Skip to main content

Acid/Base Regulation in Renal Epithelia by H,K-ATPases

  • Chapter
  • First Online:
Epithelial Transport Physiology

Abstract

The renal H,K-ATPases are integral membrane proteins, located in the renal collecting duct (CD) and other segments of the nephron, that participate in the regulation of proton secretion and cation reabsorption. Together with the apical Na/H exchangers and the H-ATPases, the H,K-ATPases, function as proton secretory mechanisms that are responsible for reclamation of filtered HCO3, regeneration of HCO3 consumed in the oxidation of the products of metabolism, and the generation of new HCO3 in the kidney. This chapter examines the role of H,IC-ATPases in acidbase and volume homeostasis. We discuss the H,K-ATPase holoenzyme structure followed by a review of studies regarding renal H,K-ATPase localization, function, and regulation. Finally, a recent report using a genetic approach to quantify the contribution of two a-subunit isoforms of the H,K-ATPase to acid secretion has confirmed years of pharmacological studies from many laboratories and demonstrates that both isoforms of this enzyme are normally active in the CD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Swarts HGP, Klaassen CHW, Schuurmans Stekhvoen FMAH, De Pont JJHHM. Sodium acts as a potassium analog on gastric H-K-ATPase. J Biol Chem 1995; 270:7890–7895.

    CAS  PubMed  Google Scholar 

  2. Palmgren MG, Axelsen KB. Evolution of P-type ATPases. Biochim Biophys Acta 1998; 1365(1–2):37–45.

    CAS  PubMed  Google Scholar 

  3. Shin JM, Sachs G. Dimerization of the gastric H+,K+-ATPase. J Biol Chem 1996; 271(4):1904–1908.

    CAS  PubMed  Google Scholar 

  4. Ivanov AV, Modyanov NN, Askari A. Role of the self-association of beta subunits in the oligomeric structure of Na+/K+-ATPase. Biochem J 2002; 364(Pt 1):293–299.

    CAS  PubMed  Google Scholar 

  5. Codina J, DuBose TD, Jr. Molecular regulation and physiology of the H+,K+ -ATPases in kidney. Semin Nephrol 2006; 26(5):345–351.

    CAS  PubMed  Google Scholar 

  6. Crowson MS, Shull GE. Isolation and characterization of a cDNA encoding the putative distal colon H+,K+-ATPase. Similarity of deduced amino acid sequence to gastric H+,K+-ATPase and Na+,K+-ATPase and mRNA expression in distal colon, kidney, and uterus. J Biol Chem 1992; 267:13740–13748.

    CAS  PubMed  Google Scholar 

  7. Kone BC, Higham SC. A novel N-terminal splice variant of the rat H+-K+-ATPase α2 subunit. J Biol Chem 1998; 273(5):2543–2552.

    CAS  PubMed  Google Scholar 

  8. Campbell WG, Weiner ID, Wingo CS, Cain BD. H-K-ATPase in the RCCT-28A rabbit cortical collecting duct cell line. Am J Physiol 1999; 276(2 Pt 2):F237–F245.

    CAS  PubMed  Google Scholar 

  9. Gumz ML, Duda D, McKenna R, Wingo CS, Cain BD. Molecular modeling of the rabbit colonic (HKalpha2a) H(+), K(+) ATPase. J Mol Model (Online ) 2003; 9(5):283–289.

    CAS  Google Scholar 

  10. Asano S, Morii M, Takeguchi N. Molecular and cellular regulation of the gastric proton pump. Biol Pharm Bull 2004; 27(1):1–12.

    CAS  PubMed  Google Scholar 

  11. Asano S, Yoshida A, Yashiro H, Kobayashi Y, Morisato A, Ogawa H et al. The cavity structure for docking the K(+)-competitive inhibitors in the gastric proton pump. J Biol Chem 2004; 279(14):13968–13975.

    CAS  PubMed  Google Scholar 

  12. Togawa K, Ishiguro T, Kaya S, Shimada A, Imagawa T, Taniguchi K. Reversible phosphorylation of both Tyr7 and Tyr10 in the alpha-chain of pig stomach H+, K+ ATPase by a membrane-bound kinase and a phosphatase. J Biol Chem 1995; 270(26):15475–15478.

