Skip to main content

Sodium Transport Mechanisms in the Mammalian Nephron

  • Chapter
  • First Online:
Epithelial Transport Physiology

Abstract

Na transport is highly coordinated and regulated along the length of the renal nephron. The proximal tubule reabsorbs the majority of filtered Na. The majority of Na transport is transcellular, through the action of Na-antiporters and Na-coupled cotransporters. The proximal tubule is responsible for the majority of Na reabsorption by the renal nephron. In the thick ascending limb of Henle, Na is cotransported with other ions. This nephron segment is critical for urine concentration. The distal tubule and collecting duct make the smallest contribution to renal Na reabsorption. However, Na transport in these segments is subject to stringent regulation and is critical for external Na balance under normal physiological conditions. The basic structure and function of the renal Na transporters are evaluated. Hormonal and signaling pathways that regulate Na transport in the nephron and collecting duct are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajasekaran SA, Barwe SP, Rajasekaran AK. Multiple functions of Na,K-ATPase in epithelial cells. Semin Nephrol 2005;25(5):328–34.

    CAS  PubMed  Google Scholar 

  2. Morth JP, Pedersen BP, Toustrup-Jensen MS, Sorensen TL, Petersen J, et al. Crystal structure of the sodium-potassium pump. Nature 2007;450(7172):1043–9.

    CAS  PubMed  Google Scholar 

  3. Geering K. FXYD proteins: new regulators of Na-K-ATPase. Am J Physiol Renal Physiol 2006;290(2):F241–50.

    CAS  PubMed  Google Scholar 

  4. Garty H, Karlish SJ. FXYD proteins: tissue-specific regulators of the Na,K-ATPase. Semin Nephrol 2005;25(5):304–11.

    CAS  PubMed  Google Scholar 

  5. Pedemonte CH, Efendiev R, Bertorello AM. Inhibition of Na,K-ATPase by dopamine in proximal tubule epithelial cells. Semin Nephrol 2005;25(5):322–7.

    CAS  PubMed  Google Scholar 

  6. Vinciguerra M, Mordasini D, Vandewalle A, Feraille E. Hormonal and nonhormonal mechanisms of regulation of the NA,K-pump in collecting duct principal cells. Semin Nephrol 2005;25(5):312–21.

    CAS  PubMed  Google Scholar 

  7. Rector FC, Jr. Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol 1983;244(5):F461–71.

    PubMed  Google Scholar 

  8. Slepkov ER, Rainey JK, Sykes BD, Fliegel L. Structural and functional analysis of the Na+/H+ exchanger. Biochem J 2007;401(3):623–33.

    CAS  PubMed  Google Scholar 

  9. Burckhardt G, Di Sole F, Helmle-Kolb C. The Na+/H+ exchanger gene family. J Nephrol 2002;15 Suppl 5:S3–21.

    CAS  PubMed  Google Scholar 

  10. Aronson PS. Ion exchangers mediating NaCl transport in the proximal tubule. Wien Klin Wochenschr 1997;109(12–13):435–40.

    CAS  PubMed  Google Scholar 

  11. Aronson PS, Giebisch G. Mechanisms of chloride transport in the proximal tubule. Am J Physiol 1997;273(2 Pt 2):F179–92.

    CAS  PubMed  Google Scholar 

  12. Puntheeranurak T, Kasch M, Xia X, Hinterdorfer P, Kinne RK. Three surface subdomains form the vestibule of the Na+/glucose cotransporter SGLT1. J Biol Chem 2007;282(35):25222–30.

    CAS  PubMed  Google Scholar 

  13. Katsuno K, Fujimori Y, Takemura Y, Hiratochi M, Itoh F, et al. Sergliflozin, a novel selective inhibitor of low-affinity sodium glucose cotransporter (SGLT2), validates the critical role of SGLT2 in renal glucose reabsorption and modulates plasma glucose level. J Pharmacol Exp Ther 2007;320(1):323–30.

    CAS  PubMed  Google Scholar 

  14. Preisig PA. The acid-activated signaling pathway: starting with Pyk2 and ending with increased NHE3 activity. Kidney Int 2007;72(11):1324–9.

    CAS  PubMed  Google Scholar 

  15. Laghmani K, Preisig PA, Moe OW, Yanagisawa M, Alpern RJ. Endothelin-1/endothelin-B receptor-mediated increases in NHE3 activity in chronic metabolic acidosis. J Clin Invest 2001;107(12):1563–9.

    CAS  PubMed  Google Scholar 

  16. Lee YJ, Lee YJ, Han HJ. Regulatory mechanisms of Na(+)/glucose cotransporters in renal proximal tubule cells. Kidney Int Suppl 2007(106):S27–35.

    Google Scholar 

  17. Schuster VL, Kokko JP, Jacobson HR. Angiotensin II directly stimulates sodium transport in rabbit proximal convoluted tubules. J Clin Invest 1984;73(2):507–15.

    CAS  PubMed  Google Scholar 

  18. Han HJ, Park SH, Koh HJ, Taub M. Mechanism of regulation of Na+ transport by angiotensin II in primary renal cells. Kidney Int 2000;57(6):2457–67.

