  22. Clegg RM. 1992. Fluorescence resonance energy transfer and nucleic acids. Methods Enzymol 211:353-388.

    Article  CAS  PubMed  Google Scholar 

  23. Erickson MG, Liang H, Mori MX, Yue DT. 2003. FRET two-hybrid mapping reveals function and location of L-type Ca2+channel CaM preassociation. Neuron 39(1):97-107.

    Article  CAS  PubMed  Google Scholar 

  24. Mori MX, Erickson MG, Yue DT. 2004. Functional stoichiometry and local enrichment of calmodulin interacting with Ca2+channels. Science 304(5669):432-435.

    Article  CAS  PubMed  Google Scholar 

  25. Gao Y, Liu SS, Qiu S, Cheng W, Zheng J, Luo JH. 2007. Fluorescence resonance energy transfer analysis of subunit assembly of the ASIC channel. Biochem Biophys Res Commun 359(1):143-150.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Qiu S, Hua YL, Yang F, Chen YZ, Luo JH. 2005. Subunit assembly of N-methyl-d-aspartate receptors analyzed by fluorescence resonance energy transfer. J Biol Chem 280(26):24923-24930.

    Article  CAS  PubMed  Google Scholar 

  27. Zheng J. 2006. Spectroscopy-based quantitative fluorescence resonance energy transfer analysis. Methods Mol Biol 337:65-78.

    CAS  PubMed  Google Scholar 

  28. Zheng J, Zagotta WN. 2003. Patch-clamp fluorometry recording of conformational rearrangements of ion channels. Sci STKE 2003(176):PL7.

    PubMed  Google Scholar 

  29. Trudeau MC, Zagotta WN. 2004. Dynamics of Ca2+-calmodulin-dependent inhibition of rod cyclic nucleotide- gated channels measured by patch-clamp fluorometry. J Gen Physiol 124(3):211-223.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Zheng J, Trudeau MC, Zagotta WN. 2002. Rod cyclic nucleotide-gated channels have a stoichiometry of three CNGA1 subunits and one CNGB1 subunit. Neuron 36(5):891-896.

    Article  CAS  PubMed  Google Scholar 

  31. Zheng J, Varnum MD, Zagotta WN. 2003. Disruption of an intersubunit interaction underlies Ca2+-calmodulin modulation of cyclic nucleotide-gated channels. J Neurosci 23(22):8167-8175.

    CAS  PubMed  Google Scholar 

  32. Zheng J, Zagotta WN. 2004. Stoichiometry and assembly of olfactory cyclic nucleotide-gated channels. Neuron 42(3):411-421.

    Article  CAS  PubMed  Google Scholar 

  33. Bykova EA, Zhang XD, Chen TY, Zheng J. 2006. Large movement in the C terminus of CLC-0 chloride chan- nel during slow gating. Nat Struct Mol Biol 13(12):1115-1119.

    Article  CAS  PubMed  Google Scholar 

  34. Cheng W, Yang F, Takanishi CL, Zheng J. 2007. Thermosensitive TRPV channel subunits coassemble into heteromeric channels with intermediate conductance and gating properties. J Gen Physiol 129(3):191-207.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Kerr R, Lev-Ram V, Baird G, Vincent P, Tsien RY, Schafer WR. 2000. Optical imaging of calcium transients in neurons and pharyngeal muscle of C. elegans. Neuron 26(3):583-594.

    Article  CAS  PubMed  Google Scholar 

  36. Adams SR, Harootunian AT, Buechler YJ, Taylor SS, Tsien RY. 1991. Fluorescence ratio imaging of cyclic AMP in single cells. Nature 349(6311):694-697.

    Article  CAS  PubMed  Google Scholar 

  37. Koshimizu TA, Kretschmannova K, He ML, Ueno S, Tanoue A, Yanagihara N, Stojilkovic SS, Tsujimoto G. 2006. Carboxyl-terminal splicing enhances physical interactions between the cytoplasmic tails of purinergic P2X receptors. Mol Pharmacol 69(5):1588-1598.

    Article  CAS  PubMed  Google Scholar 

  38. Lippiat JD, Albinson SL, Ashcroft FM. 2002. Interaction of the cytosolic domains of the Kir6.2 subunit of the K(ATP) channel is modulated by sulfonylureas. Diabetes 3(51 Suppl):S377-S380.