    CAS  PubMed  Google Scholar 

  13. Feschenko MS, Wetzel RK, Sweadner KJ. Phosphorylation of Na,K-ATPase by protein kinases. Sites, susceptibility, and consequences. Ann NY Acad Sci 1997; 834: 479–488.

    CAS  PubMed  Google Scholar 

  14. Courtois-Coutry N, Roush D, Rajendran V, McCarthy JB, Geibel J, Kashgarian M et al. A tyrosine-based signal targets H/K-ATPase to a regulated compartment and is required for the cessation of gastric acid secretion. Cell 1997; 90(3):501–510.

    CAS  PubMed  Google Scholar 

  15. Scarff KL, Judd LM, Toh BH, Gleeson PA, Van Driel IR. Gastric H+,K+-Adenosine Triphosphatase beta Subunit Is Required for Normal Function, Development, and Membrane Structure of Mouse Parietal Cells. Gastroenterology 1999; 117(3):605–618.

    CAS  PubMed  Google Scholar 

  16. Wallmark B, Briving C, Fryklund J, Munson K, Jackson R, Mendlein J et al. Inhibition of gastric H+,K+-ATPase and acid secretion by SCH 28080, a substituted pyridyl (1,2a)imidazole. J Biol Chem 1987; 262:2077–2084.

    CAS  PubMed  Google Scholar 

  17. Dherbecourt O, Cheval L, Bloch-Faure M, Meneton P, Doucet A. Molecular identification of Sch28080-sensitive K-ATPase activities in the mouse kidney. Pflugers Arch 2006; 451(6):769–775.

    CAS  PubMed  Google Scholar 

  18. Petrovic S, Spicer Z, Greeley T, Shull GE, Soleimani M. Novel Schering and ouabain-insensitive potassium-dependent proton secretion in the mouse cortical collecting duct. Am J Physiol Renal Physiol 2002; 282(1):F133–F143.

    CAS  PubMed  Google Scholar 

  19. Zhou X, Nakamura S, Xia SL, Wingo CS. Increased CO2 stimulates K/Rb reabsorption mediated by H-K-ATPase in CCD of potassium-restricted rabbit. Am J Physiol Renal Physiol 2001; 281(2):F366–F373.

    CAS  PubMed  Google Scholar 

  20. Zhou X, Lynch IJ, Xia SL, Wingo CS. Activation of H+-K+-ATPase by CO2 requires a basolateral Ba2+-sensitive pathway during K restriction. Am J Physiol 2000; 279(1):F153–F160.

    CAS  Google Scholar 

  21. Zhou X, Wingo CS. Stimulation of total CO2 flux by 10% CO2 in rabbit CCD: role of an apical Sch-28080- and Ba-sensitive mechanism. Am J Physiol 1994; 267(Renal 36):F114–F120.

    CAS  PubMed  Google Scholar 

  22. Zhou X, Wingo CS. Mechanisms of rubidium permeation by rabbit cortical collecting duct during potassium restriction. Am J Physiol 1992; 263:F1134–F1141.

    CAS  PubMed  Google Scholar 

  23. Zhou X, Wingo CS. Mechanisms for enhancement of Rb efflux by 10% CO2 in cortical collecting duct (CCD). Clin Res 40(2), 179A. 1992. Ref Type: Abstract.

    Google Scholar 

  24. Wingo CS, Armitage FE. Rubidium absorption and proton secretion by rabbit outer medullary collecting duct via H-K-ATPase. Am J Physiol 1992; 263:F849–F857.

    CAS  PubMed  Google Scholar 

  25. Gifford JD, Rome L, Galla JH. H+-K+-ATPase activity in rat collecting duct segments. Am J Physiol 1992; 262:F692–F695.

    CAS  PubMed  Google Scholar 

  26. Armitage FE, Wingo CS. Luminal acidification in the K-Replete OMCDi: Contributions of H-K-ATPase and bafilomycin-A1-sensitive H-ATPase. Am J Physiol 1994; 267:F450–F458.