    CAS  PubMed  Google Scholar 

  19. Han HJ, Park SH, Lee YJ. Signaling cascade of ANG II-induced inhibition of alpha-MG uptake in renal proximal tubule cells. Am J Physiol Renal Physiol 2004;286(4):F634–42.

    CAS  PubMed  Google Scholar 

  20. Hussain T, Lokhandwala MF. Renal dopamine receptor function in hypertension. Hypertension 1998;32(2):187–97.

    CAS  PubMed  Google Scholar 

  21. Aperia AC. Intrarenal dopamine: a key signal in the interactive regulation of sodium metabolism. Annu Rev Physiol 2000;62:621–47.

    CAS  PubMed  Google Scholar 

  22. Jose PA, Raymond JR, Bates MD, Aperia A, Felder RA, Carey RM. The renal dopamine receptors. J Am Soc Nephrol 1992;2(8):1265–78.

    CAS  PubMed  Google Scholar 

  23. Herrera M, Ortiz PA, Garvin JL. Regulation of thick ascending limb transport: role of nitric oxide. Am J Physiol Renal Physiol 2006;290(6):F1279–84.

    CAS  PubMed  Google Scholar 

  24. Greger R, Schlatter E. Properties of the basolateral membrane of the cortical thick ascending limb of Henle’s loop of rabbit kidney. A model for secondary active chloride transport. Pflugers Arch 1983;396(4):325–34.

    CAS  PubMed  Google Scholar 

  25. Simard CF, Brunet GM, Daigle ND, Montminy V, Caron L, Isenring P. Self-interacting domains in the C terminus of a cation-Cl- cotransporter described for the first time. J Biol Chem 2004;279(39):40769–77.

    CAS  PubMed  Google Scholar 

  26. Wall SM, Knepper MA, Hassell KA, Fischer MP, Shodeinde A, et al. Hypotension in NKCC1 null mice: role of the kidneys. Am J Physiol Renal Physiol 2006;290(2):F409–16.

    CAS  PubMed  Google Scholar 

  27. Paredes A, Plata C, Rivera M, Moreno E, Vazquez N, et al. Activity of the renal Na+-K+-2Cl- cotransporter is reduced by mutagenesis of N-glycosylation sites: role for protein surface charge in Cl- transport. Am J Physiol Renal Physiol 2006;290(5):F1094–102.

    CAS  PubMed  Google Scholar 

  28. Starremans PG, Kersten FF, Knoers NV, van den Heuvel LP, Bindels RJ. Mutations in the human Na-K-2Cl cotransporter (NKCC2) identified in Bartter syndrome type I consistently result in nonfunctional transporters. J Am Soc Nephrol 2003;14(6):1419–26.

    PubMed  Google Scholar 

  29. Brunet GM, Gagnon E, Simard CF, Daigle ND, Caron L, et al. Novel insights regarding the operational characteristics and teleological purpose of the renal Na+-K+-Cl2 cotransporter (NKCC2s) splice variants. J Gen Physiol 2005;126 (4):325–37.

    CAS  PubMed  Google Scholar 

  30. Payne JA, Forbush B, 3rd. Alternatively spliced isoforms of the putative renal Na-K-Cl cotransporter are differentially distributed within the rabbit kidney. Proc Natl Acad Sci USA 1994;91 (10):4544–8.

    CAS  PubMed  Google Scholar 

  31. Igarashi P, Vanden Heuvel GB, Payne JA, Forbush B, 3rd. Cloning, embryonic expression, and alternative splicing of a murine kidney-specific Na-K-Cl cotransporter. Am J Physiol 1995;269 (3 Pt 2):F405–18.

    CAS  PubMed  Google Scholar 

  32. Gimenez I, Isenring P, Forbush B. Spatially distributed alternative splice variants of the renal Na-K-Cl cotransporter exhibit dramatically different affinities for the transported ions. J Biol Chem 2002;277 (11):8767–70.

    CAS  PubMed  Google Scholar 

  33. Plata C, Meade P, Vazquez N, Hebert SC, Gamba G. Functional properties of the apical Na+-K+-2Cl- cotransporter isoforms. J Biol Chem 2002;277 (13):11004–12.

    CAS  PubMed  Google Scholar 

  34. Gagnon E, Forbush B, Caron L, Isenring P. Functional comparison of renal Na-K-Cl cotransporters between distant species. Am J Physiol Cell Physiol 2003;284 (2):C365–70.

    CAS  PubMed  Google Scholar 

  35. Gimenez I, Forbush B. The residues determining differences in ion affinities among the alternative splice variants F, A, and B of the mammalian renal Na-K-Cl cotransporter (NKCC2). J Biol Chem 2007;282 (9):6540–7.

    CAS  PubMed  Google Scholar 

  36. Gimenez I. Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens 2006;15 (5):517–23.

    CAS  PubMed  Google Scholar 

  37. Gamba G. Molecular physiology and pathophysiology of electroneutral cation-chloride cotransporters. Physiol Rev 2005;85(2):423–93.