    Article  Google Scholar 

  39. George CH, Jundi H, Thomas NL, Scoote M, Walters N, Williams AJ, Lai FA. 2004. Ryanodine receptor regu- lation by intramolecular interaction between cytoplasmic and transmembrane domains. Mol Biol Cell 15(6): 2627-2638.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Hein P, Frank M, Hoffmann C, Lohse MJ, Bunemann M. 2005. Dynamics of receptor/G protein coupling in living cells. EMBO J 24(23):4106-4114.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Pond BB, Berglund K, Kuner T, Feng G, Augustine GJ, Schwartz-Bloom RD. 2006. The chloride transporter Na(+)-K(+)-Cl- cotransporter isoform-1 contributes to intracellular chloride increases after in vitro ischemia. J Neurosci 26(5):1396-1406.

    Article  CAS  PubMed  Google Scholar 

  42. Hernandez VH, Bortolozzi M, Pertegato V, Beltramello M, Giarin M, Zaccolo M, Pantano S, Mammano F. 2007. Unitary permeability of gap junction channels to second messengers measured by FRET microscopy. Nat Methods 4(4):353-358.

    CAS  PubMed  Google Scholar 

  43. Ramadass R, Becker D, Jendrach M, Bereiter-Hahn J. 2007. Spectrally and spatially resolved fluorescence life- time imaging in living cells: TRPV4-microfilament interactions. Arch Biochem Biophys 463(1):27-36.

    Article  CAS  PubMed  Google Scholar 

  44. Biskup C, Zimmer T, Benndorf K. 2004. FRET between cardiac Na+ channel subunits measured with a confocal microscope and a streak camera. Nat Biotechnol 22(2):220-224.

    Article  CAS  PubMed  Google Scholar 

  45. Biskup C, Kelbauskas L, Zimmer T, Benndorf K, Bergmann A, Becker W, Ruppersberg JP. Stockklausner C, Klocker N. 2004. Interaction of PSD-95 with potassium channels visualized by fluorescence lifetime-based resonance energy transfer imaging. J Biomed Opt 9(4):753-759.

    Article  CAS  PubMed  Google Scholar 

  46. Zelazny E, Borst JW, Muylaert M, Batoko H, Hemminga MA, Chaumont F. 2007. FRET imaging in living maize cells reveals that plasma membrane aquaporins interact to regulate their subcellular localization. Proc Natl Acad Sci USA 104(30):12359-12364.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Glauner KS, Mannuzzu LM, Gandhi CS, Isacoff EY. 1999. Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel. Nature 402(6763):813-817.

    CAS  PubMed  Google Scholar 

  48. Zhang D, Chen J, Saraf A, Cassar S, Han P, Rogers JC, Brioni JD, Sullivan JP, Gopalakrishnan M. 2006. Association of Catsper1 or -2 with Ca(v)3.3 leads to suppression of T-type calcium channel activity. J Biol Chem 281(31):22332-22341.

    Article  CAS  PubMed  Google Scholar 

  49. Vicente R, Escalada A, Villalonga N, Texido L, Roura-Ferrer M, Martin-Satue M, Lopez-Iglesias C, Soler C, Solsona C, Tamkun MM, Felipe A. 2006. Association of Kv1.5 and Kv1.3 contributes to the major voltagedependent K+ channel in macrophages. J Biol Chem 281(49):37675-37685.

    Article  CAS  PubMed  Google Scholar 

  50. Khakh BS, Fisher JA, Nashmi R, Bowser DN, Lester HA. 2005. An angstrom scale interaction between plasma membrane ATP-gated P2X2 and alpha4beta2 nicotinic channels measured with fluorescence resonance energy transfer and total internal reflection fluorescence microscopy. J Neurosci 25(29):6911-6920.

    Article  CAS  PubMed  Google Scholar 

  51. Poteser M, Graziani A, Rosker C, Eder P, Derler I, Kahr H, Zhu MX, Romanin C, Groschner K. 2006. TRPC3 and TRPC4 associate to form a redox-sensitive cation channel: evidence for expression of native TRPC3- TRPC4 heteromeric channels in endothelial cells. J Biol Chem 281(19):13588-13595.

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi SX, Miriyala J, Tay LH, Yue DT, Colecraft HM. 2005. A CaVbeta SH3/guanylate kinase domain interaction regulates multiple properties of voltage-gated Ca2+channels. J Gen Physiol 126(4):365-377.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Schindl R, Frischauf I, Kahr H, Fritsch R, Krenn M, Derndl A, Vales E, Muik M, Derler I, Groschner K, Ro- manin C. 2008. The first ankyrin-like repeat is the minimum indispensable key structure for functional assembly of homo- and heteromeric TRPC4/TRPC5 channels. Cell Calcium 43(3):260-269.