    CAS  PubMed  Google Scholar 

  27. Armitage FE, Wingo CS. Luminal acidification in the potassium-replete OMCDi: Inhibition of bicarbonate absorption by K removal and luminal Ba. Am J Physiol 1995; 269(Renal 38):F116–F124.

    CAS  PubMed  Google Scholar 

  28. Kuwahara M, Fu WJ, Marumo F. Functional activity of H-K-ATPase in individual cells of OMCD: localization and effect of K+ depletion. Am J Physiol 1996; 270:F116–F122.

    CAS  PubMed  Google Scholar 

  29. Ono S, Guntupalli J, DuBose TD, Jr. Role of H+-K+-ATPase in pHi regulation in inner medullary collecting duct cells in culture. Am J Physiol 1996; 270(Renal 39):F852–F861.

    CAS  PubMed  Google Scholar 

  30. Wall SM, Truong AV, DuBose TD, Jr. H+-K+-ATPase mediates net acid secretion in rat terminal inner medullary collecting duct. Am J Physiol 1996; 271(Renal 40):F1037–F1044.

    CAS  PubMed  Google Scholar 

  31. Nakamura S, Amlal H, Galla JH, Soleimani M. Colonic H-K-ATPase is induced and mediates increased HCO3- reabsorption in inner medullary collecting duct in potassium depletion. Kidney Int 1998; 54(4):1233–1239.

    CAS  PubMed  Google Scholar 

  32. Wall SM, Mehta P, DuBose TD, Jr. Dietary K+ restriction upregulates total and Sch-28080-sensitive bicarbonate absorption in rat tIMCD. Am J Physiol 1998; 275(4 Pt 2):F543–F549.

    CAS  PubMed  Google Scholar 

  33. Frank AE, Weiner ID. Effects of ammonia on acid-base transport by the B-type intercalated cell 233. J Am Soc Nephrol 2001; 12(8):1607–1614.

    CAS  PubMed  Google Scholar 

  34. Milton AE, Weiner ID. Intracellular pH regulation in the rabbit cortical collecting duct A-type intercalated cell. Am J Physiol 1997; 273(Renal 42):F340–F347.

    CAS  PubMed  Google Scholar 

  35. Silver RB, Mennitt PA, Satlin LM. Stimulation of apical H-K-ATPase in intercalated cells of cortical collecting duct with chronic metabolic acidosis. Am J Physiol 1996; 270(3 Pt 2):F539–47.

    CAS  PubMed  Google Scholar 

  36. Silver RB, Frindt G. Functional identification of H-K-ATPase in intercalated cells of cortical collecting tubule. Am J Physiol 1993; 264(Renal 33):F259–F266.

    CAS  PubMed  Google Scholar 

  37. Weiner ID, Milton AE. H+-K+-ATPase in rabbit cortical collecting duct B-type intercalated cell. Am J Physiol 1996; 270(Renal 39):F518–F530.

    CAS  PubMed  Google Scholar 

  38. Silver RB, Frindt G, Mennitt P, Satlin LM. Characterization and regulation of H-K-ATPase in intercalated cells of rabbit cortical collecting duct. J Exp Zool 1997; 279(5):443–455.

    CAS  PubMed  Google Scholar 

  39. Silver RB, Choe H, Frindt G. Low NaCl diet increases H-K-ATPase in intercalated cells from rat cortical collecting duct. Am J Physiol 1998; 44(1):F94–F102.

    Google Scholar 

  40. Lynch IJ, Rudin A, Xia SL, Stow LR, Shull GE, Weiner ID et al. Impaired acid secretion in cortical collecting duct intercalated cells from H-K-ATPase-deficient mice: role of HK{alpha} isoforms. Am J Physiol Renal Physiol 2008; 294(3):F621–F627.

    CAS  PubMed  Google Scholar 

  41. Bastani B. Co-localization of H-ATPase and H,K-ATPase immunoreactivity in the rat kidney. J Am Soc Nephrol 1995; 5:1476–1482.

    CAS  PubMed  Google Scholar 

  42. Wingo CS, Madsen KM, Smolka A, Tisher CC. H-K-ATPase immunoreactivity in cortical and outer medullary collecting duct. Kidney Int 1990; 38:985–990.