    CAS  PubMed  Google Scholar 

  38. Lang F, Capasso G, Schwab M, Waldegger S. Renal tubular transport and the genetic basis of hypertensive disease. Clin Exp Nephrol 2005;9(2):91–9.

    CAS  PubMed  Google Scholar 

  39. Capasso G, Cantone A, Evangelista C, Zacchia M, Trepiccione F, et al. Channels, carriers, and pumps in the pathogenesis of sodium-sensitive hypertension. Semin Nephrol 2005;25(6):419–24.

    CAS  PubMed  Google Scholar 

  40. Capasso G, Rizzo M, Evangelista C, Ferrari P, Geelen G, et al. Altered expression of renal apical plasma membrane Na+ transporters in the early phase of genetic hypertension. Am J Physiol Renal Physiol 2005;288(6):F1173–82.

    CAS  PubMed  Google Scholar 

  41. Borensztein P, Froissart M, Laghmani K, Bichara M, Paillard M. RT-PCR analysis of Na+/H+ exchanger mRNAs in rat medullary thick ascending limb. Am J Physiol 1995;268(6 Pt 2):F1224–8.

    CAS  PubMed  Google Scholar 

  42. Benziane B, Demaretz S, Defontaine N, Zaarour N, Cheval L, et al. NKCC2 surface expression in mammalian cells: down-regulation by novel interaction with aldolase B. J Biol Chem 2007; 282(46):33817–30.

    CAS  PubMed  Google Scholar 

  43. Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O. Uncompensated polyuria in a mouse model of Bartter’s syndrome. Proc Natl Acad Sci USA 2000;97(10):5434–9.

    CAS  PubMed  Google Scholar 

  44. Haas M. Properties and diversity of (Na-K-Cl) cotransporters. Annu Rev Physiol 1989;51:443–57.

    CAS  PubMed  Google Scholar 

  45. Kim GH, Ecelbarger CA, Mitchell C, Packer RK, Wade JB, Knepper MA. Vasopressin increases Na-K-2Cl cotransporter expression in thick ascending limb of Henle’s loop. Am J Physiol 1999;276(1 Pt 2):F96–F103.

    CAS  PubMed  Google Scholar 

  46. Fernandez-Llama P, Ecelbarger CA, Ware JA, Andrews P, Lee AJ, et al. Cyclooxygenase inhibitors increase Na-K-2Cl cotransporter abundance in thick ascending limb of Henle’s loop. Am J Physiol 1999;277(2 Pt 2):F219–26.

    CAS  PubMed  Google Scholar 

  47. Gimenez I, Forbush B. Short-term stimulation of the renal Na-K-Cl cotransporter (NKCC2) by vasopressin involves phosphorylation and membrane translocation of the protein. J Biol Chem 2003;278 (29):26946-51.

    CAS  PubMed  Google Scholar 

  48. Ecelbarger CA, Yu S, Lee AJ, Weinstein LS, Knepper MA. Decreased renal Na-K-2Cl cotransporter abundance in mice with heterozygous disruption of the G(s)alpha gene. Am J Physiol 1999;277 (2 Pt 2):F235–44.

    CAS  PubMed  Google Scholar 

  49. Herrera M, Garvin JL. A high-salt diet stimulates thick ascending limb eNOS expression by raising medullary osmolality and increasing release of endothelin-1. Am J Physiol 2005;288 (1):F58–64.

    CAS  Google Scholar 

  50. Plato CF, Pollock DM, Garvin JL. Endothelin inhibits thick ascending limb chloride flux via ET(B) receptor-mediated NO release. Am J Physiol 2000;279(2):F326–33.

    CAS  Google Scholar 

  51. de Jesus Ferreira MC, Bailly C. Luminal and basolateral endothelin inhibit chloride reabsorption in the mouse thick ascending limb via a Ca(2+)-independent pathway. J Physiol 1997;505 (Pt 3):749–58.

    PubMed  Google Scholar 

  52. Herrera M, Garvin JL. Endothelin stimulates endothelial nitric oxide synthase expression in the thick ascending limb. Am J Physiol 2004;287 (2):F231–5.

    CAS  Google Scholar 

  53. Fattal I, Abassi Z, Ovcharenko E, Shimada K, Takahashi M, et al. Effect of dietary sodium intake on the expression of endothelin-converting enzyme in the renal medulla. Nephron Physiol 2004;98 (4):p89–96.

    Google Scholar 

  54. Kohan DE, Padilla E. Osmolar regulation of endothelin-1 production by rat inner medullary collecting duct. J Clin Invest 1993;91(3):1235–40.

    CAS  PubMed  Google Scholar 

  55. Taylor TA, Gariepy CE, Pollock DM, Pollock JS. Gender differences in ET and NOS systems in ETB receptor-deficient rats: effect of a high salt diet. Hypertension 2003;41(3 Pt 2):657–62.

    CAS  PubMed  Google Scholar 

  56. Vassileva I, Mountain C, Pollock DM. Functional role of ETB receptors in the renal medulla. Hypertension 2003;41(6):1359–63.