    Article  CAS  PubMed  Google Scholar 

  54. Panyi G, Bagdany M, Bodnar A, Vamosi G, Szentesi G, Jenei A, Matyus L, Varga S, Waldmann TA, Gaspar R, Damjanovich S. 2003. Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 mole- cules in the plasma membrane of human T lymphocytes. Proc Natl Acad Sci USA 100(5):2592-2597.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Berdiev BK, Cormet-Boyaka E, Tousson A, Qadri YJ, Oosterveld-Hut HM, Hong JS, Gonzales PA, Fuller CM, Sorscher EJ, Lukacs GL, Benos DJ. 2007. Molecular proximity of CFTR and ENaC assessed by fluorescence resonance energy transfer. J Biol Chem 282(50):26481-36488.

    Google Scholar 

  56. Staruschenko A, Medina JL, Patel P, Shapiro MS, Booth RE, Stockand JD. 2004. Fluorescence resonance energy transfer analysis of subunit stoichiometry of the epithelial Na+ channel. J Biol Chem 279(26):27729-27734.

    Article  CAS  PubMed  Google Scholar 

  57. Hofmann T, Schaefer M, Schultz G, Gudermann T. 2002. Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci USA 99(11):7461-7466.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  58. Hellwig N, Albrecht N, Harteneck C, Schultz G, Schaefer M. 2005. Homo- and heteromeric assembly of TRPV channel subunits. J Cell Sci 118(Pt 5):917-928.

    Article  CAS  PubMed  Google Scholar 

  59. Meltzer RH, Kapoor N, Qadri YJ, Anderson SJ, Fuller CM, Benos DJ. 2007. Heteromeric assembly of acid- sensitive ion channel and epithelial sodium channel subunits. J Biol Chem 282(35):25548-25559.

    Article  CAS  PubMed  Google Scholar 

  60. Snyder PM, Cheng C, Prince LS, Rogers JC, Welsh MJ. 1998. Electrophysiological and biochemical evidence that DEG/ENaC cation channels are composed of nine subunits. J Biol Chem 273(2):681-684.

    Article  CAS  PubMed  Google Scholar 

  61. Eskandari S, Snyder PM, Kreman M, Zampighi GA, Welsh MJ, Wright EM. 1999. Number of subunits comprising the epithelial sodium channel. J Biol Chem 274(38):27281-27286.

    Article  CAS  PubMed  Google Scholar 

  62. Staruschenko A, Adams E, Booth RE, Stockand JD. 2005. Epithelial Na+ channel subunit stoichiometry. Biophys J 88(6):3966-3975.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Ulbrich MH, Isacoff EY. 2007. Subunit counting in membrane-bound proteins. Nat Methods 4(4):319-321.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Singh A, Hamedinger D, Hoda JC, Gebhart M, Koschak A, Romanin C, Striessnig J. 2006. C-terminal modula- tor controls Ca2+-dependent gating of Ca(v)1.4 L-type Ca2+channels. Nat Neurosci 9(9):1108-1116.

    Article  CAS  PubMed  Google Scholar 

  65. Varnum MD, Zagotta WN. 1997. Interdomain interactions underlying activation of cyclic nucleotide-gated channels. Science 278(5335):110-113.

    Article  CAS  PubMed  Google Scholar 

  66. Maximciuc AA, Putkey JA, Shamoo Y, Mackenzie KR. 2006. Complex of calmodulin with a ryanodine receptor target reveals a novel, flexible binding mode. Structure 14(10):1547-1556.

    Article  CAS  PubMed  Google Scholar 

  67. Tsuboi T, Lippiat JD, Ashcroft FM, Rutter GA. 2004. ATP-dependent interaction of the cytosolic domains of the inwardly rectifying K+ channel Kir6.2 revealed by fluorescence resonance energy transfer. Proc Natl Acad Sci USA 101(1):76-81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Brauns T, Prinz H, Kimball SD, Haugland RP, Striessnig J, Glossmann H. 1997. L-type calcium channels: bind- ing domains for dihydropyridines and benzothiazepines are located in close proximity to each other. Biochemis- try 36(12):3625-3631.

    Article  CAS  Google Scholar 

  69. Hummer A, Delzeith O, Gomez SR, Moreno RL, Mark MD, Herlitze S. 2003. Competitive and synergistic in- teractions of G protein beta(2) and Ca(2+) channel beta(1b) subunits with Ca(v)2.1 channels, revealed by mam- malian two-hybrid and fluorescence resonance energy transfer measurements. J Biol Chem 278(49):49386- 49400.