    CAS  PubMed  Google Scholar 

  43. Ahn KY, Kone BC. Expression and cellular localization of mRNA encoding the “gastric” isoform of H(+)-K(+)-ATPase alpha-subunit in rat kidney 176. Am J Physiol 1995; 268(1 Pt 2):F99–109.

    CAS  PubMed  Google Scholar 

  44. Codina J, Kone BC, Delmas-Mata JT, DuBose TD, Jr. Functional expression of the colonic H+,K+-ATPase α-subunit. Pharmacologic properties and assembly with X+,K+-ATPase β-subunits. J Biol Chem 1996; 271(47):29759–29763.

    CAS  PubMed  Google Scholar 

  45. Zhou X, Wingo CS. H-K-ATPase enhancement of Rb efflux by cortical collecting duct. Am J Physiol 1992; 263:F43–F48.

    CAS  PubMed  Google Scholar 

  46. Nakamura S, Wang Z, Galla JH, Soleimani M. K+ depletion increases HCO3 reabsorption in OMCD by activation of colonic H+-K+-ATPase. Am J Physiol 1998; 43(4):F687–F692.

    Google Scholar 

  47. Ahn KY, Park KY, Kim KK, Kone BC. Chronic hypokalemia enhances expression of the H+-K+-ATPase α2-subunit gene in renal medulla. Am J Physiol 1996; 271(Renal 40):F314–F321.

    CAS  PubMed  Google Scholar 

  48. Kraut JA, Hiura J, Besancon M, Smolka A, Sachs G, Scott D. Effect of hypokalemia on the abundance of HKα1 and HKα2 protein in the rat kidney. Am J Physiol 1997; 272(Renal 41):F744–F750.

    CAS  PubMed  Google Scholar 

  49. Sangan P, Rajendran VM, Mann AS, Kashgarian M, Binder HJ. Regulation of colonic H-K-ATPase in large intestine and kidney by dietary Na depletion and dietary K depletion. Am J Physiol 1997; 272(2 Pt 1):C685–C696.

    CAS  PubMed  Google Scholar 

  50. DuBose TD, Jr., Codina J, Burges A, Pressley TA. Regulation of H+,K+-ATPase expression in kidney. Am J Physiol 1995; 269(Renal 38):F500–F507.

    CAS  PubMed  Google Scholar 

  51. Wang Z, Baird N, Shumaker H, Soleimani M. Potassium depletion and acid-base transporters in rat kidney: Differential effect of hypophysectomy. Am J Physiol 1997; 41(6):F736–F743.

    Google Scholar 

  52. Verlander JW, Moudy RM, Campbell WG, Cain BD, Wingo CS. Immunohistochemical localization of H-K-ATPase α2c-subunit in rabbit kidney. Am J Physiol Renal Physiol 2001; 281(2):F357–F365.

    CAS  PubMed  Google Scholar 

  53. Fejes-Toth G, Rusvai E, Longo KA, Naray-Fejes-Toth A. Expression of colonic H-K-ATPase mRNA in cortical collecting duct: regulation by acid/base balance. Am J Physiol 1995; 38(4):F551–F557.

    Google Scholar 

  54. Silver RB, Soleimani M. H+-K+-ATPases: regulation and role in pathophysiological states. Am J Physiol 1999; 276(6 Pt 2):F799–F811.

    CAS  PubMed  Google Scholar 

  55. Buffin-Meyer B, Younes-Ibrahim M, Barlet-Bas C, Cheval L, Marsy S, Doucet A. K depletion modifies the properties of Sch-28080-sensitive K-ATPase in rat collecting duct. Am J Physiol 1997; 272(Renal 41):F124–F131.

    CAS  PubMed  Google Scholar 

  56. Younes-Ibrahim M, Bartlet-Bas C, Buffin-Meyer B, Cheval L, Rajerison R, Doucet A. Ouabain-sensitive and -insensitive K-ATPases in rat nephron: effect of K depletion. Am J Physiol 1995; 268(Renal 37):F1141–F1147.