    CAS  PubMed  Google Scholar 

  57. Melo LG, Veress AT, Chong CK, Pang SC, Flynn TG, Sonnenberg H. Salt-sensitive hypertension in ANP knockout mice: potential role of abnormal plasma renin activity. Am J Physiol 1998;274(1 Pt 2):R255–61.

    CAS  PubMed  Google Scholar 

  58. Serneri GG, Modesti PA, Cecioni I, Biagini D, Migliorini A, et al. Plasma endothelin and renal endothelin are two distinct systems involved in volume homeostasis. Am J Physiol 1995;268(5 Pt 2):H1829–37.

    CAS  PubMed  Google Scholar 

  59. Malatino LS, Bellanuova I, Cataliotti A, Cuzzola F, Mallamaci F, et al. Renal endothelin-1 is linked to changes in urinary salt and volume in essential hypertension. Salt sensitivity group of the Italian society of hypertension. J Nephrol 2000;13(3):178–84.

    CAS  PubMed  Google Scholar 

  60. Stein JH, Osgood RW, Boonjarern S, Ferris TF. A comparison of the segmental analysis of sodium reabsorption during Ringer’s and hyperoncotic albumin infusion in the rat. J Clin Invest 1973;52(9):2313–23.

    CAS  PubMed  Google Scholar 

  61. Stein JH, Reineck HJ. The role of the collecting duct in the regulation of excretion of sodium and other electrolytes. Kidney Int 1974;6(1):1–9.

    CAS  PubMed  Google Scholar 

  62. Stein JH, Osgood RW, Kunau RT, Jr. Direct measurement of papillary collecting duct sodium transport in the rat. Evidence for heterogeneity of nephron function during Ringer loading. J Clin Invest 1976;58(4):767–73.

    CAS  PubMed  Google Scholar 

  63. Osgood RW, Reineck HJ, Stein JH. Further studies on segmental sodium transport in the rat kidney during expansion of the extracellular fluid volume. J Clin Invest 1978;62(2):311–20.

    CAS  PubMed  Google Scholar 

  64. Shimkets RA, Warnock DG, Bositis CM, Nelson-Williams C, Hansson JH, et al. Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994;79(3):407–14.

    CAS  PubMed  Google Scholar 

  65. Booth RE, Johnson JP, Stockand JD. Aldosterone. Adv Physiol Educ 2002;26(1–4):8–20.

    PubMed  Google Scholar 

  66. Stockand JD. New ideas about aldosterone signaling in epithelia. Am J Physiol Renal Physiol 2002;282(4):F559–76.

    PubMed  Google Scholar 

  67. Hoover RS, Poch E, Monroy A, Vazquez N, Nishio T, et al. N-Glycosylation at two sites critically alters thiazide binding and activity of the rat thiazide-sensitive Na(+):Cl(−) cotransporter. J Am Soc Nephrol 2003;14(2):271–82.

    CAS  PubMed  Google Scholar 

  68. Moreno E, Cristobal PS, Rivera M, Vazquez N, Bobadilla NA, Gamba G. Affinity-defining domains in the Na-Cl cotransporter: a different location for Cl- and thiazide binding. J Biol Chem 2006;281(25):17266–75.

    CAS  PubMed  Google Scholar 

  69. Canessa CM, Schild L, Buell G, Thorens B, Gautschi I, et al. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 1994;367(6462):463–7.

    CAS  PubMed  Google Scholar 

  70. Firsov D, Gautschi I, Merillat AM, Rossier BC, Schild L. The heterotetrameric architecture of the epithelial sodium channel (ENaC). Embo J 1998;17(2):344–52.

    CAS  PubMed  Google Scholar 

  71. Ergonul Z, Frindt G, Palmer LG. Regulation of maturation and processing of ENaC subunits in the rat kidney. Am J Physiol Renal Physiol 2006;291(3):F683–93.

    CAS  PubMed  Google Scholar 

  72. Hummler E, Horisberger JD. Genetic disorders of membrane transport. V. The epithelial sodium channel and its implication in human diseases. Am J Physiol 1999;276(3 Pt 1):G567–71.

    CAS  PubMed  Google Scholar 

  73. Rubera I, Loffing J, Palmer LG, Frindt G, Fowler-Jaeger N, et al. Collecting duct-specific gene inactivation of alphaENaC in the mouse kidney does not impair sodium and potassium balance. J Clin Invest 2003;112(4):554–65.

    CAS  PubMed  Google Scholar 

  74. Loffing J, Pietri L, Aregger F, Bloch-Faure M, Ziegler U, et al. Differential subcellular localization of ENaC subunits in mouse kidney in response to high- and low-Na diets. Am J Physiol Renal Physiol 2000;279(2):F252–8.

    CAS  PubMed  Google Scholar 

  75. Goodfriend TL. Aldosterone – a hormone of cardiovascular adaptation and maladaptation. J Clin Hypertens (Greenwich) 2006;8(2):133–9.

    CAS  Google Scholar 

  76. Pitt B. Effect of aldosterone blockade in patients with systolic left ventricular dysfunction: implications of the RALES and EPHESUS studies. Mol Cell Endocrinol 2004;217(1–2):53–8.