    Article  PubMed  Google Scholar 

  70. Cha A, Snyder GE, Selvin PR, Bezanilla F. 1999. Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy. Nature 402(6763):809-813.

    CAS  PubMed  Google Scholar 

  71. Selvin PR. 1995. Fluorescence resonance energy transfer. Methods Enzymol 246:300-334.

    Article  CAS  PubMed  Google Scholar 

  72. Richardson J, Blunck R, Ge P, Selvin PR, Bezanilla F, Papazian DM, Correa AM. 2006. Distance measurements reveal a common topology of prokaryotic voltage-gated ion channels in the lipid bilayer. Proc Natl Acad Sci USA 103(43):15865-15370.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Sandtner W, Bezanilla F, Correa AM. 2007. In vivo measurement of intramolecular distances using genetically encoded reporters. Biophys J 93(9):L45-L47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Chanda B, Asamoah OK, Blunck R, Roux B, Bezanilla F. 2005. Gating charge displacement in voltage-gatedion channels involves limited transmembrane movement. Nature 436(7052):852-856.

    Article  CAS  PubMed  Google Scholar 

  75. Posson DJ, Ge P, Miller C, Bezanilla F, Selvin PR. 2005. Small vertical movement of a K+ channel voltage sensor measured with luminescence energy transfer. Nature 436(7052):848-851.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Kobrinsky E, Schwartz E, Abernethy DR, Soldatov NM. 2003. Voltage-gated mobility of the Ca2+channel cyto- plasmic tails and its regulatory role. J Biol Chem 278(7):5021-5028.

    Article  CAS  PubMed  Google Scholar 

  77. Kobrinsky E, Stevens L, Kazmi Y, Wray D, Soldatov NM. 2006. Molecular rearrangements of the Kv2.1 potassium channel termini associated with voltage gating. J Biol Chem 281(28):19233-19240.

    Article  CAS  PubMed  Google Scholar 

  78. George CH, Jundi H, Walters N, Thomas NL, West RR, Lai FA. 2006. Arrhythmogenic mutation-linked defects in ryanodine receptor autoregulation reveal a novel mechanism of Ca2+release channel dysfunction. Circ Res 98(1):88-97.

    CAS  PubMed  Google Scholar 

  79. Kobrinsky E, Kepplinger KJ, Yu A, Harry JB, Kahr H, Romanin C, Abernethy DR, Soldatov NM. 2004. Voltage-gated rearrangements associated with differential beta-subunit modulation of the L-type Ca(2+) channel in-activation. Biophys J 87(2):844-857.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  80. Fisher JA, Girdler G, Khakh BS. 2004. Time-resolved measurement of state-specific P2X2 ion channel cytosolic gating motions. J Neurosci 24(46):10475-10487.

    Article  CAS  PubMed  Google Scholar 

  81. Harms GS, Orr G, Montal M, Thrall BD, Colson SD, Lu HP. 2003. Probing conformational changes of grami- cidin ion channels by single-molecule patch-clamp fluorescence microscopy. Biophys J 85(3):1826-1838.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  82. Borisenko V, Lougheed T, Hesse J, Fureder-Kitzmuller E, Fertig N, Behrends JC, Woolley GA, Schutz GJ. 2003. Simultaneous optical and electrical recording of single gramicidin channels. Biophys J 84(1):612-622.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Heim R, Tsien RY. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6(2):178-182.

    Article  CAS  PubMed  Google Scholar 

  84. Mitra RD, Silva CM, Youvan DC. 1996. Fluorescence resonance energy transfer between blue-emitting and red- shifted excitation derivatives of the green fluorescent protein. Gene 173(1 Spec No):13-17.

    Article  CAS  PubMed  Google Scholar 

  85. Mahajan NP, Harrison-Shostak DC, Michaux J, Herman B. 1999. Novel mutant green fluorescent protein prote- ase substrates reveal the activation of specific caspases during apoptosis. Chem Biol 6(6):401-409.

    Article  CAS  PubMed  Google Scholar 

  86. Luo KQ, Yu VC, Pu Y, Chang DC. 2001. Application of the fluorescence resonance energy transfer method for studying the dynamics of caspase-3 activation during UV-induced apoptosis in living HeLa cells. Biochem Bio- phys Res Commun 283(5):1054-1060.