    CAS  PubMed  Google Scholar 

  57. Beltowski J, Wojcicka G. Spectrophotometric method for the determination of renal ouabain-sensitive H+,K+-ATPase activity. Acta Biochim Pol 2002; 49(2):515–527.

    CAS  PubMed  Google Scholar 

  58. Lee J, Rajendran VM, Mann AS, Kashgarian M, Binder HJ. Functional Expression and Segmental Localization of Rat Colonic K-Adenosine Triphosphatase. J Clin Invest 1995; 96:2002–2008.

    CAS  PubMed  Google Scholar 

  59. Fejes-Toth G, Naray-Fejes-Toth A. Immunohistochemical localization of colonic H-K-ATPase to the apical membrane of connecting tubule cells. Am J Physiol Renal Physiol 2001; 281(2):F318–F325.

    CAS  PubMed  Google Scholar 

  60. Ahn KY, Turner PB, Madsen KM, Kone BC. Effects of chronic hypokalemia on renal expression of the “gastric” H+-K+-ATPase α-subunit gene. Am J Physiol 1996; 270(Renal 39):F557–F566.

    CAS  PubMed  Google Scholar 

  61. Meneton P, Schultheis PJ, Greeb J, Nieman ML, Liu LH, Clarke LL et al. Increased sensitivity to K+ deprivation in colonic H,K,ATPase-deficient mice. J Clin Invest 1998; 101(3):536–542.

    CAS  PubMed  Google Scholar 

  62. Ahn KY, Park KY, Kim KK, Kone BC. Chronic hypokalemia enhances expression of the H(+)-K(+)-ATPase alpha 2-subunit gene in renal medulla. Am J Physiol 1996; 271(2 Pt 2):F314–F321.

    CAS  PubMed  Google Scholar 

  63. Fejes-Toth G, Naray-Fejes-Toth A, Velazquez H. Intrarenal distribution of the colonic H,K-ATPase mRNA in rabbit. Kidney Int 1999; 56(3):1029–1036.

    CAS  PubMed  Google Scholar 

  64. Modyanov NN, Petrukhin KE, Sverdlov VE, Grishin AV, Orlova MY, Kostina MB et al. The family of human Na,K-ATPase genes: ATP1AL1 gene is transcriptionally competent and probably encodes the related ion transport ATPase. FEBS Lett 1991; 278:91–94.

    CAS  PubMed  Google Scholar 

  65. Johansson M, Jansson T, Pestov NB, Powell TL. Non-gastric H+/K+ ATPase is present in the microvillous membrane of the human placental syncytiotrophoblast. Placenta 2004; 25(6):505–511.

    CAS  PubMed  Google Scholar 

  66. Grishin AV, Sverdlov VE, Kostina MB, Modyanov NN. Cloning and characterization of the entire cDNA encoded by ATP1AL1 – A member of the human Na,K/H,K-ATPase gene family. FEBS Lett 1994; 349:144–150.

    CAS  PubMed  Google Scholar 

  67. Sverdlov VE, Kostina MB, Modyanov NN. Genomic organization of the human ATP1AL1 gene encoding a ouabain-sensitive H,K-ATPase. Genomics 1996; 32(3):317–327.

    CAS  PubMed  Google Scholar 

  68. Pestov NB, Romanova LG, Korneenko TV, Egorov MV, Kostina MB, Sverdlov VE et al. Ouabain-sensitive H,K-ATPase: tissue-specific expression of the mammalian genes encoding the catalytic alpha subunit. FEBS Lett 1998; 440(3):320–324.

    CAS  PubMed  Google Scholar 

  69. Kraut JA, Helander KG, Helander HF, Iroezi ND, Marcus EA, Sachs G. Detection and localization of H+-K+-ATPase isoforms in human kidney. Am J Physiol Renal Physiol 2001; 281(4):F763–F768.

    CAS  PubMed  Google Scholar 

  70. Wingo CS, Smolka AJ. Function and structure of H,K-ATPase in the kidney. Am J Physiol 1995; 269(Renal 38):F1–F16.

    PubMed  Google Scholar 

  71. Tsuruoka S, Schwartz GJ. Metabolic Acidosis Stimulates H+ Secretion in the Rabbit Outer Medullary Collecting Duct (Inner Stripe) of the Kidney. J Clin Invest 1997; 99(6):1420–1431.