    CAS  PubMed  Google Scholar 

  77. Arriza JL, Weinberger C, Cerelli G, Glaser TM, Handelin BL, et al. Cloning of human mineralocorticoid receptor complementary DNA: structural and functional kinship with the glucocorticoid receptor. Science 1987;237(4812):268–75.

    CAS  PubMed  Google Scholar 

  78. Funder JW. Glucocorticoid and mineralocorticoid receptors: biology and clinical relevance. Annu Rev Med 1997;48:231–40.

    CAS  PubMed  Google Scholar 

  79. Husted RF, Laplace JR, Stokes JB. Enhancement of electrogenic Na+ transport across rat inner medullary collecting duct by glucocorticoid and by mineralocorticoid hormones. J Clin Invest 1990;86(2):498–506.

    CAS  PubMed  Google Scholar 

  80. Funder JW, Pearce PT, Smith R, Smith AI. Mineralocorticoid action: target tissue specificity is enzyme, not receptor, mediated. Science 1988;242(4878):583–5.

    CAS  PubMed  Google Scholar 

  81. Melander O, Orho-Melander M, Bengtsson K, Lindblad U, Rastam L, et al. Association between a variant in the 11 beta-hydroxysteroid dehydrogenase type 2 gene and primary hypertension. J Hum Hypertens 2000;14(12):819–23.

    CAS  PubMed  Google Scholar 

  82. Verrey F, Kraehenbuhl, J.P., Rossier, B.C. Aldosterone Induces a Rapid Increase in the Rate of Na,K-ATPase Gene Transcription in Cultured Kidney Cells. Molecular Endocrinology 1989; 3:1369–76.

    CAS  PubMed  Google Scholar 

  83. Escoubet B, Coureau C, Bonvalet JP, Farman N. Noncoordinate regulation of epithelial Na channel and Na pump subunit mRNAs in kidney and colon by aldosterone. Am J Physiol 1997;272(5 Pt 1):C1482–91.

    CAS  PubMed  Google Scholar 

  84. Alvarez de la Rosa D, Zhang P, Naray-Fejes-Toth A, Fejes-Toth G, Canessa CM. The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium channels in the plasma membrane of Xenopus oocytes. J Biol Chem 1999;274(53):37834–9.

    Google Scholar 

  85. Chen SYea. Epithelial sodium channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sci USA 1999;96:2514–9.

    CAS  PubMed  Google Scholar 

  86. Naray-Fejes-Toth A, Canessa C, Cleaveland ES, Aldrich G, Fejes-Toth G. sgk is an aldosterone-induced kinase in the renal collecting duct. Effects on epithelial na+ channels. J Biol Chem 1999;274(24):16973–8.

    CAS  PubMed  Google Scholar 

  87. Gumz ML, Popp MP, Wingo CS, Cain BD. Early transcriptional effects of aldosterone in a mouse inner medullary collecting duct cell line. Am J Physiol 2003;285(4):F664–73.

    CAS  Google Scholar 

  88. Soundararajan R, Zhang TT, Wang J, Vandewalle A, Pearce D. A novel role for glucocorticoid-induced leucine zipper protein in epithelial sodium channel-mediated sodium transport. J Biol Chem 2005;280(48):39970–81.

    CAS  PubMed  Google Scholar 

  89. Fakitsas P, Adam G, Daidie D, van Bemmelen MX, Fouladkou F, et al. Early aldosterone-induced gene product regulates the epithelial sodium channel by deubiquitylation. J Am Soc Nephrol 2007;18(4):1084–92.

    CAS  PubMed  Google Scholar 

  90. Pearce D. SGK1 regulation of epithelial sodium transport. Cell Physiol Biochem 2003;13(1):13–20.

    CAS  PubMed  Google Scholar 

  91. Liang X, Peters KW, Butterworth MB, Frizzell RA. 14-3-3 isoforms are induced by aldosterone and participate in its regulation of epithelial sodium channels. J Biol Chem 2006;281(24):16323–32.

    CAS  PubMed  Google Scholar 

  92. Nagaki K, Yamamura H, Shimada S, Saito T, Hisanaga S, et al. 14-3-3 Mediates phosphorylation-dependent inhibition of the interaction between the ubiquitin E3 ligase Nedd4-2 and epithelial Na+ channels. Biochemistry 2006;45(21):6733–40.

    CAS  PubMed  Google Scholar 

  93. Lee IH, Campbell CR, Cook DI, Dinudom A. Regulation of epithelial Na+ channels by aldosterone: role of Sgk1. Clin Exp Pharmacol Physiol 2008;35(2):235–41.

    CAS  PubMed  Google Scholar 

  94. Chan CM, Unwin RJ, Burnstock G. Potential functional roles of extracellular ATP in kidney and urinary tract. Exp Nephrol 1998;6(3):200–7.