    Article  CAS  Google Scholar 

  87. Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY. 1997. Fluorescent indicators for Ca2+based on green fluorescent proteins and calmodulin. Nature 388(6645):882-887.

    CAS  PubMed  Google Scholar 

  88. Warrier S, Ramamurthy G, Eckert RL, Nikolaev VO, Lohse MJ, Harvey RD. 2007. cAMP microdomains and L-type Ca2+channel regulation in guinea-pig ventricular myocytes. J Physiol 580(Pt.3):765-776.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  89. Honda A, Adams SR, Sawyer CL, Lev-Ram V, Tsien RY, Dostmann WR. 2001. Spatiotemporal dynamics of guanosine 3',5'-cyclic monophosphate revealed by a genetically encoded, fluorescent indicator. Proc Natl Acad Sci USA 98(5):2437-2442.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  90. Sato M, Hida N, Ozawa T, Umezawa Y. 2000. Fluorescent indicators for cyclic GMP based on cyclic GMP-dependent protein kinase Ialpha and green fluorescent proteins. Anal Chem 72(24):5918-5924.

    Article  CAS  PubMed  Google Scholar 

  91. Mochizuki N, Yamashita S, Kurokawa K, Ohba Y, Nagai T, Miyawaki A, Matsuda M. 2001. Spatio-temporal images of growth-factor-induced activation of Ras and Rap1. Nature 411(6841):1065-1068.

    Article  CAS  PubMed  Google Scholar 

  92. Kalab P, Weis K, Heald R. 2002. Visualization of a Ran-GTP gradient in interphase and mitotic Xenopus egg extracts. Science 295(5564):2452-2456.

    Article  CAS  PubMed  Google Scholar 

  93. Kurokawa K, Mochizuki N, Ohba Y, Mizuno H, Miyawaki A, Matsuda M. 2001. A pair of fluorescent resonance energy transfer-based probes for tyrosine phosphorylation of the CrkII adaptor protein in vivo. J Biol Chem 276(33):31305-31310.

    Article  CAS  PubMed  Google Scholar 

  94. Ting AY, Kain KH, Klemke RL, Tsien RY. 2001. Genetically encoded fluorescent reporters of protein tyrosine kinase activities in living cells. Proc Natl Acad Sci USA 98(26):15003-15008.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  95. Zhang J, Ma Y, Taylor SS, Tsien RY. 2001. Genetically encoded reporters of protein kinase A activity reveal impact of substrate tethering. Proc Natl Acad Sci USA 98(26):14997-15002.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Zheng .

Editor information

Editors and Affiliations

5.1 Electronic Supplementary material

Figure 5.1.

Jablonski diagram illustrating the energy coupling process. Arrows indicate energy transitions; S 0 is the ground state, S 1 and S 2 are excited states, each with a number of vibrational energy levels; hυe represents the photon energy absorbed by the donor, hυD and hυA are photon emission from the donor and acceptor, respectively; the rate of each transition process is shown in unit of second. On the top, a diagram showing a FRET pair and light path is shown in the same colors as the energy diagram. Note, however, that energy transfer is a non-radiative process with no photon involved. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,775 KB)

Figure 5.2.

Number of FRET articles published each year. A PubMed search with the keyword “fluorescence resonance energy transfer” was used to construct this figure. The number of articles found in 2006 and 2007 (by mid-October) are shown. Also labeled are major events related to the fluorescent proteins. In light of the massive body of literature, examples used in this chapter will be mostly limited to ion channel studies. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,778 KB)

Figure 5.3.

Distance dependence of the FRET efficiency. (Left) A schematic diagram illustrating two membrane proteins each labeled with a fluorophore. When they are far apart (top), there is no FRET between the fluorophores. The fluorophores are independent of each other. When the two proteins are interacting (bottom), the fluorophores are at close proximity. Energy transfer occurs. (Right) A FRET pair with an R 0 of 50 Å is used to construct this figure. Points A, B, and C represent 50, 95, and 5% FRET efficiency, respectively. Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,776 KB)

978-1-60327-233-9_5_MOESM4_ESM.pdf

Please visit http://extras.springer.com/ to view a high-resolution full-color version of this illustration. (PDF 2,772 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Zheng, J. (2010). FRET and Its Biological Application as a Molecular Ruler. In: Jue, T. (eds) Biomedical Applications of Biophysics. Handbook of Modern Biophysics, vol 3. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60327-233-9_5

Download citation

Publish with us

Policies and ethics