    CAS  PubMed  Google Scholar 

  72. Wingo CS. Potassium transport by the medullary collecting tubule of rabbit: effects of variation in K intake. Am J Physiol 1987; 253:F1136–F1141.

    CAS  PubMed  Google Scholar 

  73. Wingo CS. Active proton secretion and potassium absorption in the rabbit outer medullary collecting duct – functional evidence for proton-potassium activated adenosine triphosphatase. J Clin Invest 1989; 84:361–365.

    CAS  PubMed  Google Scholar 

  74. Guntupalli J, Onuigbo M, Wall S, Alpern RJ, DuBose TD, Jr. Adaptation to low-K+ media increases H+-K+-ATPase but not H+-ATPase-mediated pHi recovery in OMCDi cells. Am J Physiol 1997; 273(Cell Physiol 42):C558–C571.

    CAS  PubMed  Google Scholar 

  75. Codina J, Delmas-Mata JT, DuBose TD, Jr. Expression of HKalpha2 protein is increased selectively in renal medulla by chronic hypokalemia. Am J Physiol 1998; 275(3 Pt 2):F433–F440.

    CAS  PubMed  Google Scholar 

  76. Weiner ID, Hamm LL. Use of fluorescent dye BCECF to measure intracellular pH in cortical collecting tubule. Am J Physiol 1989; 256:F957–F964.

    CAS  PubMed  Google Scholar 

  77. Weiner ID, Frank AE, Wingo CS. Apical proton secretion by the inner stripe of the outer medullary collecting duct. Am J Physiol 1999; 276(4 Pt 2):F606–F613.

    CAS  PubMed  Google Scholar 

  78. Yip KP, Tsuruoka S, Schwartz GJ, Kurtz I. Apical H(+)/base transporters mediating bicarbonate absorption and pH(i) regulation in the OMCD. Am J Physiol Renal Physiol 2002; 283(5):F1098-F1104.

    PubMed  Google Scholar 

  79. Lynch IJ, Rudin A, Xia SL, Stow LR, Shull GE, Weiner ID et al. Impaired acid secretion in cortical collecting duct intercalated cells from H-K-ATPase-deficient mice: role of HKalpha isoforms. Am J Physiol Renal Physiol 2008; 294(3):F621–F627.

    CAS  PubMed  Google Scholar 

  80. Knepper MA, Good DW, Burg MB. Ammonia and bicarbonate transport by rat cortical collecting ducts perfused in vitro. Am J Physiol 1985; 249:F870–F877.

    CAS  PubMed  Google Scholar 

  81. Wall SM. NH4 + augments net acid secretion by a ouabain-sensitive mechanism in isolated perfused inner medullary collecting ducts. Am J Physiol 1996; 270:F432–F439.

    CAS  PubMed  Google Scholar 

  82. Frank AE, Wingo CS, Weiner ID. Effects of ammonia on bicarbonate transport in the cortical collecting duct. Am J Physiol 2000; 278(2):F219–F226.

    CAS  Google Scholar 

  83. Frank AE, Wingo CS, Andrews PM, Ageloff S, Knepper MA, Weiner ID. Mechanisms through which ammonia regulates cortical collecting duct net proton secretion. Am J Physiol Renal Physiol 2002; 282(6):F1120–F1128.

    CAS  PubMed  Google Scholar 

  84. Wang X, Wu J, Li L, Chen F, Wang R, Jiang C. Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ Res 2003; 92(11):1225–1232.

    CAS  PubMed  Google Scholar 

  85. Wang Z, Rabb H, Craig T, Burnham C, Shull GE, Soleimani M. Ischemic-reperfusion injury in the kidney: Overexpression of colonic H+-K+-ATPase and suppression of NHE-3. Kidney Int 1997; 51(4):1106–1115.

    CAS  PubMed  Google Scholar 

  86. Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M, Gawenis LR et al. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat Genet 1998; 19(3):282–285.