    CAS  PubMed  Google Scholar 

  95. Burnstock G. Pathophysiology and therapeutic potential of purinergic signaling. Pharmacol Rev 2006;58(1):58–86.

    CAS  PubMed  Google Scholar 

  96. Leipziger J. Control of epithelial transport via luminal P2 receptors. Am J Physiol Renal Physiol 2003;284(3):F419–32.

    CAS  PubMed  Google Scholar 

  97. Shirley DG, Bailey MA, Unwin RJ. In vivo stimulation of apical P2 receptors in collecting ducts: evidence for inhibition of sodium reabsorption. Am J Physiol Renal Physiol 2005;288(6):F1243–8.

    CAS  PubMed  Google Scholar 

  98. McCoy DE, Taylor AL, Kudlow BA, Karlson K, Slattery MJ, et al. Nucleotides regulate NaCl transport in mIMCD-K2 cells via P2X and P2Y purinergic receptors. Am J Physiol 1999;277(4 Pt 2):F552–9.

    CAS  PubMed  Google Scholar 

  99. Thomas J, Deetjen P, Ko WH, Jacobi C, Leipziger J. P2Y(2) receptor-mediated inhibition of amiloride-sensitive short circuit current in M-1 mouse cortical collecting duct cells. J Membr Biol 2001;183(2):115–24.

    CAS  PubMed  Google Scholar 

  100. Ma HP, Li L, Zhou ZH, Eaton DC, Warnock DG. ATP masks stretch activation of epithelial sodium channels in A6 distal nephron cells. Am J Physiol Renal Physiol 2002;282(3):F501–5.

    CAS  PubMed  Google Scholar 

  101. Lehrmann H, Thomas J, Kim SJ, Jacobi C, Leipziger J. Luminal P2Y2 receptor-mediated inhibition of Na+ absorption in isolated perfused mouse CCD. J Am Soc Nephrol 2002;13(1):10–8.

    CAS  PubMed  Google Scholar 

  102. Li L, Wingo CS, Xia SL. Downregulation of SGK1 by nucleotides in renal tubular epithelial cells. Am J Physiol Renal Physiol 2007;293(5):F1751–7.

    CAS  PubMed  Google Scholar 

  103. Schwiebert EM, Kishore BK. Extracellular nucleotide signaling along the renal epithelium. Am J Physiol Renal Physiol 2001;280(6):F945–63.

    CAS  PubMed  Google Scholar 

  104. Jose PA, Asico LD, Eisner GM, Pocchiari F, Semeraro C, Felder RA. Effects of costimulation of dopamine D1- and D2-like receptors on renal function. Am J Physiol 1998;275(4 Pt 2):R986–94.

    CAS  PubMed  Google Scholar 

  105. Felder RA, Kinoshita S, Sidhu A, Ohbu K, Kaskel FJ. A renal dopamine-1 receptor defect in two genetic models of hypertension. Am J Hypertens 1990;3(6 Pt 2):96S–9S.

    CAS  PubMed  Google Scholar 

  106. Ohbu K, Felder RA. DA1 dopamine receptors in renal cortical collecting duct. Am J Physiol 1991;261(5 Pt 2):F890–5.

    CAS  PubMed  Google Scholar 

  107. Takemoto F, Satoh T, Cohen HT, Katz AI. Localization of dopamine-1 receptors along the microdissected rat nephron. Pflugers Arch 1991;419(3–4):243–8.

    CAS  PubMed  Google Scholar 

  108. Sun D, Wilborn TW, Schafer JA. Dopamine D4 receptor isoform mRNA and protein are expressed in the rat cortical collecting duct. Am J Physiol 1998;275(5 Pt 2):F742–51.

    CAS  PubMed  Google Scholar 

  109. O’Connell DP, Vaughan CJ, Aherne AM, Botkin SJ, Wang ZQ, et al. Expression of the dopamine D3 receptor protein in the rat kidney. Hypertension 1998;32(5):886–95.

    PubMed  Google Scholar 

  110. Huo T, Healy DP. [3H]domperidone binding to the kidney inner medullary collecting duct dopamine-2 K (DA2K) receptor. J Pharmacol Exp Ther 1991;258(2):424–8.

    CAS  PubMed  Google Scholar 

  111. Sun D, Schafer JA. Dopamine inhibits AVP-dependent Na+ transport and water permeability in rat CCD via a D4-like receptor. Am J Physiol 1996;271(2 Pt 2):F391–400.

    CAS  PubMed  Google Scholar 

  112. Ozono R, O’Connell DP, Wang ZQ, Moore AF, Sanada H, et al. Localization of the dopamine D1 receptor protein in the human heart and kidney. Hypertension 1997;30(3 Pt 2):725–9.

    CAS  PubMed  Google Scholar 

  113. Satoh T, Cohen HT, Katz AI. Intracellular signaling in the regulation of renal Na-K-ATPase. I. Role of cyclic AMP and phospholipase A2. J Clin Invest 1992;89(5):1496–500.

    CAS  PubMed  Google Scholar 

  114. Takemoto F, Cohen HT, Satoh T, Katz AI. Dopamine inhibits Na/K-ATPase in single tubules and cultured cells from distal nephron. Pflugers Arch 1992;421(4):302–6.