    CAS  PubMed  Google Scholar 

  87. Nakamura S, Amlal H, Schultheis PJ, Galla JH, Shull GE, Soleimani M. HCO3 reabsorption in renal collecting duct of NHE-3-deficient mouse: a compensatory response. Am J Physiol 1999; 276(6 Pt 2):F914–F921.

    CAS  PubMed  Google Scholar 

  88. Wagner CA, Geibel JP. Acid-base transport in the collecting duct. J Nephrol 2002; 15 Suppl 5:S112–S127.

    CAS  PubMed  Google Scholar 

  89. Stanton B, Pan L, Deetjen H, Guckian V, Giebisch G. Independent effects of aldosterone and potassium on induction of potassium adaptation in rat kidney. J Clin Invest 1987; 79:198–206.

    CAS  PubMed  Google Scholar 

  90. Koeppen BM, Helman SI. Acidification of luminal fluid by the rabbit cortical collecting tubule perfused in vitro. Am J Physiol 1982; 242:F521–F531.

    CAS  PubMed  Google Scholar 

  91. Stone DK, Seldin DW, Kokko JP, Jacobson HR. Mineralocorticoid modulation of rabbit medullary collecting duct acidification. J Clin Invest 1983; 72:77–83.

    CAS  PubMed  Google Scholar 

  92. Kuwahara M, Sasaki S, Marumo F. Mineralocorticoids and acidosis regulate H+/HCO 3 transport of intercalated cells. J Clin Invest 1992; 89:1388–1394.

    CAS  PubMed  Google Scholar 

  93. Weiner ID, Wingo CS, Hamm LL. Regulation of intracellular pH in two cell populations of inner stripe of rabbit outer medullary collecting duct. Am J Physiol 1993; 265(Renal 34):F406–F415.

    CAS  PubMed  Google Scholar 

  94. DuBose TD, Jr., Caflisch CR. Effect of selective aldosterone deficiency on acidification in nephron segments of the rat inner medulla. J Clin Invest 1988; 82(5):1624–1632.

    CAS  PubMed  Google Scholar 

  95. Khanna A, Simoni J, Hacker C, Duran MJ, Wesson DE. Increased endothelin activity mediates augmented distal nephron acidification induced by dietary protein. J Am Soc Nephrol 2004; 15(9):2266–2275.

    CAS  PubMed  Google Scholar 

  96. Khanna A, Simoni J, Hacker C, Duran MJ, Wesson DE. Increased endothelin activity mediates augmented distal nephron acidification induced by dietary protein. Trans Am Clin Climatol Assoc 2005; 116:239–256.

    PubMed  Google Scholar 

  97. Khanna A, Simoni J, Wesson DE. Endothelin-induced increased aldosterone activity mediates augmented distal nephron acidification as a result of dietary protein. J Am Soc Nephrol 2005; 16(7):1929–1935.

    CAS  PubMed  Google Scholar 

  98. Laroche-Joubert N, Marsy S, Doucet A. Cellular origin and hormonal regulation of K(+)-ATPase activities sensitive to Sch-28080 in rat collecting duct. Am J Physiol Renal Physiol 2000; 279(6):F1053–F1059.

    CAS  PubMed  Google Scholar 

  99. Laroche-Joubert N, Marsy S, Luriau S, Imbert-Teboul M, Doucet A. Mechanism of activation of ERK and H-K-ATPase by isoproterenol in rat cortical collecting duct. Am J Physiol Renal Physiol 2003; 284(5):F948–F954.

    CAS  PubMed  Google Scholar 

  100. Laroche-Joubert N, Marsy S, Michelet S, Imbert-Teboul M, Doucet A. Protein kinase A-independent activation of ERK and H,K-ATPase by cAMP in native kidney cells: role of Epac I. J Biol Chem 2002; 277(21):18598–18604.

    CAS  PubMed  Google Scholar 

  101. Beltowski J, Marciniak A, Wojcicka G, Gorny D. Regulation of renal Na(+),K(+)-ATPase and ouabain-sensitive H(+),K(+)-ATPase by the cyclic AMP-protein kinase A signal transduction pathway. Acta Biochim Pol 2003; 50(1):103–114.

    CAS  PubMed  Google Scholar 

  102. Reinhardt J, Kosch M, Lerner M, Bertram H, Lemke D, Oberleithner H. Stimulation of protein kinase C pathway mediates endocytosis of human nongastric H+-K+-ATPase, ATP1AL1. Am J Physiol Renal Physiol 2002; 283(2):F335–F343.

    CAS  PubMed  Google Scholar 

  103. Zhou X, Xia SL, Wingo CS. Chloride transport by the rabbit cortical collecting duct: dependence on H,K-ATPase. J Am Soc Nephrol 1998; 9(12):2194–2202.

    CAS  PubMed  Google Scholar 

  104. Spicer Z, Clarke LL, Gawenis LR, Shull GE. Colonic H(+)-K(+)-ATPase in K(+) conservation and electrogenic Na(+) absorption during Na(+) restriction. Am J Physiol Gastrointest Liver Physiol 2001; 281(6):G1369–G1377.

    CAS  PubMed  Google Scholar 

  105. Hebert SC, Desir G, Giebisch G, Wang W. Molecular diversity and regulation of renal potassium channels. Physiol Rev 2005; 85(1):319–371.

    CAS  PubMed  Google Scholar 

  106. Lee MP, Ravenel JD, Hu RJ, Lustig LR, Tomaselli G, Berger RD et al. Targeted disruption of the Kvlqt1 gene causes deafness and gastric hyperplasia in mice. J Clin Invest 2000; 106(12):1447–1455.

    CAS  PubMed  Google Scholar 

  107. Grahammer F, Herling AW, Lang HJ, Schmitt-Graff A, Wittekindt OH, Nitschke R et al. The cardiac K+ channel KCNQ1 is essential for gastric acid secretion. Gastroenterology 2001; 120(6):1363–1371.

    CAS  PubMed  Google Scholar 

  108. Lambrecht NW, Yakubov I, Scott D, Sachs G. Identification of the K efflux channel coupled to the gastric H-K-ATPase during acid secretion. Physiol Genomics 2005; 21(1):81–91.

    CAS  PubMed  Google Scholar 

  109. Zheng W, Verlander JW, Lynch IJ, Cash M, Shao J, Stow LR et al. Cellular distribution of the potassium channel KCNQ1 in normal mouse kidney. Am J Physiol Renal Physiol 2007; 292(1):F456–F466.

    CAS  PubMed  Google Scholar 

  110. Spicer Z, Miller ML, Andringa A, Riddle TM, Duffy JJ, Doetschman T et al. Stomachs of mice lacking the gastric H,K-ATPase alpha – subunit have achlorhydria, abnormal parietal cells, and ciliated metaplasia. J Biol Chem 2000; 275(28):21555–21565.

    CAS  PubMed  Google Scholar 

  111. Nakamura S. H+-ATPase activity in selective disruption of H+-K+-ATPase alpha 1 gene of mice under normal and K-depleted conditions. J Lab Clin Med 2006; 147(1):45–51.

    CAS  PubMed  Google Scholar 

  112. Simpson AM, Schwartz GJ. Distal renal tubular acidosis with severe hypokalaemia, probably caused by colonic H(+)-K(+)-ATPase deficiency. Arch Dis Child 2001; 84(6):504–507.

    CAS  PubMed  Google Scholar 

  113. Verlander JW, Moudy RM, Campbell WB, Cain BD, Wingo CS. Immunohistochemical localization of HKalpha2c in rabbit kidney. J Am Soc Nephrol 9(3), 13A. 1998. Ref Type: Abstract

    Google Scholar 

  114. Swarts HG, Klaassen CH, Schuurmans Stekhoven FM, De Pont JJ. Sodium acts as a potassium analog on gastric H,K-ATPase. J Biol Chem 1995; 270(14):7890–7895.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles S. Wingo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press, a part of Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Lynch, I.J., Wingo, C.S. (2010). Acid/Base Regulation in Renal Epithelia by H,K-ATPases. In: Gerencser, G. (eds) Epithelial Transport Physiology. Humana Press. https://doi.org/10.1007/978-1-60327-229-2_11

Download citation

Publish with us

Policies and ethics