    PubMed  Google Scholar 

  115. Satoh T, Cohen HT, Katz AI. Different mechanisms of renal Na-K-ATPase regulation by protein kinases in proximal and distal nephron. Am J Physiol 1993;265(3 Pt 2):F399–405.

    CAS  PubMed  Google Scholar 

  116. Silver RB, Frindt G, Windhager EE, Palmer LG. Feedback regulation of Na channels in rat CCT. I. Effects of inhibition of Na pump. Am J Physiol 1993;264(3 Pt 2):F557–64.

    CAS  PubMed  Google Scholar 

  117. Wang WH, Geibel J, Giebisch G. Mechanism of apical K+ channel modulation in principal renal tubule cells. Effect of inhibition of basolateral Na(+)-K(+)-ATPase. J Gen Physiol 1993;101(5):673–94.

    CAS  PubMed  Google Scholar 

  118. Schiffmann SN, Lledo PM, Vincent JD. Dopamine D1 receptor modulates the voltage-gated sodium current in rat striatal neurones through a protein kinase A. J Physiol 1995;483 (Pt 1):95–107.

    CAS  PubMed  Google Scholar 

  119. Cantrell AR, Smith RD, Goldin AL, Scheuer T, Catterall WA. Dopaminergic modulation of sodium current in hippocampal neurons via cAMP-dependent phosphorylation of specific sites in the sodium channel alpha subunit. J Neurosci 1997;17(19):7330–8.

    CAS  PubMed  Google Scholar 

  120. Stokes JB, Ingram MJ, Williams AD, Ingram D. Heterogeneity of the rabbit collecting tubule: localization of mineralocorticoid hormone action to the cortical portion. Kidney Int 1981;20(3):340–7.

    CAS  PubMed  Google Scholar 

  121. Stokes JB. Na and K transport across the cortical and outer medullary collecting tubule of the rabbit: evidence for diffusion across the outer medullary portion. Am J Physiol 1982;242(5):F514–20.

    CAS  PubMed  Google Scholar 

  122. Wingo CS. Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct. Functional evidence for proton-potassium- activated adenosine triphosphatase. J Clin Invest 1989;84(1):361–5.

    CAS  PubMed  Google Scholar 

  123. Garg LC, Knepper MA, Burg MB. Mineralocorticoid effects on Na-K-ATPase in individual nephron segments. Am J Physiol 1981;240(6):F536–44.

    CAS  PubMed  Google Scholar 

  124. Ciampolillo F, McCoy DE, Green RB, Karlson KH, Dagenais A, et al. Cell-specific expression of amiloride-sensitive, Na(+)-conducting ion channels in the kidney. Am J Physiol 1996;271(4 Pt 1):C1303–15.

    CAS  PubMed  Google Scholar 

  125. Xia SL, Noh SH, Verlander JW, Gelband CH, Wingo CS. Apical membrane of native OMCD(i) cells has nonselective cation channels. Am J Physiol Renal Physiol 2001;281(1):F48–55.

    CAS  PubMed  Google Scholar 

  126. Huo T, Ye MQ, Healy DP. Characterization of a dopamine receptor (DA2K) in the kidney inner medulla. Proc Natl Acad Sci USA 1991;88(8):3170–4.

    CAS  PubMed  Google Scholar 

  127. Tomita K, Nonoguchi H, Terada Y, Marumo F. Effects of ET-1 on water and chloride transport in cortical collecting ducts of the rat. Am J Physiol 1993;264(4 Pt 2):F690–6.

    CAS  PubMed  Google Scholar 

  128. Gilmore ES, Stutts MJ, Milgram SL. SRC family kinases mediate epithelial Na+ channel inhibition by endothelin. J Biol Chem 2001;276(45):42610–7.

    CAS  PubMed  Google Scholar 

  129. Ahn D, Ge Y, Stricklett PK, Gill P, Taylor D, et al. Collecting duct-specific knockout of endothelin-1 causes hypertension and sodium retention. J Clin Invest 2004;114(4):504–11.

    CAS  PubMed  Google Scholar 

  130. Gallego MS, Ling BN. Regulation of amiloride-sensitive Na+ channels by endothelin-1 in distal nephron cells. Am J Physiol 1996;271(2 Pt 2):F451–60.

    CAS  PubMed  Google Scholar 

  131. Ye Q, Chen S, Gardner DG. Endothelin inhibits NPR-A and stimulates eNOS gene expression in rat IMCD cells. Hypertension 2003;41(3 Pt 2):675–81.

    CAS  PubMed  Google Scholar 

  132. Edwards RM, Pullen M, Nambi P. Activation of endothelin ETB receptors increases glomerular cGMP via an L-arginine-dependent pathway. Am J Physiol 1992;263(6 Pt 2):F1020–5.

    CAS  PubMed  Google Scholar 

  133. Pollock DM. Renal endothelin in hypertension. Curr Opin Nephrol Hypertens 2000;9(2):157–64.

    CAS  PubMed  Google Scholar 

  134. Zeidel ML, Brady HR, Kone BC, Gullans SR, Brenner BM. Endothelin, a peptide inhibitor of Na(+)-K(+)-ATPase in intact renal tubular epithelial cells. Am J Physiol 1989;257(6 Pt 1):C1101–7.

    CAS  PubMed  Google Scholar 

  135. Kohan DE. The renal medullary endothelin system in control of sodium and water excretion and systemic blood pressure. Curr Opin Nephrol Hypertens 2006;15(1):34–40.

    CAS  PubMed  Google Scholar 

  136. Gariepy CE, Ohuchi T, Williams SC, Richardson JA, Yanagisawa M. Salt-sensitive hypertension in endothelin-B receptor-deficient rats. J Clin Invest 2000;105(7):925–33.

    CAS  PubMed  Google Scholar 

  137. Ohkita M, Wang Y, Nguyen ND, Tsai YH, Williams SC, et al. Extrarenal ETB plays a significant role in controlling cardiovascular responses to high dietary sodium in rats. Hypertension 2005;45(5):940–6.

    CAS  PubMed  Google Scholar 

  138. Ge Y, Bagnall A, Stricklett PK, Strait K, Webb DJ, et al. Collecting duct-specific knockout of the endothelin B receptor causes hypertension and sodium retention. Am J Physiol Renal Physiol 2006;291(6):F1274–80.

    CAS  PubMed  Google Scholar 

  139. Ge Y, Stricklett PK, Hughes AK, Yanagisawa M, Kohan DE. Collecting duct-specific knockout of the endothelin A receptor alters renal vasopressin responsiveness, but not sodium excretion or blood pressure. Am J Physiol 2005;289(4):F692–8.

    CAS  Google Scholar 

  140. Hsieh TJ, Lin SR, Lee YJ, Shin SJ, Lai YH, et al. Increased renal medullary endothelin-1 synthesis in prehypertensive DOCA- and salt-treated rats. Am J Physiol 2000;279(1):F112–21.

    CAS  Google Scholar 

  141. Pollock DM, Allcock GH, Krishnan A, Dayton BD, Pollock JS. Upregulation of endothelin B receptors in kidneys of DOCA-salt hypertensive rats. Am J Physiol 2000;278(2):F279–86.

    CAS  Google Scholar 

  142. Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, et al. Human hypertension caused by mutations in WNK kinases. Science 2001;293(5532):1107–12.

    CAS  PubMed  Google Scholar 

  143. Gamba G. Role of WNK kinases in regulating tubular salt and potassium transport and in the development of hypertension. Am J Physiol Renal Physiol 2005;288(2):F245–52.

    CAS  PubMed  Google Scholar 

  144. Flatman PW. Cotransporters, WNKs and hypertension: important leads from the study of monogenetic disorders of blood pressure regulation. Clin Sci (Lond) 2007;112(4):203–16.

    CAS  Google Scholar 

  145. Subramanya AR, Yang CL, McCormick JA, Ellison DH. WNK kinases regulate sodium chloride and potassium transport by the aldosterone-sensitive distal nephron. Kidney Int 2006;70(4):630–4.

    CAS  PubMed  Google Scholar 

  146. Hadchouel J, Jeunemaitre X. Life and death of the distal nephron: WNK4 and NCC as major players. Cell Metab 2006;4(5):335–7.

    CAS  PubMed  Google Scholar 

  147. Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. Bartter’s syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat Genet 1996;13(2):183–8.

    CAS  PubMed  Google Scholar 

  148. Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A, et al. Genetic heterogeneity of Bartter’s syndrome revealed by mutations in the K+ channel, ROMK. Nat Genet 1996;14(2):152–6.

    CAS  PubMed  Google Scholar 

  149. Simon DB, Nelson-Williams C, Bia MJ, Ellison D, Karet FE, et al. Gitelman’s variant of Bartter’s syndrome, inherited hypokalaemic alkalosis, is caused by mutations in the thiazide-sensitive Na-Cl cotransporter. Nat Genet 1996;12(1):24–30.

    CAS  PubMed  Google Scholar 

  150. Kunchaparty S, Palcso M, Berkman J, Velazquez H, Desir GV, et al. Defective processing and expression of thiazide-sensitive Na-Cl cotransporter as a cause of Gitelman’s syndrome. Am J Physiol 1999;277(4 Pt 2):F643–9.

    CAS  PubMed  Google Scholar 

  151. De Jong JC, Van Der Vliet WA, Van Den Heuvel LP, Willems PH, Knoers NV, Bindels RJ. Functional expression of mutations in the human NaCl cotransporter: evidence for impaired routing mechanisms in Gitelman’s syndrome. J Am Soc Nephrol 2002;13(6):1442–8.

    PubMed  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the Medical Media Service of the Malcolm Randall Veterans Affairs Medical Center for their help with the illustrations in this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle L. Gumz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Gumz, M.L., Stow, L.R., Xia, SL. (2010). Sodium Transport Mechanisms in the Mammalian Nephron. In: Gerencser, G. (eds) Epithelial Transport Physiology. Humana Press. https://doi.org/10.1007/978-1-60327-229-2_12

Download citation

Publish with us

Policies and ethics